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	 With the continuous development of smart grid technology, people’s demand for smart 
electricity consumption is increasing, and electricity consumption identification is a key aspect 
of achieving smart electricity consumption. Therefore, to promote the development of electricity 
consumption identification, we have studied load identification methods in low-voltage (LV) 
station areas and proposed a set of load identification models based on deep reinforcement 
learning. Each model consists of a non-intrusive load monitoring (NILM) device, an improved 
adaptive density peak (ISDPC) model, a new end-to-side neural network called GhostNet, and a 
data processing and analysis module specific to 10 kV power transmission. Considering the 
complexity and diversity of loads in the 10 kV power transmission system, we employ ISDPC 
algorithm to perform cluster analysis on load characteristic data and use GhostNet for load 
identification. Additionally, we preprocess and extract features from the data specific to 10 kV 
power transmission to improve the accuracy and effectiveness of the identification. Finally, we 
compare our results with those of the k-means clustering algorithm, Euclidean distance load 
curve clustering, and other algorithms to demonstrate the superiority of our method in terms of 
clustering and identification accuracies.

1.	 Introduction

	 In recent years, with the continuous development of smart grid technology, there has been an 
increasing demand for smart electricity consumption. Electricity consumption identification 
technology is a crucial aspect of achieving intelligent electricity consumption. Accurately 
monitoring and identifying 10 kV electricity consumption equipment can assist power suppliers 
in allocating electricity resources more efficiently. Furthermore, for the 10 kV power 
transmission system, the accurate collection and identification of load information, as well as the 
timely response to load demands, are highly important. By accurately identifying the loads in 
the 10 kV power transmission system, the real-time monitoring and management of electricity 
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consumption can be achieved.(1) This facilitates a better understanding of consumption patterns 
and behaviors of 10 kV loads for smart grid system managers, providing valuable insights for 
electricity supply–demand balance, energy scheduling, and energy efficiency optimization.(2)

	 As the key to load identification, clustering analysis has been of great interest to researchers 
as it plays an important role in data mining and analysis.(3) The clustering operation can divide a 
large amount of discrete data into different clusters by calculating the similarity between the 
data in accordance with those distribution.(4) On the basis of different algorithmic principles, the 
current common clustering algorithms can be broadly classified into division-based clustering, 
hierarchy-based clustering, density-based clustering, grid-based clustering, and model-based 
clustering.(4,5) Hierarchy-based clustering creates a hierarchical nested clustering tree by 
calculating the similarity between data points of different categories. By dividing the data space 
into grid cells, the data objects are mapped to grid cells, and the density of each cell is calculated. 
Density-based clustering algorithms can find clusters of various shapes and sizes in different 
data, and the idea is that after selecting high-density points, the surrounding points that are 
similar to the high-density points are clustered into one class.(6)

	 The density peak clustering (DPC) algorithm is a simple and effective clustering algorithm 
that maps arbitrary-dimensional data to two dimensions and constructs hierarchical relationships 
between data in the reduced dimensional space, from which it is very easy to select high-density 
data points far away from other high-density areas. These points are called peak density points 
and can be used as clustering centers. On the basis of the constructed hierarchical relationship, 
the algorithm provides two different methods to complete the final clustering.(7,8) This algorithm 
can effectively cluster complex data and has a good clustering effect on any data set. At present, 
DPC is widely used in various fields, such as machine learning and image processing.(9)

