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 We propose an adaptive integral-type fixed-time stabilized sliding mode (IFSSM) control 
approach to simultaneously solve the control problems of state synchronization and anti-
synchronization between two space-clamp FitzHugh–Nagumo (SFHN) neuro-cell circuit 
systems or neuronal circuits. The novel IFSSM consists of the fractional-powered, proportional, 
and integral terms of two state variables. The special characteristic of the IFSSM is that, on a 
sliding surface, one of the state variables becomes stable at a fixed time, then the other state 
variable is exponentially stabilized in sequence. Furthermore, two theorems related to the 
stability are provided and proven to demonstrate that the designed control approach can achieve 
the control goal. Numerical simulations are carried out to verify the validity of the proposed 
control approach for future practical realization in neuronal circuits. The developed control 
schemes can be implemented by the hardware circuit realization with voltage-sensing equipment.

1. Introduction

 The architecture of circuits implemented for neuronal systems has recently been explored.(1) 
The frontier viewpoint is that the different types of neuronal circuit are the elementary 
components of an artificial neuro-cell network system, highlighting the importance of 
developing neuronal circuits based on the behavior of a neuro-cell. The establishment of 
neuronal circuits can accelerate the application of themes in artificial intelligence. Basically, an 
artificial neuro-cell network system requires the ability to rapidly adapt to unpredictable 
environments. This requirement has motivated the use of machine learning technologies to solve 
the difficult and complex problems of such systems.(2)

 To study the behavior of a neuro-cell, various biomathematical models such as the Hodgkin–
Huxley (HH),(3) Hindmarsh–Rose,(4) and FitzHugh–Nagumo (FHN)(5–7) neuron models have 
been proposed. The HH neuron model is a relatively complete mathematical model and consists 
of a set of fourth-order nonlinear differential equations that describe the dynamics of the voltage 
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of the neuron membrane base using the principles of electrochemistry. However, it contains four 
state variables and many system parameters, increasing the difficulty of its application. To 
simplify the analysis of the neuro-cell system, the traditional space-clamped FitzHugh–Nagumo 
(SFHN) neuron model(7) is more convenient for investigating the dynamic behavior of a neuro-
cell system. Previous studies on the chaos and bifurcation of the SFHN neuron model are 
reviewed in Refs. 8 and 9. 
 To extend the practical application of the traditional SFHN neuron model, circuits are 
implemented using various technologies, such as analogical electronic circuits,(10–12) feedback 
circuits consisting of operational amplifiers and resistors,(13) very large scale integration 
(VLSI),(14) field-programmable gate arrays (FPGAs),(15) and field-effect transistors (FETs).(16) 
Moreover, in the framework of the traditional SFHN neuro-cell system, many new types of 
neuronal circuit system have been proposed, such as thermosensitive neuron,(17) piezoelectric 
neuron,(18) photosensitive neuron,(19,20) and neuronal circuit systems with electromagnetic 
induction.(21–23) Such new types of neuronal circuit are contributing to the development of 
multidiscipline applications in science and technology. The various types of neuronal circuit are 
helpful for realizing novel and more practical neuronal circuit control systems. It is therefore of 
practical significance to study new control schemes of neural cell circuit systems.
 Because the HH neuron model(3) is difficult to apply, the alternative SFHN neuro-cell model, 
which has two state variables, was developed. The dynamical system adopts the nonlinear 
circuit reported in Ref. 20 for analogical simulation, as shown in Fig. 1. The through current iL(t) 
of the induction coil L and the cross voltage v(t) of the nonlinear resistor NR are the state 
variables of the system. C, L, R, and RS are the system parameters and VS(t) is the input 
excitation.
 For brevity of this paper, the derivation of the nondimensional dynamical system is omitted 
(see Ref. 20 for details). The state variables of an SFHN neuron are analogized by the 
corresponding voltages in the circuits. Therefore, the time responses of an electrical SFHN 
neuronal circuit for feedback control can be sensed by applying voltage-sensing equipment. 
Furthermore, the control schemes developed for synchronization are realized by applying a 
hardware circuit with sensing equipment.(24)

