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	 Single-input, single-output (SISO) nonlinear systems have problems with sectorial dead zone 
nonlinearities, noise, uncertainties, approximation errors, and external disturbances. Therefore, 
we developed an interval Type-2 neural network fuzzy adaptive controller (IT2-NNFAC) for 
satisfactory H-infinity (H∞) tracking performance to solve the problems of the SISO system. To 
adjust the parameters of the proposed IT2-NNFAC, a structure of the fuzzy logic inference 
system and online adaptive laws are adopted, which are based on the Lyapunov stability criterion 
and Riccati inequality. All systems with the proposed IT2-NNFAC attenuate the effect of 
external disturbances on tracking errors at any specified level. In the proposed IT2-NNFAC, all 
the signals in the closed-loop system guarantee uniform and ultimate boundedness and 
satisfactory tracking performance with the proper Lyapunov stability criterion and Riccati 
inequality. H∞ tracking responses and the resilience and efficacy of the proposed IT2-NNFAC 
were proved by testing a mass spring damper system with sectorial dead zone nonlinearities, 
uncertainties, and external disturbances.

1.	 Introduction

	 In machinery, the effect of dead zone nonlinearities needs to be estimated precisely as the 
nonlinearities cause instability in performance and reduce performance. Such nonlinearities are 
frequently encountered in valves and gears. Sensors are used to monitor acceleration and 
velocity and detect nonlinearities. To evaluate the effect of dead zone nonlinearities accurately, 
fuzzy control systems based on heuristic knowledge or linguistic information have been used for 
nonlinear systems since they do not require a precise mathematical model.(1) Adaptive fuzzy 
control based on the universal approximation theorem is used in nonlinear systems to acquire 
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data and modify the control parameters.(2,3) A robust compensator such as a sliding mode 
controller, a robust adaptive controller, or an H-infinity (H∞) tracking controller is added to 
adaptive fuzzy controllers to mitigate external disturbances and fuzzy approximation errors.(4) 
However, dead zone nonlinearities occur often when using controllers in nonlinear systems, 
which reduce performance and cause instability.(5)

	 The dead zone nonlinearity is one of the serious nonsmooth nonlinearities in industrial 
processes. Thus, various adaptive control approaches have been proposed to solve the problems 
related to dead zone nonlinearities. For example, an adaptive neural technique was employed for 
unknown non-affine nonlinear systems with input dead zones and external unknown 
disturbances,(6) while dead zone inverses were presented for both linear and nonlinear systems 
with such problems to measure dead zone outputs.(7,8) An adaptive neural network (ANN) was 
used to control a quadruped robot with an unknown input dead zone.(9,10) For nonlinear systems 
with dead-zone input and output restrictions, unknown nonlinear canonical forms, and known 
maximum and minimum values, ANN tracking control was also applied using the backstepping 
technique and the identical slopes of the dead zone.(11−13) To solve nonlinearities and dead zone 
issues, fuzzy systems were also used. By focusing on the tracking issue, a nonlinear system that 
was mismatched and lacked recognized features due to dead zone flaws was explored.(14) For 
interconnected multiple input multiple output (MIMO) non-affine nonlinear systems, a fuzzy 
system with an observer-based interval Type-2 hierarchical fuzzy neural controller 
(OBIT2HFNC) was developed.(15) For nonlinear systems with uncertainties, a Type-2 fuzzy-
neural network (T2FNN) with Petri networks and a novel universal approximator was proposed, 
and an interval T2FNN (IT2FNN) with a new robust and adaptive control mechanism was 
constructed.(16,17) In uncertain nonlinear systems with sector dead zone nonlinearities, a sliding 
mode controller was presented to ensure the reaching condition.(18) However, there is a need to 
stabilize the nonlinear system with dead zone nonlinearities, particularly when high-precision 
movement is required. Fuzzy control using heuristic knowledge or linguistic information has 
been adopted as an efficient method for controlling system parameters and minimizing the 
impact of unknown nonlinearities in a complex nonlinear system.(19−21) An adaptive fuzzy 
control for the uncertain MIMO system with dead zone and time-varying external disturbance 
was developed using the membership functions for the Type-1 fuzzy logic system (T1FLS) and 
ensuring stability.(22−24) 
	 The nonlinear system contains parameter uncertainties as the membership functions in 
T1FLS are unknown. Owing to this problem, Lyapunov stability analyses are conservatively 
used but cause unstable situations with uncertainties. Therefore, Type-2 FLS (T2FLS) was 
developed to cope with membership grades that are unexpected in nonlinear dynamic systems. 
T2FLS is based on the extended idea of Type-1 FLS with the principal members of any subset in 
[0,1] and fuzzy membership functions.(25,26) The output processor, inference engine, rule base, 
and fuzzifier of T2FLS are identical to those in T1FLS. Additionally, by using a crisp set or a 
type reducer and defuzzifier, the output processor of T2FLS creates a Type-1 fuzzy set.(27) The 
crisp set has elements of binary values. Fuzzy neural networks (FNNs) are a combination of 
artificial neural networks and fuzzy reasoning and are used to manage uncertain input and learn 
from processes and mimic uncertain nonlinear systems. Because of this, much research has been 
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conducted on sophisticated controllers and complicated plant systems employing FNNs.(28−30) 

The T2FNN contains a linguistic process of T2FLS as the antecedent component and an interval 
neural network as the consequence part and exhibits better performance than the Type-1 FNN 
(T1FNN). It accelerates the computation of T1FNN and allows the employment of an interval 
Type-2 fuzzy linguistic process in the previous step. A three-layer interval in the follow-up step 
is used as a generic T2FNN due to its complexity which requires many computations. The 
advantage of T2FNN over T1FNN includes handling ambiguous membership function grades in 
a variety of applications such as adaptive filtering(31) and wheeled mobile robots.(32)

	 In this study, we propose a single input single output (SISO)  nonlinear system with a newly 
developed interval Type-2 neural network fuzzy adaptive controller (IT2NNFAC). With the 
proposed system, H∞ tracking performance is improved, and reduced the effects of sectorial 
dead zone nonlinearities in the control input and external disturbances. As a result, the tracking 
error caused by fuzzy approximation errors is reduced, which has not been successful with 
existing fuzzy adaptive controllers. By using the proper Lyapunov criterion and Riccati 
inequality, the SISO nonlinear system also reduces sectorial dead zone nonlinearities, 
uncertainties, and external disturbances and shows swift H∞ tracking responses, resilience, and 
efficacy.(11,12,14,17,18,20,27)

2.	 Materials and Methods

	 IT2NNFAC with adaption capabilities is used in the uncertain SISO nonlinear system with 
sectorial dead zone input. IT2NNFAC is generated using the linear matrix inequality (LMI) 
toolbox of Matlab to ensure that all system states are constrained and to reduce the impact of 
external disturbances on the tracking error at any level.