	 Although the DPC algorithm has the above-described advantages, it also has some 
disadvantages; for example, the truncation distance cannot be automatically adjusted and the 
cluster center needs to be manually specified. The adaptive DPC (ADPC) algorithm with an 
adaptive acquisition mechanism can well solve these disadvantages.(10) The ADPC algorithm 
can automatically adjust the truncation distance in accordance with the problem characteristics. 
The automatic acquisition of clustering centers greatly reduces the effect of human error. Liu and 
Xu(11) proposed a fuzzy C-means clustering algorithm optimized by the density peak algorithm, 
which can adaptively generate the initial cluster center, determine the number of clusters, and 
optimize the convergence process of the algorithm, which has certain guiding significance. For a 
truncation distance that cannot be adjusted automatically, Wang et al.(12) proposed a new 
adaptive aggregation strategy, whereby the initial cluster center is first determined by giving a 
threshold, then the remaining points are allocated in accordance with the nearest distance to the 
initial cluster center, and finally, similar clusters are merged in accordance with the achievable 
density between clusters. Qian and Jin(13) proposed a new adaptive aggregation strategy, in 
which the initial class cluster center is first determined by giving a threshold value to the 
algorithm, then the remaining points are assigned on basis of the nearness to the initial class 
cluster center, and finally, similar class clusters are merged in accordance with the density 
between class clusters up to the adaptively determined truncation distance parameter by 
minimizing the information entropy.
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	 In addition, intelligent optimization algorithms are also useful for selecting the appropriate 
truncation distance and improving the accuracy of clustering. As a new intelligent optimization 
algorithm, the whale optimization algorithm (WOA) has many advantages compared with other 
optimization algorithms.(14) Liu et al.(15) proposed a new three-stage hybrid feature gene 
selection method comprising a variance filter, a polar random tree, and the WOA. The optimal 
feature gene subset is selected by the WOA. Experimental results show that this method has 
significant advantages in a variety of evaluation indexes. By combining adaptive weighting and 
the WOA, improvements were made using Cauchy mutation(16) and simulated annealing 
strategies.(17) These improvements were aimed at addressing the issue of the WOA’s susceptibility 
to local optima, and the algorithm’s strong combinational capability after incorporating these 
modifications was demonstrated. Zhang et al.(18) proposed an efficient intelligent prediction 
model based on the machine learning method. This model comprises an improved WOA 
(RRWOA) based on random contraction strategy (RCS) and the Rosenbrock method combined 
with the K-nearest-neighbor (KNN) classifier. The problem of the WOA falling into a local 
optimum was solved, and the experimental results showed that the improved RRWOA achieves 
good results.
	 After completing the clustering operation, the clustering centers that have been classified 
must be identified to match the different clustering centers to the user appliances; the neural 
network GhostNet would be a solution to this problem. As a new neural network model, the 
computational effort required by GhostNet is greatly reduced compared with traditional neural 
networks, and the complexity of the convolution operation is largely optimized.(19,20) 

Furthermore, the use of Ghost modules instead of the convolutional layers in the convolutional 
neural network structure in other studies(21) has improved the objective image quality evaluation, 
proving the excellence of the GhostNet performance. Gao and Wang(22) designed a lightweight 
network, Ghostnet, as the backbone network of the Deblurganv2 generator. It has a reduced 
number of network parameters and a ruduced amount of calculation, and it effectively improved 
the wind power detection image processing efficiency. Zheng et al.(23) proposed the Little-
YOLOv4 (you only look once version 4) network structure in which GhostNet was used to 
extract image features, and BiFPN path fusion was added to improve the path aggregation 
network (PANet) to integrate richer semantic features and retain spatial information.
	 In summary, we propose a load identification method based on deep reinforcement learning 
for a low-voltage (LV) station area. First, the load characteristics data of LV substation users are 
obtained using nondestructive testing equipment, and then the load characteristics are clustered 
by an improved adaptive density peak model combined with the WOA to form load datasets with 
different characteristics, after which the datasets are input into GhostNet for load identification. 
Then, we conduct a cross-sectional comparison of our method with the k-means clustering 
algorithm and Euclidean distance load curve clustering. The superiority of our method in terms 
of clustering and identification accuracies is proved.

2.	 Improved ADPC Algorithm Combined with WOA

	 The clustering algorithm in our study is improved in the following two aspects: firstly, the 
automatic selection of clustering centers is achieved on the basis of the trend of the slope change 
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of the weighted local density and relative distance product; secondly, the truncation distance dc 
in the DPC algorithm is optimized by using the stronger merit-seeking ability of the WOA.