Fig. 1. Circuit implementation of the SFHN neuro-cell model.
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 The SFHN neuro-cell model can be represented by nonlinear non-autonomous differential 
equations with respect to the normalized time t:(8)
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m m mx x x x y I I t t x y

y x y

α ω δ

β γ

= − − − − + + + + ∆

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

. (1)

The variable x1 is a fast state, which models the membrane potential of the neuron cell. The 
variable y1 is a slow state, which represents the recovery of the membrane potential. The system 
parameters α, β, and γ govern the dynamics of the neuro-cell model. The system uncertainty 
Δ(x1, y1) and the external disturbance δ(t) are assumed to be bounded and to satisfy 

 1 1 1 20 ( , ) , 0 ( )x y D t Dδ≤ ∆ ≤ ≤ ≤ . (2)

Iion_m in Eq. (1) represents the ionic current inside the master neuro-cell and Imcos(ω1t) represents 
external electrical stimulation (EES) with amplitude Im and frequency fm = ωm/2π.	As	shown	in	
Fig. 2, the SFHN neuron cell exhibits chaotic dynamics for the parameter value set(8) α = 0.25, β 
= 0.02, and γ = 0.25, Iion_m = 0.082, Im = 0.055, ωm = 0.1 with the initial conditions (x1(0), 
y1(0))=(0.2, 0.16).
 In previous studies on control problems for SFHN neuron models, chaotic control in an 
SFHN neuron model by an adaptive passive control method was addressed.(8) State 
synchronization between two SFHN neurons subjected to EES by applying different schemes 
such as back-stepping control,(25) adaptive control,(26) and linear matrix inequality (LMI)-based 
adaptive control technologies was introduced.(27) By considering different EESs and ionic 
currents between two SFHN neurons, state synchronization was achieved in Ref. 28, in which 
robust adaptive sliding mode control (SMC) was proposed, and in Ref. 29, in which SMC with an 

Fig. 2. State trajectory of the SFHN neuro-cell circuit system.
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input–output linearized approach was developed. For coupled FHN neuron networks, 
synchronizations were achieved by employing a typical robust SMC scheme,(30) by adaptive 
time-delay feedback control,(31) or by lag synchronization using a feedback control scheme.(32) 
For the new types of FHN neuron system, the finite-time synchronization of a dual-memristor-
based network has been introduced.(33) State- and phase-coupling synchronizations were 
developed for photosensitive FHN neurons in Refs. 34 and 35.
 The motivation of this study emerged from the following observations. To achieve state 
synchronization between two SFHN neuro-cell systems, the main idea of the SMCs reported in 
past studies is to follow the error state trajectory to arrive at and remain on the sliding surface in 
the phase plane, which in Ref. 28 was a line with a negative slope and in Ref. 36 was a curve. 
Then, the error states were simultaneously converged to the origin along the defined sliding 
surface. The mathematical model of the SFHN neuro-cell system given by Eq. (1) describes how 
the recovery voltage y1 is induced by the activation potential x1. That is, 1 1 1+ =y y xβ βγ . Motivated 
by this fact, in this study, we define a novel sliding mode (SM) to develop an adaptive SMC 
scheme that achieves the goals of state synchronization and anti-synchronization between two 
SFHN neuro-cell systems. The novel SM is defined such that the error of the activation potential 
converges to zero at a fixed time and remains on the sliding surface. Then, according to the 
second equation of Eq. (1), the error of the recovery voltage is also exponentially stabilized. 
 The novelty, features, and contributions of this study are summarized in the following.
(1)  In contrast to previous works on SMC schemes,(28,36) a novel integral-type fixed-time 

stabilized sliding mode (IFSSM) is introduced. This IFSSM consists of the fractional-
powered, proportional, and integral terms of two state variables. Furthermore, the two state 
variables are stabilized one by one. That is, on the sliding surface, one of the state variables 
becomes stable at a fixed time, then the other state variable is exponentially stabilized in 
sequence. The stability is proven by Theorem 1 in Sect. 3.