2.1	 Problem definition of SISO system

	 In considering a class of SISO uncertain nonlinear systems with sectorial dead zone input, 
the following expression for the systems is defined.
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Here, [ ]1 2   T n
nx x x= … ∈x   is the system state vector, which is assumed to be available for 

measurement, u ∈ and ( )uΦ ∈ are the control input and output of the sectorial dead zone 
model, respectively, y ∈ is the system output, Fα(x), Fβ(x) are unknown continuous nonlinear 
system functions, G is a constant, and d is the restricted external disturbance. Then, Eq. (1) is 
rewritten as
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2.2	 Sectorial dead zone nonlinearity

	 Dead zone and interval dead zone are two types of input nonsmooth nonlinearities that may 
have an impact on the operation of mechanical systems. Since many physical systems have such 
nonlinearities, a sectorial dead zone is created to symbolize the combined dead zone and interval 
dead zone as illustrated in Fig. 1.
	 According to Fig. 2, the median, lower, and upper bounds of the immeasurable nonlinear 
continuous functions ( ) ( ) ( )  u u u Φ = Φ Φ   with input u for ( )u′Φ , ( )uΦ , and ( )uΦ , have 
the following intervals.

Fig. 1.	 Combination of dead zone and interval dead zone.

Fig. 2.	 Sectorial dead zone.
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Here, α′ , α , and α  are the slopes of the sectorial dead zones ( )u′Φ , ( )uΦ , and ( )uΦ , 
respectively, and it is presumed that both positive and negative regions have the same value, i.e., 
α α α α′= = = , and ε − , +ε , κ , and κ  are sectorial dead zone envelopes that are constants. The 
following assumptions are suggested to acquire the essential characteristics of sectorial dead 
zone nonlinearities in the control issues.

2.2.1	 Assumption 1

	 When maxε − , minε − , maxε + , minε + , maxκ , minκ , maxκ , minκ , maxα′ , minα′ , maxα , minα , maxα , and minα  are constants, 
and ε −, +ε , κ , κ , α′, α , and α  are unknown sectorial dead zone parameters, { }min max,ε ε ε− − −∈ , 

{ }min max,ε ε ε+ + +∈ , { }min max,κ κ κ∈ , { }min max,κ κ κ∈ , { }min max,α α α′ ′ ′∈ , { },min maxα α α∈ , and { },min maxα α α∈  

are satisfied for which maxε + , minε − , maxκ , and minκ , are negative values and minα′ , minα , and minα  are 

nonzero.
	 In practice, on the basis of Assumption 1 and Eq. (3), it is possible to write the following 
equation. 

	 ( ) ( )u u uα ψΦ = + 	 (4)

Here, ψ(u) is determined using Eqs. (3) and (4) as follows.
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2.2.2	 Assumption 2

	 According to the sectorial dead zone properties, ( )uψ  in Eq. (4) is bounded, which means 
that the positive constant is used as follows.

	 { }max minmax max min minmax ,ρ α ε κ α ε κ+ −= + + 	

where |ψ(u)| ≤ ρ. 

	 Let 
1 2
   

n
n

m m m mx x x
Τ

 = ∈ x    be the specified tracking reference signal with ( )m rt U∈x  
for all t ≥ 0 and for the desired compact set Ur. Tracking error is def ined as 

[ ]1 21 2 1 2      
nm m m n m ne x x x x x x e e e

Τ Τ = − = − − − = … x x  . Then, from Eqs. (2) and (4), the 

error dynamic equation can be written as

	 ( ) ( ) ( )( )dF F Gu G u dα β α ψ= + + + + + −e x xe B x A ,	 (6)

where 
nd m=x x .

2.3	 Model description of interval Type-2 neural network fuzzy (IT2NNF)

	 A fuzzy logic system (FLS) with a learning algorithm consists of four key components: 
fuzzifer, fuzzy rule base, fuzzy inference engine, and defuzzifer. IT2NNF has been used to 
solve uncertainty problems. In this section, the design process of IT2NNF is introduced. 
	 The IF-THEN rules for an IT2NNF are expressed as follows.
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For l = 1, 2,..., p, where 
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α

 , 
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β
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α
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β

 , 1,2, ,ni = … , are inputs and outputs of T2FLS, 

respectively, ( )
F i

iF x
α

µ

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F i

iF x
β

µ
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,
 

and ( )ˆ
F

FC y
αα

µ


, ( )ˆ
F

FC y
ββ

µ


 are the functions of their 

corresponding memberships, and P is the total number of the Type-2 fuzzy rule.  Figures 3 and 4 

show the structure and detailed configuration of the proposed IT2NNF with the superscript 
indicating the layer number. IT2NNF is introduced layer by layer as follows.

2.3.1	 Layer 1 (Input Layer)

	 This layer holds the inputs xi, i = 1, 2,..., n of IT2NNF, which are designated as the state 
variables of Eq. (2).
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2.3.2	 Layer 2 (Membership Layer)

	 Each node in this layer works within the footprint of uncertainty (FOU), which is separated 
into upper and lower T1 membership functions, ( )ˆ

F
FC y

αα
µ



, ( )ˆ
F

FC y
ββ

µ


, and ( )ˆ
F

FC y
αα

µ


, ( )ˆ
F

FC y
ββ

µ


, 
respectively.

2.3.3	 Layer 3 (Rule Layer)

	 The decision-making mechanism is the fuzzy inference engine. It employs fuzzy rules to 
compute the mapping of Type-2 fuzzy sets from input to output. The FF C

αα ∈   and FF C
ββ ∈   

firing intervals in Eqs. (13) and (14) are interval Type-2 fuzzy sets, values that are not crisp, and 
the intervals between   F F Fα αα

 =  


   and   F F Fβ ββ
 =  


   are defined by the leftmost Fα

 , F β
  

and rightmost  Fα
,  Fβ



 points, respectively. The singleton fuzzifier and product inference are used 
to create the following equations.

