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 A photonic crystal is an artificial material with a periodic optical refractive index. The band 
structure of photons can be tailored by adjusting the geometric parameters spatially. By properly 
designing the configuration, the photonic crystal can generate an optical forbidden band within 
the structure. To choose an appropriate geometric configuration that can generate a photonic 
band gap in the desired frequency range, traditionally, the band structure of such structure has 
been obtained by applying Floquet periodic boundary conditions and performing the eigen 
analysis calculation. However, a great amount of testing is required and consumes a great 
amount of time. In our study, the top view of the unit cell is converted to a binary bitmap and 
encoded to downgrade the bitmap for forming the input data of the artificial neural network. We 
adopted the finite element method to calculate the band structure training data set, which 
contained various geometric parameters and corresponding band structures. Our neural network 
shows high accuracy and is less time-consuming. The results are useful for the inverse design of 
photonic crystals.

1. Introduction

 A photonic crystal is an artificial material. The spatial distribution of the refractive index of 
the photonic crystal is periodic. The concept of the photonic crystal was inspired by the energy 
band diagram of semiconductors in solid-state physics. The electron wave in a semiconductor 
experiences spatially periodic potential. The dispersion relation of the electron wave can be 
tailored by adjusting the periodic potential.(1,2) The periodic potential generates a certain energy 
gap. The electron cannot exist in a semiconductor when the energy of this electron is within the 
energy gap. A concept similar to the use of a energy gap of the electron wave has been applied to 
the optical wave. Originally, the spatially periodic refractive index structure was proposed to 
suppress the spontaneous emission of laser systems. Many phenomena such as slow light, 
ultrasmall optical cavity, negative refraction, and topological photonic crystals have been 
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investigated.(3–6) The applications of photonic crystal devices are also diverse. The photonic 
crystal structure can be used in optical communication, optical filtration, and sensing.(7–9) 
 The periodicity of a photonic crystal can be one-, two- or three-dimensional. In recent years, 
photonic crystals based on strip or slab waveguides with periodic structures have also been 
attracting much attention. Most photonic crystals consist of two materials with different 
refractive indexes. The geometric configuration and refractive index contrast between the two 
materials directly govern the dispersion relation of photonic crystals. The dispersion relation of 
photonic crystals is usually represented by the photonic band structure. The band structure 
indicates the relationship between the optical angular frequency and the wave vectors. Because 
the photonic crystals are spatially periodic, the wave vector within the Brillouin zone can 
represent all directions of the structure. By properly manipulating the geometric configuration 
and refractive index contrast of the photonic crystal, the optical forbidden frequency gap can be 
opened or a low group velocity can be achieved. In addition, the negative refraction or 
topological photonic phenomenon can be achieved by tailoring the photonic band structure. By 
introducing certain defects of spatial periodicity into the photonic crystal, we can create optical 
cavities or waveguides to trap the optical energy. The optical cavities and waveguides of 
photonic crystals can confine the optical energy in the sub-wavelength region and thus enable 
their use in many novel applications.(10,11)