(2)  To control the state synchronization and anti-synchronization between two SFHN neuro-cell 
circuits, the robust adaptive SMC scheme based on the novel IFSSM is performed on the 
basis of Theorem 2 in Sect. 3. The developed control scheme is divided into two parts. First, 
the error state trajectory is controlled to arrive at and remain on the sliding surface, which is 
defined by the IFSSM. Second, on the basis of the stable property of the IFSSM, the error of 
the activation potential first tends to zero at a fixed time, then remains on the sliding surface. 
The error of the recovery voltage is then exponentially stabilized. 

(3)  In previous studies, the problems of state synchronization and anti-synchronization were 
solved using different types of control method to complete control missions.(37–42) In contrast, 
in this work, the robust adaptive IFSSM control approach is introduced to simultaneously 
solve the control problems of state synchronization and anti-synchronization by suitably 
adjusting the design parameters, which are included in the control scheme. 

(4)  The developed adaptive IFSSM control approach, which contains four feedback gains, can 
dispose of the nonlinear dynamics without directly eliminating the nonlinear terms 
commonly adopted in the previous control approaches.(37–42) Meanwhile, the four gains are 
updated online using the proposed algorithm. We analyze the stability for both types of 
synchronization using Lyapunov stability theory. 
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(5)  The validity and feasibility of the developed control scheme are verified by numerical 
simulation, demonstrating that the scheme can support most future implementations of 
neuronal circuits. In Sect. 4, numerical experiments are carried out to evaluate the 
performance of the proposed control approach. 

 The remainder of this paper contains the following. The control problems of state 
synchronization and anti-synchronization between two SFHN neuro-cell circuit systems are 
formulated in Sect. 2. In Sect. 3, the design procedures of the adaptive IFSSM control scheme 
are developed to achieve the two types of synchronization. In addition, proofs of the stability of 
the control systems are provided. Numerical simulations performed to verify the validity of the 
proposed control scheme are reported in Sect. 4. Finally, some concluding remarks are made in 
Sect. 5.

2. Control Problems of Synchronization

 We consider the control problems of state synchronization and anti-synchronization between 
two SFHN neuro-cell systems with different ionic currents and EESs. The master SFHN neuro-
cell system with a system uncertainty and an external disturbance is given the form in Eq. (1). 
The slave SFHN neuro-cell system has a similar form to Eq. (1) and is described as
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where x2, y2 are the state variables of the slave neuro-cell, Iion_r is the ionic current in the slave 
neuro-cell, and Ircos(ωrt) represents the ESS with amplitude Ir and frequency fr = ωr/2π.	In	the	
control problems of the study, we take into account the different ionic currents and EESs of the 
SFHN neuro-cells in Eqs. (1) and (3), that is, Iion_r ≠	 Iion_m, Ir ≠ Im, ωr	≠	ωm, and u(t) is the 
control scheme to be designed. Furthermore, we assume that the master and slave neuro-cells in 
Eqs. (1) and (3), respectively, have unique solutions in the time interval [t0,	∞),	 t0 > 0 for any 
given	 initial	 conditions.	 In	 addition,	 under	 the	 influences	 of	 the	 system	 uncertainty	Δ(x1,y1), 
external disturbance δ(t), and control input u(t), the two systems can still process bounded state 
trajectories. The control problems for state synchronization and anti-synchronization are 
formulated in the following. 
 The synchronous error states between the systems in Eqs. (1) and (3) are defined as