Fig. 3.	 Structure of proposed IT2NNF in this study.

Fig. 4.	 Detailed configuration of proposed IT2NNF in this study.
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	 As presented in Fig. 5, the Gaussian membership functions for xn of the IT2-NNFAC are 
employed. The functions are as follows.
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22

,  

FF ii

F Fi i
iF Fi i

ii x mx m

FF Fi ix e x a e
αα

α α
αα α

σ σ
µ µ

    −−    
  

−



−

= =
 

	 (9)

	
( ) ( )

2 2

,  

F Fi i

F Fi i
iF i

i

i

i

F

x m x m

i FF Fix e x a e

β β

β β

ββ β

σ σ
µ µ

   
   − −
   
   

− −

= =
 

	 (10)

where 
iFα

σ , 
iFβ

σ  in the lower limit and iFα
σ , 
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σ  in the upper limit are the fixed standard 

deviations of the membership functions in the form of ( )
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α
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
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, respectively. The 
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Fig. 5.	 (Color online) Membership function (xi, i = 1,2,…,n) of proposed IT2NNF. 
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0 1Fb
α

< <  and ( )ˆ 1
F

FC y
β

β

µ =


, ( )ˆ
FC F Fy b

β β
β

µ =


, 0 1Fb
β

< <  are the coefficients for the fuzzy set 

membership function’s FOU width. With these, Eqs. (7) and (8) are revised to Eqs. (11) and (12).
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2.3.4	 Layer 4 (Type Reduction Layer)

	 The type reduction is implemented using this layer. In contrast to T1FLS, T2FLS structure 
implementation is applied to the operations of fuzzification, inference, and output processing 
with type reduction and defuzzification.(33,34) The mathematical mean of the defuzzified outputs 
Fα
 and F   is replaced with ( )1

2
F F Fα α α= + 
   and ( )1

2
F F Fβ β β= + 
   in T2FLS type reduction, 

which is an enhanced form of Type-1 defuzzification. The proposed IT2NNFAC becomes more 
computationally difficult as a result of the replacement, but it has the advantage of leveraging 
fuzzy set membership functions to address the inherent uncertainties in linguistic words.

2.3.5	 Layer 5 (Output Layer)

	 The crisp outputs of T2FLS are used to approximate Fα(x) and Fβ(x) after the type-reduced 
sets have been defuzzified as follows.

	 ( ) 1
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Here, 1 2  ˆ ˆ̂̂   p
F F F Fα α α α

Τ
θ θ θ =  θ  and 1 2ˆ ˆ̂̂    p

F F F Fβ β β β

Τ
θ θ θ =   

θ  are the adjustable parameter 

vectors, and ( ) ( ) ( ) ( )1 2   
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α α α α
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F F F Fx x x x

β β β β
ξ ξ ξ = ⋅ ⋅ ⋅  

ξ  

are the vectors of the fuzzy basis functions.
	 Additionally, the optimal approximation parameters Fα

∗θ  and Fβ
∗θ  are specified as follows by the 

universal approximation theorem.(35)
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	 ( ){ }*
ˆarg min sup , ( )ˆˆ

nF F
F F

x
F x xF

α αα α
α α∈Ω

∈
= −

θ
θ θ 	 (15)
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nF F
F F
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F x xF

β ββ β
β β∈Ω

∈
= −



θ
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	 The minimum approximation errors for Fα(x) and Fβ(x) are defined as 

	 ( )*ˆ( ) , FF F x xF
αα α α= − θ ,	 (17)

	 ( )*ˆ( ) , FF F x xF
ββ β β= − θ ,	 (18)

where the minimum approximation errors are assumed to be constrained and are denoted by Fα
  

and Fβ
 . Accordingly, the estimated parameter errors are expressed as 

	 * ˆ
F F Fα α α

= −θ θ θ ,	 (19)

	 * ˆ
F F Fβ β β

= −θ θ θ .	 (20)

	 As a result, T2FLS is used to approximate the unknown functions Fα and Fβ of the nonlinear 
controlled system in Eq. (2).

2.3.6	 Assumption 3

	 When ( ) ei
F F Mα β+ ≤  , where ( )i⋅  is the absolute value of the ith element of F Fα β+  , 

i = 1,2,...,n, Me > 0 with a positive constant.

3.	 Design of IT2NNFAC and Stability Analysis of SISO Nonlinear System 

3.1	 Design of IT2NNFAC

	 The unknown nonlinear functions Fα(x) and Fβ(x) are approximated by the Type-2 fuzzy 
universal approximators of ( ),ˆ ˆ

FF x
αα θ  and ( ),ˆ ˆ

FF x
ββ θ , respectively, and IT2NNFAC is used to 

produce the output following a reference trajectory xm. The proposed IT2NNFAC is given as 
follows from Assumptions 1 and 2 for sectorial dead zone nonlinearity.

	 ( ) ( ) ( )( )1 ˆˆ̂ , , F d
T

F hu uG F F Gx x x u
βαα εβα ρ−= − − − + +− +θ θ k e 	 (21)
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Here, the characteristic polynomial of Am = A − BkT is selected to be a Hurwitz matrix, 
1 2   nk k kΤ =   k   is the gain matrix, uh and uε are used to compensate the approximation errors 

and the H∞ robust control, and ( )uψ ρ≤  is described as Assumption 2.

	 Then, once m

1 2 3

0 1 0 0
0 0 1 0

0 0 0 1

nk k k k

 
 
 
 =
 
 
 − − − − 





    





A  is defined, the error dynamics in Eq. (6) is 

transformed into

	 ė = Ame + B(Fα(x) + Fβ(x)) + αGu + Gρ + d − xd + kTe).	 (22)

	 Therefore, the error dynamics is obtained by substituting Eq. (21) into Eq. (22) as follows.