 The features of photonic crystals are mostly based on the photonic band structure. The 
photonic crystal band structure can be obtained by solving the eigen frequencies of a unit cell 
under specific periodic boundary conditions. There are several numeric tools that can be used 
for the calculation of the photonic crystal band structure, such as the plane wave expansion and 
finite element methods.(12,13) Although the photonic crystal band structure is strongly related to 
the geometric configuration and refractive index distribution of photonic crystals, the 
relationships among them are not intuitive. The change in band structure depending on the 
geometric parameters and refractive index distribution is complex and nonlinear. Therefore, 
huge numbers of combinations should be examined to obtain the desired band structure. On the 
other hand, the numeric tools for calculating the photonic crystal band structure are usually 
time-consuming. Therefore, it takes a great amount of time to obtain a desired photonic crystal 
band structure.
 In recent years, deep learning has attracted much attention in various fields of research and 
application. Deep learning and artificial neural networks are powerful tools for dealing with 
complex and nonlinear problems.(14–17) They are also applied to the research of electromagnetic 
waves, such as those in optical gratings, optical ring resonator sensors, and photonic 
crystals.(18–21) For example, artificial neural networks are used to predict the diffractive 
efficiencies of optical gratings.(18) The diffractive efficiencies of each order of an optical grating 
are strongly related to the geometric shape of the grating. The relationship between the 
diffractive efficiency and geometric shape of an optical grating is complex and nonlinear. The 
change the diffractive efficiency depending on the geometric parameters has been calculated 
and used to train artificial neural networks.(18) A well-trained artificial neural network can 
predict the diffractive efficiency using the given geometric parameters. Its prediction time is 
much shorter than those of traditional numeric calculations. The artificial neural networks are 
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also effective for solving inverse design problems. In a traditional design process, researchers 
must modify the geometric shape of the grating repeatedly in order to obtain the desired results. 
In the application of an artificial neural network, the diffractive efficiencies and geometric 
parameters of the grating can be considered as input and output data, respectively. Through 
proper training, the artificial neural network can generate suitable geometric parameters of a 
grating in accordance with the desired diffractive efficiency. 
 In this study, we aim to train artificial neural networks to predict the two-dimensional 
photonic crystal band structure. The training data are generated by finite element simulation, 
which is extensively used in photonic crystal research. First, the proposed artificial neural 
networks can identify the image of a unit cell of the photonic crystal structure through the use of 
an autoencoder. The autoencoder is trained in an unsupervised fashion. Second, the artificial 
neural networks can predict the eigen frequency of a specific photonic band from the unit cell 
image information, given the wave vector in a reciprocal lattice and the band order. We test two  
neural network configurations with different numbers of hidden layers. The predicted results 
agree well with the results calculated by the finite element method.

2. Photonic Crystal Structures and Artificial Neural Network Configuration

 In this study, we focus on the two-dimensional square lattice silicon photonic crystal 
structure. The photonic crystal consists of a square lattice of an air cylinder array in the silicon 
host. Figure 1(a) shows a schematic of the top view of the unit cell of a two-dimensional square 

Fig. 1. (Color online) (a) Top view of unit cell of two-dimensional photonic crystal. (b) Reciprocal lattice of square 
lattice. (c) Binary bitmap converted from the top view of unit cell. (d) Schematic of artificial neural network.
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lattice silicon photonic crystal. The gray area is silicon and the white circle is the air cylinder. 
The lattice constant is denoted by “a”. The radius of the air cylinder is denoted by “r”. Figure 1(b) 
represents the reciprocal lattice of the square lattice.(22) The vectors in the reciprocal lattice are 
wave vectors and are denoted by “k”. The green area in the reciprocal lattice is the first Brillouin 
zone. The blue triangle is the irreducible Brillouin zone, which is the first Brillouin zone reduced 
by all of the symmetries in all directions. Then, the wave dispersion behaviors in the periodic 
structure can be represented by the dispersion relation within the irreducible Brillouin zone. 
 The photonic band structure calculation based on the finite element method yields the eigen 
state and eigen frequency of an optical wave in a unit cell with the Floquet periodic boundary 
condition. The Floquet periodic boundary condition depends on the wave vector in the 
irreducible Brillouin zone. The wave vectors  k



 in the irreducible Brillouin zone start from the Γ 
point. The end points of  k



 sweep from the Γ point to the X point, then turn toward the M point 
and return to the Γ point. We denote the wave vector as . For the eigen frequency 
calculation of a certain  k



 vector, the periodic boundary condition with a xk  phase difference is 
applied between the x boundaries of the unit cell, and the periodic boundary condition with a  yk  
phase difference is applied between the y boundaries of the unit cell. The photonic band structure 
can be obtained by sweeping the end points of  k



 step by step and repeating the eigen state 
analysis by the finite element method. One calculation result is illustrated in Fig. 2(a). The blue 
circles represent the eigen frequencies calculated by the finite element method (COMSOL 