 2 1 2 1( ) ( ) ( ), ( ) ( ) ( )x ye t x t x t e t y t y tλ λ= − = − , (4)

where { 1,1}λ∈ −  is the scaling factor defining the relation between the synchronous systems. 
The control goal of the current problems is to design an appropriate control scheme u(t) such that 
for any initial conditions of the two neuro-cells in Eqs. (1) and (3), the behavior of the response 
neuro-cell system converges to that of the master one, that is, 2 1 2 1lim ( ) ( ), lim ( ) ( )

t t
x t x t y t y tλ λ

→∞ →∞
→ → , 

where λ = 1 for state synchronization and λ	=	−1	for	anti-synchronization. 
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 For the case of λ = 1, by taking the derivative of Eq. (4) with respect to the normalized time t, 
the dynamics of the synchronous error states in the state synchronization are expressed as
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where the functions 2 2
1 1 2 1 1 2 2( , )f x x x x x x= + +  and 2 1 2 1 2( , ) ( 1)( )f x x x xα= + +  are bounded 

because of the bounded state trajectories of x1(t), x2(t) for the master and slave neuron cell 
systems. f1(x1,y1) and f2(x2,y2) are, respectively, the state-dependent and time-varying 
coefficients of the synchronous error state ex(t).
 For the case of anti-synchronization with λ	 =	−1,	 by	 taking	 the	 derivative	 of	Eq.	 (4)	with	
respect to t, the dynamics of the synchronous error states are obtained as
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where the functions 2 2
3 1 2 1 1 2 2( , )f x x x x x x= − +  and 2 2

4 1 2 1 2( , ) ( 1)( )f x x x xα= + +  are bounded 
owing to the bounded state trajectories of x1(t), x2(t) for the master and slave neuro-cell systems. 
In this case, f4(x1,x2) in Eq. (6) is different from f2(x1,x2) in Eq. (5). f4(x1, x2) is regarded as a 
bounded external disturbance in the design of the control scheme. 
Definition 1
 The achievement of state synchronization or anti-synchronization between the two SFHN 
neuro-cells given by Eqs. (1) and (3) is equivalent to the state variables in Eqs. (5) and (6) tending 
to zero, that is, lim ( ) 0xt

e t
→∞

→  and lim ( ) 0yt
e t

→∞
→ .

 The state synchronization or anti-synchronization for the two neuro-cells given by Eqs. (1) 
and (3) is clearly equivalent to the stabilization of the synchronous error systems in Eqs. (5) or 
(6) by applying a suitable control scheme u(t). The central goal of the current problem is to 
design a control u(t) based on Definition 1. This lim ( ) 0xt

e t
→∞

→  means that the behavior of the 
slave neuro-cell system given by Eq. (3) can synchronize or anti-synchronize that of the master 
one given by Eq. (1). 
 For the design of the control scheme for the state synchronization or anti-synchronization of 
two SFHN neuron cell systems, the effects of the nonlinear functions fi(x1, x2), i = 1, 2, 3, 4 are 
key points to be considered. Many approaches to compensating for nonlinear effects in chaotic 
control problems have been proposed, such as active control(37,38) and active SMC methods.(39-42) 
In this study, an IFSSM is proposed for the control, and a robust adaptive SMC with time-
varying feedback gains is introduced to realize such control.
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3. Design of Adaptive Control Scheme

 In this section, an adaptive IFSSM control is proposed to achieve state synchronization or 
anti-synchronization between the neuro-cells given by Eqs. (1) and (3). The design approach of 
the adaptive IFSSM control scheme includes two basic steps. First, the IFSSM with the 
prescribed sliding motion is selected. The defined SM is designed such that on the sliding 
surface the synchronous error state ex(t) is first stabilized at a fixed time. Then, the synchronous 
error state ey(t) is exponentially stabilized to complete the synchronization. Second, adaptive 
control u(t) is performed such that the state trajectory of ex(t), ey(t) in the phase plane arrives at 
and	 remains	 on	 the	 sliding	 surface	 despite	 the	 system	uncertainties	Δ(x1,y1) and the external 
disturbances δ(t).
Definition 2
 The proposed IFSSM s(t) is defined by