	
( ) ( )( )

( )
ˆ̂ˆ̂( ) , ( ) ,

  ( ) ( )

F F h

F F F F h
T T

F x x x

F

x d uF F F

x F

u

d u u

α

α

β

βα β

α α ε

α ε

β β

β

= + − + − + + +

= + − − + + + + +x



   

θ θ

ξ θ ξ θ

m

m

A B

A B

e e

e
	 (23)

3.1.1	 Theorem 1

	 H∞ performance is taken into account as follows.(36)

	 ( ) ( ) ( )T 2

0 0
2 0 0f ft tT Tdt d d dtη≤ +∫ ∫e Qe e Pe 	 (24)

Here, the weighting matrix Q > 0, P = PT > 0, and η2 denotes a prescribed attenuation level, 
which depicts the worst-case scenario of the tracking error e affected by the external disturbances 
d. No matter what d is, the effect on e must be reduced below a desired level η in terms of energy 
according to the physical definition of performance in Eq. (24). That is, a prescribed value η 
must be equal to or less than the L2-gain from d to e. For d, η is typically chosen as a positive 
small value less than one.

3.1.2	 Theorem 2

	 The sectorial dead zone nonlinearities Φ(u) and uncertain nonlinear functions Fα(x) and Fβ(x) 
are taken into account for the controlled system [Eq. (2)]. The definition of IT2NNFAC with Eq. 
(21) is as follows.

	
1 T

hu
γ

= − B Pe	 (25)
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	 sgn( )T
eu Mε = − B Pe 	 (26)

Here, the gain parameter 
   1,  if 0

s
,

T
T

T
gn( )

1 if 0

 ≥= 
− <

 

  

B Pe
B Pe

B Pe
, γ > 0. On the basis of Assumption 3, 

Me is defined, and the symmetric positive definite matrix P = PT > 0 is obtained using the 
Matlab LMI toolbox according to the following Riccati-like equation.

	 2
T T2 1( ) 0m m γ η

+ + − + ≤+A P PA Q PBB P 	 (27)

Here, a prescribed weighting matrix and a prescribed attenuation level are represented by 
Q = QT ≥ 0 and 0 < η < 1, respectively. The selected adaptive laws for adjusting the unknown 
SISO nonlinear system functions in IT2NNF are as follows.

	 Tˆ ( )F F Fα α α
γ= B Pex

θ ξ 	 (28)

	 Tˆ ( )F F Fβ β β
γ= B Pex

θ ξ 	 (29)

Here, the adaptation rates are 0Fα
γ >  and 0Fβ

γ > . The H∞ tracking performance is then 
achieved within a specified value η2 in the presence of external disturbances for any t ≥ 0, e, Fα

θ , 
and Fβ

θ  that are bounded.

3.2	 Stability analysis of SISO nonlinear system

3.2.1	 Proof 1

	 The candidate of the Lyapunov function is defined as 

	 T T T1 1 1
2 F F F F

F F

V
α α β β

α β
γ γ

 
 = + +
 
 

   e Pe θ θ θ θ .	 (30)

	 Taking a time derivative of Eq. (30),

	 ( ) ( )T T T T T T1 1 1
2 F F F F F F F F

F F
V

α α α α β β β β
α β

γ γ

 
 = + +
 

+


+


+  



 

 

       e Pe e Pe θ θ θ θ θ θ θ θ .	 (31)

	 With ˆ
F Fα α

=




θ θ , ˆ
F Fβ β

=




θ θ , substituting Eqs. (23) and (25) into Eq. (31) results in
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( )( )
( )( )

T
T T

T T

T T , 

1 ( ) ( )
2

1         ( ) ( )
2
1 1        

m F F F F h

m F F F F h

F F F F
F F

V F F d u u

F F d u u

α α β β

α α β β

α α β β

α β

α β ε

α β ε

γ γ

Τ

= + − − + + + + +

+ + − − + + + + +

+ +

x x

x x

  

 

 

 



 

 

A e B Pe

e P A e B

ξ ξ

ξ

θ θ

θ θ

θ θ θ

ξ

θ

	 (32)

	

( )

T T T 2 T
m m 2

T
T T

T T T

T T

1 2 1 1
2 2

1 1 1     
2

     ( ) ( )

1 1    . 

F F F F

F F F F
F F

d d

d d

F F u
α α β β

α α β β
α β

α β ε

η
γ η

η η
η η

γ γ

  
 = + + − + +     

   
− − −   

   

+ − − + + +

+ +

x x   

 

   

e A P PA PBB P e

B Pe B Pe

e PB ξ θ ξ θ

θ θ θ θ

	 (33)

	 Applying the Riccati inequality [Eq. (27)] and the update laws and substituting Eqs. (28) and 
(29) into Eq. (33) result in

	

( )

21
2

         .

1+
2

1 1         ( ) ( )

( ) ( )

F

F

F F F F F
F F

F F F F

d

F

V d

u

α α β β βα

α β

α β βα α β ε

η

γ γ
γ γ

Τ Τ

Τ Τ Τ Τ

Τ Τ Τ Τ Τ Τ

+ +

+ + +

≤ −

− −

x x

x x 





  



e e

B B

B B e

Q

Pe Pe

Pe P B ee P PB

θ θ

θ θ

ξ ξ

ξ ξ

	 (34)

	 From Eq. (26), we have the following equation from Eq. (34).

	

( ) ( ) ( )

( ) ( )

2

2

2

1 sgn
2
1

.

2

1+
2
1+
2
1+
2

1
2

e

e e

FV d d F M x

Md x Md

d

x

d

α βη

η

η

Τ Τ Τ Τ Τ

Τ Τ Τ Τ

Τ Τ

≤ − −

≤ −

+

+

−

+

−

≤

  e e e e

e e e e

e

Q PB PB B Pe

Q PB P

e

B

Q

	 (35)

	 Therefore, 

	
T

( )min

d dη
λ

≥
Q

e .	 (36)
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	 With respect to 0V ≤ , λmin(Q) stands for the minimal eigenvalue of Q. The retarded 
functional differential equation is examined using the Lyapunov stability theory.(33,37) All 
realizations of uncertainties are guaranteed to be within the boundary of e and xm, as well as the 
parameter estimation errors Fα

θ  and Fβ
θ , since η is the designed constant acting as an 

attenuation level.(34) Equations (35) and (36) at t = 0 to t = tf are integrated for t ≥ 0. Then, 

	 2
0 0

2 ( ) 2 (0) ( ) ( ) ( ) ( )f ft t
fV t V t t dt t t dtd dηΤ Τ− ≤ − +∫ ∫e Qe 	 (37)

	 Since V(tf) ≥ 0, the inequality of Eq. (37) implies the following.