Fig. 2. (Color online) Band structures calculated by finite element method (blue circles) and predicted by trained 
neural network (red dots). The r/a ratios of the structure are 1.5 in (a), (b) and 0.35 in (c), (d). The numbers of hidden 
layers in the neural network are one in (a), (c) and two in (b), (d).
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Multiphysics). The horizontal axis denotes the end points of  k


 vectors. The edge of the 
irreducible Brillouin zone is divided into 75 steps, i.e., we performed the eigen analysis 75 times 
to obtain the band structure in Fig. 2(a). For each  k



 vector, we calculated five orders of eigen 
frequencies.
 Figure 1(c) shows the binary bitmap converted from the top view of the unit cell. The r/a ratio 
is 0.25. The bitmap is 28 × 28 pixels. In this study, we use the neural network toolbox of 
commercial software (MATLAB) to construct the artificial neural network. The configuration 
of the neural network is illustrated in Fig. 1(d). First, we use three unsupervised trained 
autoencoders to reduce the size and extract the features of the bitmap. Second, the extracted 
features of the unit cell are combined with the  k



 vector and orders of eigen frequencies to form 
the input data, and the eigen frequencies calculated by the finite element method are the output 
data. We use the input and output data to train a fitting neural network to predict the eigen 
frequencies.
 The compression of bitmaps is illustrated at the top of Fig. 1(d). The task of the autoencoder is 
to compress the information of the input image while retaining the features of the image. 
Therefore, the outputs of each autoencoder are less than their inputs. The unsupervised training 
of the autoencoder is as follows. An image is input to an encoder and the dimension is reduced to 
a customized output. A decoder is connected behind the encoder, and the original image is 
reconstructed from the output of the encoder. Because the photonic crystal is composed of only 
two materials, the geometric configuration can simultaneously represent the distribution of 
refractive indexes. The input bitmap of the unit cell contains 784 pixels (28 × 28). The first 
trained encoder compresses the original bitmap to 100 outputs. The second trained encoder 
compresses these 100 inputs from the first encoder to 50 outputs. The final trained encoder 
compresses these 50 inputs to 10 outputs. Theoretically, the final 10 outputs contain the 
geometric and refractive index distribution information of a unit cell. It should be noted that the 
difference between the input and output of a single encoder cannot be very large or some 
features of the bitmap will be missing. On the other hand, the amount of the final output should 
not be very large in order to avoid the noise point produced by superfluous useless information 
that would reduce the accuracy of prediction. Therefore, the compression process and number of 
encoders have been optimized to improve the predicted results.
 The fitting neural network is illustrated at the bottom of Fig. 1(d). We use the finite element 
method to calculate the band structure of photonic crystals with various r/a ratios: 0.15, 0.17, 0.19, 
0.21, 0.23, 0.25, 0.27, 0.29, 0.31, 0.33, 0.35, 0.37, and 0.39. For each r/a ratio, there are 75  k



 
vectors within the irreducible Brillouin zone. For each  k



 vector, we calculated five orders of 
eigen frequencies. Therefore, the training dataset contains 4875 eigen frequencies. Each eigen 
frequency corresponds to specific r/a ratio,  k



 vector, and order of an eigen state. The r/a ratio 
information is represented by 10 values, which are data compressed from the unit cell bitmap. 
The  k