 /
0

1( ) [ ( )] ( ) ( )
tp q

x y ys t e t e t e d
τ

β τ τ
ρ =
 = + +  ∫ , (7)

where ρ > 0, p > 0, q > 0 are odd integers with 1 < p/q < 2 to escape the singularity of the 
equivalent control. 
 The novel IFSSM consists of the fractional-powered, proportional, and integral terms of two 
state variables. Theorem 1 ensures the fixed-time stability of s(t) = 0. 
Theorem 1. For the IFSSM s(t) defined in Eq. (7) with the second equation in Eq. (5) or (6), the 
fixed-time stability of ex(t) is guaranteed for s(t)= 0 associated with ( ) 0s t = . First, ( ) 0xe t →  is 
achieved at a fixed time given by

 [ ] / 1
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Then, ex(t) = 0 is maintained 0st T∀ ≥ > , where t = t0 > 0 is the time required for the state 
trajectory in the phase plane to arrive at s(t) = 0 from initial values ex(0), ey(0). Then, ey(t) is 
exponentially stabilized.
Proof 
 Assume that the system is controlled such that the state trajectory of ex(t), ey(t) arrives at 
s(t) = 0, then remains there, so that ( ) 0s t =  is satisfied. By substituting the second equation in 
Eq. (5) or (6) into ( ) 0s t = , we obtain the dynamical equation
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Integrating with respect to the normalized time [ ]0 ,t t t∈ , where t0 > 0 is the time required for 
the state trajectory of ex(t), ey(t) in the phase plane to arrive at s(t) = 0 from the initial values 
ex(0), ey(0), yields 

 [ ] [ ]/ 1 / 1
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x x
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The fixed time Ts taken to move from 0( ) 0xe t ≠  to ex(Ts) = 0 is obtained as
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For β > 0 and ( ) 0,x se t t T= ∀ ≥  in the second equation of Eq. (5) or (6), it is clear that the stability 

of ey(t) on s(t) = 0 with ( ) 0s t =  is guaranteed. That is, 

 s( ) ( ) 0 ( ) ( )exp( ),y y y y se t e t e t e T t t Tβ β+ = ⇒ = − ∀ ≥ , (11)

thus proving Theorem 1.
 In the following, the robust and adaptive IFSSM control u(t) in Eq. (5) or (6) for state 
synchronization or anti-synchronization is provided in Theorem 2. In the literature,(37,39,40) the 
developed control methods only solved a defined nonlinear chaotic control problem. In contrast, 
the proposed control scheme can be applied to solve both types of synchronization problem by 
simply suitably tuning the designed parameters.
Theorem 2. The adaptive IFSSM control scheme u(t) = ueq(t) + usw(t) in Eq. (5) or (6) is designed 
in the form 
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where the designed parameters ρ > 0, 0 < n < 1, p > 0, q > 0 are integers with 1 < p/q < 2, s(t) is 
the SM defined in Eq. (7), and sign( )  expresses the sign function. The adaptive feedback gains 
Ki(t), i = 0,1,2,3 are updated online in accordance with the adaption algorithms
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Then, ex(t), ey(t) in Eq. (5) or (6) approaches s(t) = 0 asymptotically and remains there, i.e., 
( ) 0s t = . This causes ex(t) to first converge to zero at a fixed time Ts approximated by Eq. (8). 

Then, ey(t) is exponentially stabilized in sequence. Thus, the state synchronization or anti-
synchronization of the SFHN neuro-cells given by Eqs. (1) and (3) is accomplished.
Proof 
(1)  For the case of state synchronization, λ = 1, the candidate positive Lyapunov function for the 