2.1	 Principle of DPC algorithm

	 DPC is mainly based on two intuitive assumptions: (1) the cluster center is surrounded by a 
group of neighboring points with a lower density; (2) the distance of the cluster center from the 
points with a density higher than it is relatively large. The algorithm requires only one parameter, 
the truncation distance dc, to manually select the clustering center points, and then completes the 
clustering and assignment of the remaining points by a one-step assignment strategy. In the DPC 
algorithm, the local density is calculated in two ways, and when the dataset is large, the local 
density is calculated as 
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	 The DPC algorithm, based on the derived truncation distance dc, then substitutes it into the 
formula of the local density ρ and the distance δ, and draws a decision diagram in two-
dimensional space based on ρ and δ. The larger values of ρ and δ are manually selected as 
clustering centers using the decision diagram, and finally, by a one-step allocation strategy, the 
remaining points are assigned to the nearest class clusters with a higher density.
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2.2	 Adaptive clustering center selection

	 The original DPC algorithm needs to manually intercept the points with the local density ρ 
and the large relative distance δ as clustering centers in the decision diagram when selecting the 
clustering centers, and the interception process is subjective. When facing the user load data of a 
LV station area, manually setting the clustering centers (i.e., appliance types) is usually not 
comprehensive enough, and if there is an error in selecting the clustering centers, it will cause 
the whole clustering step to fail to achieve the desired results, so we need to solve this problem 
by automatically selecting the clustering centers through the adaptive selection strategy.
	 In the adaptive selection strategy, considering the local density ρ and the relative distance δ 
together, we define

	 , 1,2,i i i i Nγ ρ δ= = ,	 (5)

where N is the number of sample points in the dataset.
	 Avoiding the interaction between different magnitudes, the normalization of ρ and δ yields 
the following new definition of γ:
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	 The clustering centers are selected in accordance with the γ descending ranking chart, and 
the points with larger γ values are more likely to be clustering centers. This can effectively 
eliminate the errors caused by considering ρ and δ separately.

2.3	 WOA

	 The WOA is a new bionic algorithm based on simulating whale predation behavior. It is 
mainly divided into three stages: prey siege stage, bubble attack stage, and prey search stage.
	 The specific steps of the WOA are as follows.
Step 1: S individual whale positions are randomly initialized in the solution space, and the 
maximum number of iterations, T, and the current number of iterations, t, are given.
Step 2: By calculating each fitness value using the objective function and retaining the optimal 
individual as X*(t), the mathematical model for updating the whale position to the optimal 
position is

	 * *( 1) ( ) ( ) ( )X t X t A C X t X t+ = − ⋅ ⋅ − ,	 (7)

	 2A a r a= ⋅ − ,	 (8)

	 2C r= ⋅ ,	 (9)
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where t is the number of current iterations, X*(t) is the current optimal position, X(t) is the current 
position, A and C are the system vectors, r is a random number between [0, 1], and a is a linearly 
decreasing parameter from 2 to 0.
Step 3: The coefficient vector A and the random number p are updated, and the corresponding 
position updates are performed for all individuals in accordance with the values of A and p. It is 
assumed that the probabilities of humpback whale contraction surround and spiral position 
update are both 50%. The following position update model is established:

	
* *

*
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	 *( ) ( )D X t X t′ = − ,	 (11)

where b is a constant that defines the shape of the logarithmic helix, l is a random number 
between [−1, 1], and the variable p is a random number between [0, 1].
	 If |A| ≥ 1, p < 0.5, perform the update of

	 ( 1) ( ) ( ) ( )rand randX t X t A C X t X t+ = − ⋅ ⋅ − ,	 (12)

where Xrand is a random selection of whale individuals from the current population. During the 
optimization of the specific problem, the whale individuals keep approaching the optimal 
solution by different location update methods.
	 If |A| < 1, p < 0.5, perform the update of Eq. (7).
	 If p ≥ 0.5, update is carried out according to Eq. (13), and the update mechanism diagram is 
shown in Fig. 1.