 vector is represented by one value, that is, the length of the  k


 vector within the irreducible 
Brillouin zone. The order is represented by one integral value between 1 and 5. This means that 
each eigen frequency corresponds to 12 values in the training dataset. In other words, there are 
4875 sets of 12 values and 4875 sets of eigen frequencies in the training dataset. We refer to the 
4875 sets of 12 values as input data and the 4875 sets of eigen frequencies as the output target.
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 We construct two fully connected neural networks as fitting neural networks. The first one 
includes one hidden layer consisting of 100 neurons. We refer to it as the “one-hidden-layer 
neural network”. The second one has two hidden layers, each consisting of 25 neurons. We refer 
to it as the “two-hidden-layers neural network”. The numbers of neurons in the one-hidden-layer 
and two-hidden-layers neural networks have been optimized to improve the accuracy of 
prediction. The neural network toolbox of MATLAB enables us to use the training data to train 
the above-described fitting neural networks by the backpropagation method. In addition, the 
trained neural networks can be used to predict the eigen frequency by entering 12 arbitrary 
values as input data. The training algorithm is Bayesian Regularization.(23) This algorithm is 
suitable for difficult or noisy datasets. We chose Bayesian Regularization because there are 
many intersects between photonic bands in the band structure. There are several eigen 
frequencies close to each other near the intersect points. Only Bayesian Regularization 
algorithms can handle the eigen frequency prediction well near these points. The training 
datasets are divided in two parts: training and test parts. 70% of the datasets are used in the 
training process. The remaining 30% of the datasets are preserved for testing the performance of 
the trained neural network.

3. Results and Discussion

 We plot the photonic crystal band structures calculated by the finite element method and 
predicted by trained neural networks in Fig. 2. The lattice constant of the photonic crystal is 500 
nm. The refractive index of silicon is 3.46. These parameters are frequently used in photonic 
crystals for the near-IR range. The results calculated by the finite element method and predicted 
by trained neural networks are denoted by blue circles and red dots, respectively. The r/a ratios in 
Figs. 2(a) and 2(b) are 0.15, and those in Figs. 2(c) and 2(d) are 0.35. These r/a ratios are included 
in the training datasets. For the predicted results, the neural network used in the cases of Figs. 
2(a) and 2(c) has one hidden layer. The neural network used in the cases of Figs. 2(b) and 2(d) has 
two hidden layers. In Figs. 2(a) and 2(b), the predicted band structure agrees well with the 
calculated ones. In Figs. 2(c) and 2(d), the predicted band structure shows agreement with the 
calculated results in the three bands with the lower frequencies. The discrepancies become 
obvious at the points marked A, B, A’, and B’ in Figs. 2(c) and 2(d). The neural networks 
underestimate the eigen frequencies near these regions. This may be due to the linearity of the 
photonic band. In Figs. 2(a) and 2(b), the bands in the photonic band structures are more linear 
and only bend at points X and M in the irreducible Brillouin zone. These behaviors are more 
easily predicted by the neural network. On the other hand, with r/a = 0.35, the bands in the higher 
frequency region are curved. More input information may be needed to improve the accuracy of 
prediction. In addition, comparisons of Figs. 2(a) and 2(c) with Figs. 2(c) and 2(d) indicate that 
there is no significant intuitive difference between the performance characteristics of one-
hidden-layer and two-hidden-layers neural networks.
 In the quantitative analysis of the performance characteristics of trained neural networks, the 
eigen frequencies calculated by the finite element method are referred to as target data and those 
predicted by the neural network are referred to as output data. In Fig. 3(a), we plot the relationship 
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between the target and output data of the one-hidden-layer neural network by black circles. 
These results include all training datasets. The horizontal axis represents target data and the 
vertical axis represents output data. If the prediction is 100% correct, all black circles should fall 
on the line of Output = Target. In Fig. 3(a), most of the black circles are close to the line of 
Output = Target. The errors between the output and the target in the high-frequency region 
(marked by a blue arrow) are more significant than those in the low-frequency region. The 
relationship between the target and output data of the two-hidden-layers neural network is 
plotted by black circles in Fig. 3(b). The errors between the output and the target in the high-
frequency region (marked by a blue arrow) are again higher than those in the low-frequency 
region. On comparing Fig. 3(a) with Fig. 3(b), the errors of the two-hidden-layers neural network 
seem smaller than those of the one-hidden-layer neural network. To compare the errors of these 
two neural networks, we plot the histograms of errors between the target and output frequencies 
in Fig. 4. Figures 4(a) and 4(b) show the error histograms of the one-hidden-layer and two-
hidden-layers neural networks, respectively. The errors represent the frequency difference 
between the predicted and target results, which are divided into 20 bins in both Figs. 4(a) and 
4(b). The x-axis shows an error in the order of 1012, which is very small compared with the target 
frequencies, which are on the order of 1014. The histograms in Fig. 4(b) show that the error 
distributions are more concentrated near zero error than those in Fig. 4(a). We can conclude that 
the performance of the two-hidden-layers neural network is better than that of the one-hidden-
layer neural network.
 To avoid overfitting, we use the proposed neural networks to predict the band structure of 
photonic crystals with r/a = 0.16. The band structure with r/a = 0.16 is not included in the training 
dataset. If the predicted band structure agrees well with the results calculated by the finite 
element method, the neural network is not overtrained. The blue circles in Figs. 5(a) and 5(b) 
show the band structure with r/a = 0.16, which was calculated by the finite element method. The 
red dots in Fig. 5(a) represent the band structure predicted by the one-hidden-layer neural 
network. On the other hand, the red dots in Fig. 5(b) represent the band structure predicted by 