	

0

2

0

2( ) ( ) 2 (0) (0) (0) (0)

2                                                 (0) (0) ( ) ( )

f

f

F

t

t

F F
F

F F d t d

t t dt

t dt

α α

α

β β

β

γ

η
γ

Τ Τ Τ

Τ Τ

+≤

+ +

∫

∫

 

 

e PeQe e θ θ

θ θ
	 (38)

	 The inequality in Eq. (24) is satisfied for the H∞ tracking performance. Proof 1 is proven with 
the above process. 
	 Even though the stability of the IT2-NNFAC closed-loop system is assured, the update laws 
of Eqs. (28) and (29) cannot guarantee that the parameters ˆ

Fα
θ  and ˆ

Fβ
θ  are within the desired 

bounded values. Thus, it is necessary to modify the update laws using the projection algorithm 
for ensuring that the parameters ˆ

Fα
θ  and ˆ

Fβ
θ  are bounded for all t ≥ 0. Let 0Fα

Ω , F α
Ω , 0F β

Ω , and 
F β

Ω  be as  follows.

	 { }0
ˆ̂ :F F F Fα α α α

αΩ = ≤θ θ , { }ˆ̂ :F F F F FM
α α α α α

αΩ ≤= +θ θ , { }0
ˆ̂ :F F F Fβ β β β

αΩ = ≤θ θ , and 

{ }ˆ̂ :F F F F FM
β β β β β

αΩ ≤= +θ θ{ }ˆ̂ :F F F F FM
β β β β β

αΩ ≤= +θ θ , where the positive constants Fα
α , FM

α
, Fβ

α , and FM
β
 are 

specified  The update law can be changed as follows according to the projection operators.

	

{ }

( )
( )
( )

ˆ if

ˆ ˆ̂or  and 

ˆ̂ if  , a )nd 

( ) ,

= ( )

( ) = (
N

F F F F

F F F F F

F F f F F F

M

M

Proj M

α α α α

α α α α α

α α α α α

γ

γ

Τ

Τ Τ

Τ Τ Τ



= 




<



≤

x

x 0

x x > 0



 

 

 

ξ θ

θ θ θ ξ

ξ θ θ ξ

B e

B e

B e B

P

P

P Pe

	 (39)

	

{ }

( )
( )
( )

ˆ if 

ˆ ˆ̂or  and 

ˆ̂ if  and 

( ) ,

= ( )

( ) , = ( )

F F F F

F F F F F

F F F F F F

M

M

Proj M

β β β β

β β β β β

β β β β β β

γ

γ

Τ

Τ Τ

Τ Τ Τ



= 




<

≤

x

x 0

x x > 0



ξ θ

θ θ θ ξ

ξ θ θ ξ

P

P

P P

B e

B e

B e B e

	 (40)
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	 The definitions of the projection operators { }( )F FProj
α α

γ Τxξ B Pe  and { }( )F FProj
β β

γ Τxξ B Pe  
are as follows.

	 { } ( )2

2

ˆ
(

ˆ

ˆ
) ( ) ( ) F F

F F F F F F F

F F

Proj
M

α α

α α α α α α α

α α

γ γ α
Τ

Τ Τ Τ

 
 = − −  
 

x x xPB e B e BP Pe
θ θ

ξ ξ θ ξ
θ

	(41)

	 { } ( )2

2

ˆ
(

ˆ

ˆ
) ( ) ( ) F F

F F F F F F F

F F

Proj
M

β β

β β β β β β β

β β

γ γ α
Τ

Τ Τ Τ

 
 = − −  
 

x x xPB e B e BP Pe
θ θ

ξ ξ θ ξ
θ

	 (42)

ˆ̂
F F F FM

α α α α
αΤ ≤ +θ θ  and ˆ̂

F F F FM
β β β β

αΤ ≤ +θ θ  are obtained from the constraint sets Fα
Ω  and Fβ

Ω . 
As a result, the values of Fα

α , FM
α
, Fβ
α , and FM

β
 (>0) are chosen randomly.

	 Since each ( ) ( ) (, 0,1F Fx x
α β

ξ ξ
Τ Τ

∈ 
   and 

1 1
( ) ( ) 1

p p

F Fα β
ξ ξ

Τ Τ

= =
= =∑ ∑x x 

 

, ( ) ( ) FF F
αα α σ≤x x  and 

( ) ( ) FF F
ββ β σ≤x x , where 1max ( )F p F Fa M

α α α
σ ≤ ≤≡ +



 and 1max ( )F p F Fa M
β β β

σ ≤ ≤≡ +



. 

	
1 1

1 1

( ) ( ) ( ) ( )

               

)

 (

( ) (

 ) ( )  

F

p p

p p

F F F F F

F F F F F

F F a M a M
α α α α α α

α α α α α

α α

σ σ σ

Τ Τ

Τ Τ

= =

= =

+≤

≤ ≤

+∑ ∑

∑ ∑

x x x x

x x

 

 

 



 



ξ ξ

ξ ξ

	 (43)

	
1 1

1 1

( ) ( ) ( ) ( )

                )

( ) (

(

)

  ) (

FF

p p

p p

F F F F

F F F F F

F F a M a M
β β β β β β

β β β β β

β β

σ σ σ

Τ Τ

Τ Τ

= =

= =

+≤

≤ ≤

+∑ ∑

∑ ∑

x x x x

x x

 

 

 



 



ξ ξ

ξ ξ
	 (44)

	 Therefore, the sets are simplified as ˆ̂ F F Fα α α
σΤ ≤θ θ  and ˆ̂ F F Fβ β β

σΤ ≤θ θ , where ( )ˆ̂maxF F Fα α α
σ θ θΤ=  

and ( )Tˆ̂maxF F Fβ β β
σ = θ θ . As a result, it is possible to guarantee the stability of the system when 

using projection operators. 
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3.2.1.1	 Remark 1

	 The attenuation level η is required to satisfy the following inequality from the Riccati 
equation in Theorem 2 [Eq. (27)].

	 2
2

2 1    0 or   2γ η
γ η

− + ≤ ≤ 	 (45)

	 To achieve H∞ tracking performance, the estimation and tracking errors of the SISO 
nonlinear system must be minimized in terms of disturbance.