Fig. 1.	 (Color online) Whale location update.
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	 ( ) ( ) ( )*1 ' cos 2blX t X t D e l+ = + ⋅ ⋅ π 	 (13)

Step 4: The fitness values of the updated individuals are calculated, and the optimal individual 
positions and fitness values are updated to retain the optimal individuals.
Step 5: Determine whether t < T holds. If yes, set t = t + 1 and return to Step 2; otherwise, the 
algorithm ends and solution and the value are output.
	 This algorithm selects the cluster centers on the basis of slope of γ. The point 

( ) ( )( )0 1 max min/arg maxi i i
i

γ γ γ γ γ+= − −  with the largest slope of [0, 1] is generally selected as 
the dividing point between the clustering center and other points, but the jump of 
(γi − γi+1)/(γmax − γmin) is too strong to accurately select the clustering center; hence, the slope 
must be weighted as
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	 The cut-off distance dc in the DPC algorithm must be set artificially, and its value is very 
important. To adapt to the demand of user load identification in the LV station area, we use the 
WOA with a strong merit-seeking ability to select the best cut-off distance and introduce 
accuracy (ACC) as the objective function of the WOA algorithm. Let Pj be the known manually 
labeled clusters and Cj be the clusters after clustering; then, ACC is calculated as follows:

	 ( , ) j i
j i
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C

∩
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	 The objective function ACC index is a one-dimensional function of dc, that is, given dc, an 
ACC index value can be obtained. The range of the ACC index is between [0, 1], and the closer 
the value is to 1, the better the clustering result is.
	 The WOA is used to find dc with the maximum ACC index in the DPC algorithm as the 
optimal dc for the current dataset, thus realizing the clustering of the algorithm.

3.	 GhostNet Model Construction

	 After the above clustering operation of the improved ADPC algorithm combined with the 
WOA, the user load data forms several clustering centers with different load characteristics. 
These clustering centers correspond to different types of electrical appliances. Now we need to 
identify these clustering centers through neural networks, so that we finally know which 
appliances correspond to which clustering centers. In this paper, we use the new neural network 
GhostNet, which can produce more feature maps through simple operations. Its operation 
principle is to perform a series of linear transformations through a set of original feature maps, 
and the ‘ghost feature maps’ of the required information can be discovered from the original 
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features through simple operations. GhostNet can achieve the construction of a Ghost bottleneck 
by stacking Ghost modules. The dataset processed by clustering is segmented and the points are 
used to form the corresponding power–time curve. GhostNet is used to identify such a curve 
through the trained model, so as to know the user ‘s electricity consumption habits in different 
time periods. Finally, a visual feature map is output, and the user ‘s load situation is analyzed by 
the corresponding evaluation criteria.

3.1	 Defining the Ghost module

	 For any n original feature map, h w nO × ×∈  is generated using a single convolution 
calculation.

	 *Y O f= 	 (16)

c k k nf × × ×∈  is the convolution kernel of this layer, k × k is the kernel size of f, 
. .h w nY × ×∈  is 

the feature output map of the n channels, and .h  is the height and .w  is the width of the output 
data. The bias term is omitted here for the simplicity of calculation, and the hyperparameters of 
this model are the same as those in ordinary convolution in order to ensure a consistent spatial 
size of the feature maps.

3.2	 Build GhostNet

	 First, a Ghost bottleneck is built with a Ghost module, which generally consists of two Ghost 
modules, one of which is used as an extension layer with an increased number of channels, while 
the other reduces the number of channels to match the shortcut path. The starting convolution of 
the module is point convolution, and each subsequent layer must be batch-normalized. When the 
Ghost bottleneck is completed, it is used to build GhostNet. The first layer of the Ghost 
bottleneck requires a standard convolutional layer, and a series of Ghost bottlenecks are added to 
increase the number of channels. Finally, the feature map is converted into a dimensional feature 
vector by averaging the pool for the final recognition. Its structure diagram is shown in Fig. 2. 
The data of various electrical load characteristics of the LV station users are fed into the 
GhostNet model to identify multiple clustering centers obtained in the clustering operation.

Fig. 2.	 (Color online) Ghost module.
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4.	 Algorithm Flow

	 Figure 3 shows the algorithm flow.