Fig. 3. (Color online) Relationship between target and output frequencies of (a) one-hidden-layer and (b) two-
hidden-layers neural networks.
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the two-hidden-layers neural network. Both predicted results in Figs. 5(a) and 5(b) agree well 
with the results calculated by the finite element method. Only slight differences can be observed 
at the bend points of photonic bands. We enlarge Zone A and Zone B in the two band structures 
and display them at the bottom of Figs. 5(a) and 5(b). The enlarged images show that the two-
hidden-layers neural network performs better than the one-hidden-layer neural network. 
Although the differences are not significant, the important features of a photonic crystal usually 
appear at the bend points of photonic bands, such as the band gap and Dirac point of the 
topological photonic crystal. Slow light effects and negative refraction also occur near the bend 
or reversal points in the band structure. We can conclude that the performance characteristics of 

Fig. 4. Error histograms of (a) one-hidden-layer and (b) two-hidden-layers neural networks.

Fig. 5. (Color online) Band structures calculated by finite element method (blue circles) and predicted by trained 
neural network (red dots). The r/a ratio of the structures in (a) and (b) is 0.16. The numbers of hidden layers of the 
neural network used are (a) one and (b) two.
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the one-hidden-layer and two-hidden-layers neural networks are similar. However, the two-
hidden-layers neural network exhibits a higher accuracy at feature points in the band structure.

4. Conclusions

 We proposed a training process to construct artificial neural networks for predicting two-
dimensional silicon photonic crystal band structures. The top-view bitmap of the geometric 
configuration of a unit cell was first compressed by an autoencoder to downgrade the 
information. We combined the compressed information with the data of wave vectors and eigen 
orders to form input datasets and used the corresponding eigen frequencies to form output 
datasets. The input and output datasets were used to train two artificial neural networks: one-
hidden-layer and two-hidden-layers neural networks. Both neural networks satisfactorily 
predicted the band structure of two-dimensional silicon photonic crystals. The predicted band 
structure agreed well with the results calculated by the finite element method. The two-hidden-
layers neural network exhibited better performance at the bend regions of photonic bands.
 The autoencoders were generated through unsupervised training. In the previous studies, the 
exact values of the geometric parameters of devices, such as the r/a ratio of a photonic crystal 
unit cell and the period and duty cycle of the optical grating were usually directly input to the 
artificial neural networks. In contrast, in our method, the computer can recognize the unit cell 
geometric structure automatically instead of requiring the manual input of the parameters. 
Furthermore, the unsupervised training also resulted in decoders that can reconstruct the 
geometric configuration of a unit cell from the compressed information from encoders. This 
implies that we can set the desired photonic crystal band structure and inversely generate the 
compressed geometric configuration information using the artificial neural network, and then 
use the decoder to restore this compressed geometric configuration information to form the unit 
cell of the photonic crystal. This will be very useful for the inverse design of photonic crystals 
with complex optical properties such as topological photonics or negative refraction.
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