3.2.1.2	 Remark 2

	 A saturation function is replaced with sgn(BTPe) because the control law provided by Eq. (26) 
containing sgn(BTPe) results in chattering effects.(35)

	
sgn( / ), if

( )
/ , if

sat
Τ Τ

Τ
Τ Τ

λ λ

λ λ

 ≥= 
 ≤


 

 
B

Pe

P

B B

B
e

PeB

Pe
P

e
	 (46)

Here, λ is a positive constant.

3.2.1.3	 Theorem 3

	 Sectorial dead zone nonlinearities Φ(u) and uncertain nonlinear functions Fα(x) and Fβ(x) in a 
controlled system are expressed as IT2NNFAC equations using Eqs. (21), (25), and (26). Here, 
P = PT > 0 satisfies Eq. (27) at a prescribed attenuation level 0 < η < 1. Equations (39) and (40) 
are then selected as the updated law. Following that, for any bounded value of e, Fα

θ , and Fβ
θ  at 

t ≥ 0, H∞ tracking performance is achieved within a predetermined value η2 in the presence of 
external disturbances.

3.2.2	 Proof 2

	 From the candidate of Lyapunov function [Eq. (30)] and ˆ
F Fα α

=




θ θ  and ˆ
F Fβ β

=




θ θ , Proof 1 is 
applied to Theorem 2; then, the following is obtained.
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( )

2
2

1 2 1 1 
2 2

1 1 1      
2

   ( ) ( )

1 1       

F F F F

F F F F
F

m

F

mV d d

d d

F F u
α α β β

α α β β

α β

α β ε

η
γ η

η η
η η

γ γ

Τ Τ Τ Τ

Τ
Τ Τ

Τ Τ Τ

Τ Τ

  
= + + − + +  

  

   
− − −   

   

+ − − + + +

+ +

x x



   

 

   

e A P PA PBB P e

B Pe B Pe

e PB ξ θ ξ θ

θ θ θ θ

	 (47)

	 By using the adaptive laws of Eqs. (39) and (40) and applying the Riccati inequality [Eq. (27)], 
Eq. (47) is transformed to

2

2

2

2

2

1+
2

ˆ̂1       + ( ) ( )
ˆ

ˆ̂1 )

1
2

     

( ( )
ˆ

  ( )

N

F F
F F F F F F

F F

F F
F F F F F F

F
F F

f

F F

V d d

M

M

α α
α α α α α α

α α

β β

β β β β β β
β

β β

α α

γ

γ

η

α
γ

α
γ

Τ Τ

Τ
Τ Τ Τ

Τ
Τ Τ Τ

Τ Τ

 
  − −  

  
 

 

−

  
+ − −  

   
 

≤ −

x x

x x

x









Q

P P

P P

P

e e

B e B e

B e B e

B

θ θ
θ ξ θ ξ

θ

θ θ
θ ξ θ ξ

θ

θ ξ ( )( )F F F F u
β β α β ε

Τ Τ Τ Τ+ +− +x  e B e e BP P e PBθ ξ

	(48)

	 Then, substituting Eq. (46) with Eq. (48) yields

	

( )2

2

2

1 ( )
2
1  
2
1 

1+ + ( )
2
1 + + ( ) ( )
2
1 +

2 2
 

e

e e

d

F F M at

M M

V d d s

d d

d

α βη

η

η

Τ Τ Τ Τ Τ

Τ Τ Τ Τ

Τ Τ

≤ −

≤ −

≤

+ −

−

−

x

x x

  e e e PB e P PB B

e e e PB e PB

e e

Q e

Q

Q

	 (49)

	 Therefore, 

	
T

( )min

d dη
λ

≥
Q

e 	 (50)
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	 With respect to 0V ≤ , λmin(Q) stands for the minimal eigenvalue of Q. The retarded functional 
differential equation is examined under the Lyapunov stability theory.(33,37) All uncertainties are 
guaranteed to be within the boundary of e and xm, as well as the parameter estimation errors Fα

θ  
and Fβ

θ , since η is the designed constant acting as an attenuation level.(34) Equations (35) and (36) 
from t = 0 to t = tf are integrated for t ≥ 0, which produces the following.

2

0 0
2 ( ) 2 (0) ( ) ( ) ( ) ( )f ft t

fV t V t t dt t t dtd dηΤ Τ− ≤ − +∫ ∫e Qe (51)

	 Since V(tf) ≥ 0, the inequality of Eq. (51) produces

0
2

0
2( ) ( ) 2 (0) (0) (0) (0)

2 (0) (0) ( ) ( )

f

f

F

t

t

F F
F

F F d

t t dt

t t dtd

α α
α

β β
β

Τ Τ Τ

Τ Τ

γ

η
γ

+

+ +

≤∫

∫

 

 

θ θ

θ θ

ePe eQe

	 (52)

	 With the H∞ tracking performance, the inequality [Eq. (24)] is satisfied. Therefore, Proof 2 is 
proven. The overall design of the proposed IT2NNFAC is shown in Fig. 6. The following is a 
description of the design process for IT2NNFAC with H∞ tracking performance.
Step 1:	� The values of Fα

α  , FM
α
, F

 , and FM
β
 are determined based on 

max
Fα , 

min
Fα , 

max
Fβ , and 

min
Fβ  and the parameters of α, ε, ε −, ε +, κ , κ , κ , Fα

γ , Fβ
γ , Fα

α , FM
α
, Fβ

α , FM
β
, Me at

the initial conditions of x, Fα
θ , and Fβ

θ . Here, l = 1, 2, ..., p, and p is a number defined by 
fuzzy rules.

Step 2:	� The feedback gain k is set so that all of the roots of the Am = A − BkT-characteristic 
polynomials have negative real parts.

Step 3:	� Defining ( )
F i

iF x
α

µ


, ( )
F i

iF x
β

µ


, i = 1, 2, ..., n, l = 1, 2, ..., p, membership functions for
state variables x are found in the controlled system.

Step 4:	� Selecting the values γ and η and the weighting matrix Q allows the positive definite 
symmetric matrix P as a solution to the Riccati equation [Eq. (27)]. A new Q is selected 
to solve Eq. (27) if there is no positive definite symmetric matrix P.

Step 5:	� By applying Eqs. (25) and (26) to the controlled system, IT2NNFAC is obtained with 
tracking performance [Eq. (21)].