dynamical system given by Eq. (5) is chosen as
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Taking the derivative of Eq. (14) with respect to t with the solutions of the synchronous error 
system in Eq. (5), the selected SM in Eq. (7), and the adaptive IFSSM control scheme in Eqs. (12) 
and (13) yields
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From Eq. (15), it is proved that V1(t) is a positive definite function, and from Eq. (17), it is proved 
that it is a decreasing function. Thus, the zero equilibriums (s = 0, Ki(t) = ki, i = 0, 1, 2, 3) are 
globally asymptotically stable. Therefore, ex(t), ey(t) in Eq. (5) will asymptotically approach the 
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sliding surface s(t) = 0 with ( ) 0s t =  and remain there. On this surface, ex(t) is stabilized at a 
fixed time Ts by suitably choosing odd integers ρ > 0, p > 0, q > 0 with 1 < p/q < 2 in accordance 
with Eq. (8). Then, the exponential stabilization of ey(t) is guaranteed by Eq. (11), thus realizing 
the state synchronization between the systems given by Eqs. (1) and (3) and completing the 
proof.
(2)  For the case of anti-synchronization, λ	=	−1,	the	positive	Lyapunov	function	for	the	system	in	

Eq. (6) is selected to have the form in Eq. (14), 
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where gi > 0, i = 0, 1, 2, 3 are positive constants satisfying 
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The remainder of the proof is similar to that for state synchronization and is omitted.

4. Numerical Simulation Studies

 The hardware implementation of neuronal circuits is a mature technology. Before the future 
practical realization of the developed control scheme, its validity and feasibility must be verified. 
An advantage of the following numerical experiments is that the performance of the overall 
SFHN neuro-cell control system can be evaluated by simulations, thus supporting the further 
implementation of neuronal circuits. 
 In this section, numerical simulations are carried out to verify the validity of the proposed 
adaptive IFSSM control scheme. The fourth-order Runge-Kutta method with a time step of 
0.0001 and initial conditions (x1, y1)	=	(−0.5,	0.75),	 (x2, y2) = (1.0, 0.6) is applied. The system 
parameters of the neuron cell are α = 0.25, β = 0.02, and γ = 0.25. The EESs of the master and 
slave SFHN neuro-cells are assumed to have different current amplitudes and frequencies, and 
the corresponding values are taken as Im = 0.055, ωm = 0.1, Ir = 0.06, ωr = 0.15. The ionic currents 
of the two SFHN neuro-cells are selected to be Iion_m = 0.1 and Iion_r = 0.082. The system 
uncertainty and the external disturbance of the master neuro-cell system are assumed to be 
Δ(x1,y1)= 0.15sin(x1)cos(y1) and d(t)	=	0.15sin(0.05πt), respectively. The numerical simulations 
are first performed with the master and slave neuro-cells running without control. Then, at t 
= 320, the control input of the slave neuro-cell system is implemented for state synchronization 
or anti-synchronization between the two neuro-cell systems.
 For state synchronization, λ = 1, the positive design parameters of the proposed adaptive 
IFSSM control scheme in Eq. (5) described by Eqs. (12) and (13) are chosen as p = 31, q = 19, ρ 
= 0.01, n = 1/8, γ0 = 6.3, γ1 = 0.5, γ2 = 4.8, and γ3 = 1.2. Furthermore, to demonstrate the 



Sensors and Materials, Vol. 35, No. 8 (2023) 2765

effectiveness of the proposed adaptive IFSSM control scheme, the existing adaptive SMC 
scheme introduced in Ref. 27 is employed for comparison. For the synchronous error system in 
Eq. (5), adaptive control scheme #A in Ref. 28 is

 ( ) ( ) 45 ( )x yt e t e tσ = + , (20)

 1 2( ) ( ) 2 ( ) ( ) ( ) ( ) 0.5 ( ) sign( ( ))y x x y yu t e t K t e t K t e t t tσ σ = − + + + ⋅   , (21)

where Kx(t) and Ky(t) are, respectively, the adaptive feedback gains updated using the following 
adaptive rules:

 ( ) ( ) ( ) , (0) 0x x xK t e t t Kσ= = , (22)

 ( ) 5 ( ) ( ) , (0) 0y y yK t e t t Kσ= = . (23)