5.	 Analysis Results of Simulation Experiment

5.1	 Evaluation indicators

	 In this experiment, the clustering results were evaluated using three indicators: FM index 
(FMI), adjusted Rand index (ARI), and adjusted mutual information (AMI). C was set as the 
sample true label and C* was the result of clustering.

Fig. 3.	 Algorithm flow chart.
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5.2	 Results

	 The algorithm programming tool used was MATLAB R2020a, the operating system was 
Win10 64×, the memory was 16G, and the graphics card was NVIDIA 1060. The experimental 
data were the load data of 200 households in a district of a city in a province of China for one 
month, and six typical appliances were selected from all household appliances for identification: 
refrigerator, TV, laptop, microwave oven, induction cooker, and water heater.
	 In the experimental stage, the DPC, k-means, Euclidean clustering, and WOA–ADPC 
algorithm of this study were used and the results are shown in Table 1 and Figs. 4–6.

5.3	 Analysis of results

	 Table 1 shows the clustering indexes of WOA–ADPC and other algorithms for the six 
appliances. Figures 4–6 show the three indexes of the four algorithms. DPC is slightly inferior to 

Table 1
Results of WOA–ADPC and other algorithms.

WOA–ADPC DPC
FMI ARI AMI FMI ARI AMI

Refrigerator 0.987 0.925 0.931 0.851 0.890 0.899
TV 0.972 0.980 0.989 0.804 0.817 0.887
Laptop 0.917 0.917 0.901 0.800 0.802 0.745
Microwave oven 0.936 0.956 0.967 0.831 0.745 0.804
Induction cooker 0.934 0.911 0.945 0.759 0.871 0.865
Water heater 1.000 1.000 1.000 0.809 0.879 0.900

k-means Euclidean clustering
FMI ARI AMI FMI ARI AMI

Refrigerator 0.421 0.559 0.603 0.245 0.304 0.337
TV 0.431 0.478 0.432 0.207 0.214 0.228
Laptop 0.481 0.459 0.319 0.203 0.198 0.178
Microwave oven 0.402 0.420 0.397 0.167 0.188 0.201
Induction cooker 0.398 0.342 0.390 0.177 0.189 0.197
Water heater 0.489 0.475 0.420 0.296 0.303 0.316

Fig. 4.	 (Color online) FMI results.
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WOA–ADPC, with each indicator value being between 0.7 and 0.9. k-means differs significantly 
from that of DPC, with indicator values between 0.3 and 0.55. European-style clustering results 
are weaker than k-means, with indicator values being between 0.2 and 0.3. In summary, the 
clustering effect of our WOA–ADPC algorithm is better than those of the other three algorithms.

6.	 Conclusions

	 In this study, our focus was on the load identification of LV station users at the 10 kV voltage 
level. Specifically, we acquired user load data through a non-intrusive load monitoring (NILM). 
We used the improved ADPC algorithm combined with the WOA to cluster the discrete load 
data of multiple users and obtained results with different clustering centers. Considering the 
characteristics of the 10 kV voltage level, we made corresponding adjustments and optimizations 
in the data processing and analysis stage. These results were then input into the GhostNet model, 
and each clustering center was identified on the basis of the load characteristics of the appliances. 
By associating the appliances with their corresponding cluster centers, the load identification of 
10 kV LV station users was accomplished.
	 Through simulation experiments, we found that our WOA–ADPC algorithm outperformed 
traditional DPC, k-means, and Euclidean distance clustering algorithms in terms of accuracy 

Fig. 5.	 (Color online) ARI results.

Fig. 6.	 (Color online) AMI results.
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and clustering results, and it could better adapt to the load characteristics at the 10 kV voltage 
level. The WOA–ADPC algorithm also addressed the limitations of manual selection of 
clustering centers and achieved good results in load identification at the 10 kV voltage level. The 
next step is to study the application of the WOA–ADPC algorithm in handling high-dimensional 
data clustering issues at the 10 kV voltage level to further improve the accuracy and efficiency of 
load identification.
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