Step 6:	�  Fα
θ  and Fβ

θ  are adjusted by computing the update laws [Eqs. (28) and (29)].
	 These steps are repeated to control the nonlinear system with IT2NNFAC with H∞ tracking 
performance.

3.2.2.1	 Remark 3

	 The value of η is reduced to decrease disturbances and sectorial dead zone nonlinearities if 
the output is unsatisfactory. Additionally, the upper boundary of the steady-state errors e(t) 
decreases as η is sufficiently increased.

α
β
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4. Results of Simulation

As shown in Fig. 7, a mass spring damper system(38) is simulated using the proposed
IT2NNFAC in the presence of ambiguous parameters and exogenous disturbances.

4.1	 Mass spring damper system

The associated mathematical model is explained as follows.

( ) ( ) ( ) ( )

1 2

2

   
, ,

,

x x
F x t F x t G u

x d x t
M

α β

=


− − + Φ
= +





(53)

Here, y = x1 represents the displacement of the mass, x2 represents its velocity, Fa(x,t) = x1
2 

represents the spring force, Fa(x,t) = 0.5x2
3 represents the friction force, M = 0.75 kg represents 

the body mass, u(t) represents the applied force, and G = 1. It is assumed that the exogenous 

Fig. 6.	 Overall scheme of proposed ITNNFAC.
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disturbance is d(x,t) = 0.1x2sin(t), and assumed to be unknown are the structures of the spring 
and friction forces.

4.2	 Simulation process

IT2NNFAC in Eq. (21) is performed following the process above as follows.

4.2.1	 Step 1

	 First, the parameters of the sectorial dead zone nonlinearities for the mass spring damper 
system are defined as 1 0.99ε + = , 1 0.99ε − = − , 2 0.1ε + = , 1 0.1ε − = − , 1 0.99κ = , 1 0.99κ = − , 2 0.1κ = ,

2 0.1κ = − , and α = α′ = α  = α  =1. Then, the boundary is selected as αmax = 1.55, αmin = 0.65, 
1 2 1 2 1

imax imax imax imax
ε ε κ κ+ += = = = , 1 2 1 2 1

imin imin imin imin
ε ε κ κ− −= = = = − , and

{ }1 1 1 1 1+ , 2.25
imax imax imin iminmax minmaxρ α ε κ α ε κ+ −= + = (54)

{ }2 2 2 2 2+ , 2.25
imax imax imin iminmax minmaxρ α ε κ α ε κ+ −= + = (55)

4.2.2	 Step 2

	 The simulation is set up with three fuzzy rules. Figure 5 shows the Gaussian membership 
function. To reduce the effect of the estimated velocity, fuzzy rules are built on the basis of mass 
displacement and mass velocity inaccuracies. The borders are determined using the boundary 
conditions of the system: 2.1329

max
Fα = , 1.9622

min
Fα = − , 2.3929

max
Fβ = , and 0

min
Fβ = . As a 

result, 150Fα
α = , 750Fβ

α = , and 350FM
α

= , 850FM
β

=  are selected as the values of the 
constraint regions Fα

Ω  and Fβ
Ω . The initial values (0)Fα

θ  and (0)Fβ
θ  are then set to 

50 1(0) 0.65IFα ×=θ  a nd  50 1(0) 1.75IFβ ×=θ ,  wh ich  a re  se le c t ed  f rom 
max

Fα ,  
min

Fα
( )( 0 )

min maxFF F
αα αθ≤ ≤  and 

max
Fβ , 

min
Fβ  ( )( 0 )

min maxFF F
ββ βθ≤ ≤ , respectively. The design 

parameters are selected as 0.5Fα
γ = , 0.1Fβ

γ = , and the sampling time h = 0.01. The boundary of 
the uncertainty Me = 3.51. The initial conditions are chosen to be ( ) 1 20 (0) (0) 2.1 2.1T Tx xx = = −       ,
where x1 and x2 follow the reference trajectories (0) (0) 2sin( ) 2cos( )

1 2

T T
m mx x t tmx  = =     .  

Fig. 7.	 Mass spring damper system simulation using proposed IT2NNFAC.



Sensors and Materials, Vol. 35, No. 7 (2023)	 2477

4.2.3	 Step 3

	 The feedback gain 
20 45
35 75

Τ − − 
=  − 

k  is set so that all of the roots of Am = A − BkT, which 

are characteristic polynomials, have negative real parts. The values γ = 0.55 and η = 0.5 and the 
weighting matrix Q = 0.0061 I2×2 are selected to obtain the positive definite symmetric matrix P 
as the solution to the Riccati equation. As a result, the matrix P is determined as Eq. (56).

	
6.1805 0.2495
0.2495 0.2823

 
=  

 
P 	 (56)

4.2.4	 Step 4

	 To approximate Fα(x) and Fβ(x), which are unknown nonlinear functions, the upper and lower 
boundaries of the membership functions (Fig. 5) are expressed in the forms of ( )ˆ

FC Fy
α

α

µ


, 
( )ˆ

FC Fy
β

β

µ


, ( )ˆ
FC Fy

α
α

µ


, and ( )ˆ
FC Fy

β
β

µ


. The mathematical means of the defuzzified output are 

( )1
2

F F Fα α α= + 
   and ( )1

2
F F Fβ β β= + 
  . Thus, the Gaussian membership functions of IT2NNF 

for xi (i = 1, 2) (Fig. 5) are expressed as follows.