Remark 1
 The controllers in Eqs. (12) and (21) provide discontinuous control. To reduce the phenomenon 
of chattering, the sign function in the control is modified as tanh(s/ε), where ε is a sufficiently 
small design constant. This modification is valid in all the numerical simulations.
Remark 2
 Different from adaptive control scheme #A in Eq. (21), the synchronous error state ey(t) in Eq. 
(5) is compensated adaptively without directed elimination by utilizing the equivalent control 
part ueq(t) in Eq. (12).
 Figure 3 shows that ex(t), ey(t), and s(t) behave irregularly when the control input is turned off, 
and when the control is implemented at t = 320, ex(t), ey(t) converge to zero and the state 

Fig. 3. Time responses of ex(t), ey(t), and s(t) (λ = 1).
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synchronization is completed. Figure 4 shows a comparison of the proposed adaptive IFSSM 
control scheme with adaptive control scheme #A in Ref. 28, which indicates that ex(t) is first 
stabilized at a fixed time. Then, ey(t) is exponentially stabilized for the adaptive IFSSM control 
scheme. 
 Figure 5 shows that the control input signals of both the proposed adaptive IFSSM control 
scheme and adaptive control scheme #A are continuous and chatter free. The peak value for the 
proposed control scheme is less than that for adaptive control scheme #A. The time responses of 
the adaptive feedback gains are shown in Fig. 6; the gains finally become constants. The figure 
indicates that ex(t), ey(t), and s(t) all tend to zero in accordance with the adaption algorithm in Eq. 
(13).

Fig. 4. (Color online) State trajectories of ex(t), ey(t) for the proposed control scheme and control scheme #A (λ 
= 1).

Fig. 5. Control signals of the proposed control scheme and control scheme #A (λ = 1).
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 The case of state synchronization is achieved by the proposed control scheme in the 
aforementioned illustrated example. In the following, it is shown that the case of anti-
synchronization is also achieved by the same control scheme with only suitable tuning of the 
designed parameters. 
 For the anti-synchronization, λ	=	−1,	the	positive	design	parameters	of	the	proposed	adaptive	
IFSSM control scheme of the system in Eq. (6) described by Eqs. (12) and (13) are taken as p 
= 31, q = 19, ρ = 0.01, n = 1/8, γ0 = 0.5, γ1 = 0.005, γ2 = 0.01, and γ3 = 0.01. Figures 7 and 8 show 
that anti-synchronization is achieved with stable characteristics similar to those in the case of 
state synchronization. That is, ex(t) is first stabilized at a fixed time, then ey(t) is exponentially 
stabilized. Figure 9 illustrates the time responses of the state variables for the two SFHN neuro-

Fig. 6. Time responses of the adaptive feedback gains (λ = 1).

Fig. 7. Time responses of ex(t), ey(t) (λ	=	−1).
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cells given by Eqs. (1) and (3). As expected, the state trajectories of the two neuro-cells separate 
from each other when different initial conditions are chosen. After the implementation of control 
at t = 320, both state variables become anti-synchronized, with the master neuro-cell system 
exhibiting system uncertainties and external disturbances.

5. Conclusions

 We have proposed an adaptive IFSSM control scheme to solve the control problems of state 
synchronization and anti-synchronization between two SFHN neuro-cell systems in the 
presence of system uncertainty and external disturbance. For the control design, the novel 
defined IFSSM consists of the fractional-powered, proportional, and integral terms of two state 

Fig. 8. State trajectories of s(t) versus ex(t), ey(t) (λ = –1). 

Fig. 9. Time responses of state variables for two anti-synchronized SFHN neuro-cells.
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variables. The characteristics of the IFSSM on the sliding surface are also proven and 
experimentally verified. That is, the error state ex(t) is first stabilized at a fixed time, then the 
error state ey(t) is exponentially stabilized in sequence. The stability of both types of 
synchronization by applying the proposed adaptive IFSSM control scheme is proven in detail. 
Toward the future practical realization of neuronal circuits, numerical simulations are performed 
to verify the effectiveness of the present control scheme. It is also shown that the two control 
problems of state synchronization and anti-synchronization are solved by the proposed control 
scheme by simply suitably tuning the designed parameters.
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