	 ( ) ( ) ( )
2

1 1
2

1

1 2 3

2/6 /6
/18 /18 /18

1 1 1,  ,  
F F F

x x x

F F Fx e x e x e
α α α

µ µ µ
     − − −

π

+



π −π
π π     

   = = =
  

	 (57)

	 ( ) ( ) ( )
2

1 1
2

1

1 2 3

2/6 /6
/18 /18 /18

1 1 1,  ,  
F F F

x x x

F F Fx e x e x e
β β β

µ µ µ
     − − −

π

+



π −π
π π     

   = = =
  

	 (58)

	 ( ) ( ) ( )
2 2 2

1 1 1

1 2 31 2 3

/6 /6
/24 /24 /24

1 1 1,  ,  
F F F

x

F F F

x x

F F Fx a e x a e x a e
α α αα α α

µ µ µ
     − − −

+π
π    

 

−π
π π   = = =

  

	 (59)

	 ( ) ( ) ( )
2 2 2

1 1 1

1 2 31 2 3

/6 /6
/24 /24 /24

1 1 1,  ,  
F F F

x

F F F

x x

F F Fx a e x a e x a e
β β ββ β β

µ µ µ
     − − −

+π
π    

 

−π
π π   = = =

  

	 (60)

where 
1 2 3

0.25F F Fa a a
α α α

== =  and 
1 2 3

0.85F F Fa a a
β β β

== = . 
	 With the use of the singleton fuzzifier and product inference, 

	 ( ) ( )1
2 2

11 ,  
F Fp p

p pF pF F FF pF x F b x
αα αα α

µ µ= == ×Π = ×Π
 





	 (61)

	 ( ) ( )1
2 2

11 , 
F Fp p

p pF pF F FF pF x F b x
ββ ββ β

µ µ= == ×Π = ×Π
 





	 (62)



2478	 Sensors and Materials, Vol. 35, No. 7 (2023)

where 0.34Fb
α

=  and 0.22Fb
β

= .

4.2.5	 Step 5

	 The mass spring damper system is subjected to the control force in Eq. (21). The parameter 
vectors (0)Fα

θ  and (0)Fβ
θ  are then adjusted using the update laws [Eqs. (39) and (40)]. Step 5 is 

repeated to apply the controller [Eq. (21)] and control the mass spring damper system.

4.3	 Simulation results
	
	 The simulation results of the mass spring damper system for the proposed IT2NNFAC with 
H∞ tracking performances with η = 0.05 are shown in Figs. 8−12. Figures 8 and 9 show the 
reactions of the displacement of mass x1 and the velocity of mass x2, whereas Figs. 10 and 11 
present the tracking errors for e1 and e2, respectively. Figure 12 shows the control input u. The 
intended reference input functions 

1
2sin( )x t=  and 

2
2cos( )mx t=  and their trajectories are 

shown in Figs. 8 and 9 at η = 0.05 in 2.5 s.

Fig. 8.	 (Color online) Trajectories of states x1(t) and xmi(t) with dead zone nonlinearities at attenuation level η = 0.5.

Fig. 9.	 (Color online) Trajectories of the states x2(t) and  xm2(t) with dead zone nonlinearities at attenuation level η 
= 0.5.

Fig. 10.	 (Color online) Trajectories of tracking error e1(t) with dead zone nonlinearities at attenuation level η = 0.5.
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Fig. 11.	 (Color online) Trajectories of tracking error e2(t) with dead zone nonlinearities at attenuation level η = 0.5.

Fig. 12.	 (Color online) Trajectories of control input u with dead zone nonlinearities at attenuation level η = 0.5.

	 The following performance indices are used to demonstrate the viability and efficacy of the 
proposed IT2NNFAC for H∞ tracking performance.

	 ( ) ( ) , for =1,2
pm pSAE x t x t p= −∑ 	 (63)

	 ( ) ( ) , for =1,2
pm pSTAE t x t x t p= −∑ 	 (64)

	 2( ( ) ( )) , for =1,2
pm pSSE x t x t p= −∑ 	 (65)

	 2( ( ) ( )) , for =1,2
pm pSTSE t x t x t p= −∑ 	 (66)

	 ( )21 ( ) ( ) , for =1,2
pm pMSE x t x t p

t
= −∑ 	 (67)

	 ( )iSAC u t= ∑ 	 (68)

Here, t represents a duration between 0 and 50 s, s represents a sample rate, SAE, STAE, SSE, 
STSE, MSE, and SAC are the sum of the absolute errors, the sum of the time absolute errors, the 
sum of the square errors, the sum of the time square errors, the mean square errors, and the sum 
of the absolute controller, respectively. Table 1 provides an overview of the performance indices 
[Eqs. (63)–(68)] for the mass spring damper system with sectorial dead zone nonlinearities at the 



2480	 Sensors and Materials, Vol. 35, No. 7 (2023)

required attenuation level η = 0.05. When there are external disturbances and the system 
approaches the steady state, the performance is improved.

5.	 Conclusions

	 The sectorial dead zone nonlinearities are the major problems in diverse industrial processes 
and limit the performance of the manufacturing systems. Therefore, various fuzzy control 
systems have been proposed to solve the problems based on ANNs and FLSs. The consequences 
of nonlinearities are diminished in a nonlinear system with adequate mathematical models by 
fuzzy control using heuristic knowledge or linguistic information. With the integration of ANN 
and FLS, T1FNN and T2FNN have been proposed as they simplify the computational process of 
T1FNN and allow the fuzzy process in a multilayer interval neural network. To achieve H∞ 
tracking performance with dead zone nonlinearities, IT2NNFAC is developed in this study. As 
the mass spring damper system requires a solution for dead zone nonlinearities for high-
precision movements, a simulation for the mass spring damper system is performed to validate 
the performance of the proposed IT2NNFAC using online update laws and fuzzy inference 
based on the Lyapunov stability criterion and Riccati inequality. The result shows that 
IT2NNFAC stabilizes the closed-loop system by reducing external disturbances and tracking 
errors at any level. By using fuzzy set membership functions instead of the SISO nonlinear 
system function, the proposed IT2NNFAC eliminates the uncertainty resulting from unknown 
system parameters. The tracking errors from fuzzy approximation errors are also reduced 
significantly with satisfactory H∞ tracking performance. As a result, the mass spring damper 
system can have faster tracking responses for sectorial dead zone, nonlinearities, and external 
disturbances. The proposed IT2NNFAC can provide an effective way to estimate the effect of 
dead zone nonlinearities on the operation of various mechanical components as well as the 
design of sensors and the process of sensor data to improve the performance of machinery. 
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Table 1
Performance comparisons for performance indices [Eqs. (63)–(68)] at attenuation level η = 0.5.
Performance indices Value Performance indices Value
SAE for e1 319.5537 SAE for e2 207.0957
STAE for e1 10.130 × 103 STAE for e2 11.223 × 103

SSE for e1 44.654 × 103 SSE for e2 40.711 × 103

STSE for e1 2100.86 × 103 STSE for e2 2100.4 × 103

MSE for e1 864.230 MSE for e2 774.5327
SAC for u 99.3458
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