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 The line loss management work is closely related to the operation efficiency of a line, the 
economic benefits of the electric power enterprise, and the safety of power consumption. 
However, an abnormal relationship between the customer and the transformer will lead to the 
inaccurate calculation of the line loss in the station area, thus hindering the line loss management 
work. Therefore, in view of the problems of large workload, high cost, and lack of timeliness of 
identification results in traditional manual inspection, we first screen abnormal transformers by 
analyzing the customer–transformer relationship using line loss data collected through power 
metering sensors. Then, we use the method of trend distance to measure time series similarity, 
applying the density-based spatial clustering of applications with noise (DBSCAN) clustering 
algorithm to update and identify any abnormal customer–transformer relationship, and finally 
verify the design method through experimental simulation analysis.

1. Introduction

 The growth and rapid development of the scale of the information communication network 
have given rise to stricter requirements for the fine management of the distribution network side. 
The accurate identification of the relationship between a customer and the transformer has 
become the key to realizing such fine management and promoting the construction of a digital 
power grid. However, because of the complexity of the distribution network lines in the domestic 
station area, long-term phenomena such as business expansion, new sales, relocation, and load 
cutting result in frequent line changes. The traditional manual census method inhibits the timely 
update of the customer–transformer relationship. It is difficult to carry out effective line loss 
factor investigation, topology connection relationship verification, line loss management, and 
other work content evaluation, which significantly impacts the power supply reliability of the 
station area and the profit of power enterprises. Therefore, the study of the method of identifying 
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the customer–transformer relationship using data mining has become essential to the liberation 
of manpower and the improvement of the efficiency of power distribution management.
 The customer–transformer relationship refers to the subordinate relationship between the 
end-user meter and the transformer in the station area.(1) The existing customer–transformer 
relationship identification methods mainly include the short-time outage method, station area 
identifier verification, and the automatic identification method. Among them, the automatic 
identification method can efficiently update the marketing and distribution files and is better 
than the first two methods regarding identification efficiency and workload. Still, the automatic 
identification method has higher requirements for data collection work. Since 2018, relevant 
companies have started working on automatically identifying customer–transformer 
relationships. The preliminary research mainly focused on work-frequency signal methods,(2) 
such as the overall average empirical mode decomposition [ensemble empirical mode 
decomposition (EEMD)] algorithm to improve the superimposed signal decomposition into a 
single signal wave, using the similarity of the work-frequency signal in the same station area to 
determine the customer–transformer relationship(3) and the technology of the information 
channel and phase line identification device of electric power industrial frequency 
communication to quickly identify the electrical properties of users or power equipment in the 
grid and to achieve the rapid identification of the customer–transformer relationship.(4) The 
work-frequency signal method can analyze and collect the analysis signal in real time, but it 
needs additional equipment, and the actual application is less economical and has low stability. 
To further improve the stability and anti-interference ability of the customer–transformer 
relationship identification method, research scholars began to shift the focus of research to the 
frequency over zero forms. For example, Li et al.(5) utilized the energy meter to generate a 
specific frequency of harmonic current by applying the sliding discrete Fourier transform (DFT) 
for real-time signal extraction and decoding. Finally, the customer–transformer relationship was 
determined from the binary information derived from the features. This method can effectively 
identify the customer–transformer relationship, but it has the disadvantage of a long 
identification period and that it is easily affected by the station load. For this reason, the data 
analysis method has become a hot research topic for customer–transformer relationship 
identification because of its high economy, short identification period, and real-time capability.
 Domestic and foreign research scholars have conducted profound research on data analysis-
based customer–transformer relationship identification methods, mainly focusing on the fields 
of deep learning and clustering algorithms. Wang et al.(6) believe that the trend of the change in 
voltage data can reflect the line–variable relationship of the distribution network. They used the 
multidimensional scale analysis (MDS) algorithm to downscale the voltage data, and then the 
improved K-means algorithm was used to determine the relationship between the station and the 
user. This promoted the development of intelligent control of the station, but the problems of rate 
meter clock drift and station identification signal crosstalk were not considered. Tang et al.(7) 

combined the meter voltage distribution curve with the discrete Frey interval distance based on 
the FM feature signal to design a customer–transformer relationship identification method. To 
further improve the accuracy of the customer–transformer relationship recognition method, later 
research was mainly focused on the improvement of the algorithm performance, the dataset 
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distance measurement method, and data originality. For example, Cui et al.(1) improved the 
DBSCAN algorithm from the original dynamic characteristics of voltage data by using adaptive 
parameters and test operations. Bai et al.(8) preserved the time dependence of voltage signal 
sequences by using Gram’s angle field, the difference characteristics of voltage fluctuations 
were highlighted by introducing spatial attention in the residual network, and the improved 
residual network classification feature mapping was used to identify customer–transformer 
relationships. The temporal characteristics of voltage data were considered, and the customer–
transformer relationships were identified by combining the spatial attention of the residual 
network.(9,10) The dynamic time regularization algorithm, self-organized feature mapping, and 
K-means algorithms have been combined to design an intelligent identification method for the 
customer–transformer relationship in a distribution station area using the clustering of 
transformer low-voltage-side data and customer-side voltage timing data, considering the timing 
characteristics of voltage data.(11,13) The above methods improve the accuracy of customer–
transformer relationship recognition from different aspects, but do not consider the impact of the 
imbalance of actual sample data on the accuracy of the algorithm. After preprocessing and 
feature extraction, Xu et al.(13) inputted the power of distribution lines and the power 
consumption of each distribution transformer. Subsequently, a model was established using a 
genetic network to design an intelligent identification method for the distribution network line-
to-variable relationship. This method was based on the generative adversarial network (GAN) 
and aimed at addressing the issue of imbalanced data. The above research resulted in a 
reasonable and effective method for identifying the customer–transformer relationship using the 
clustering and deep learning algorithms, but only considered the change of the customer–
transformer relationship under the effect of a single factor; unfortunately, a single empirical 
value is prone to omission and misjudgment.(14) Therefore, we initially utilize the line loss rate to 
identify abnormal line loss transformers. Subsequently, we employ the improved DBSCAN 
algorithm to further validate the relationship between the customer and the abnormal 
transformer. This approach helps prevent misjudgment and miscalculation, ensuring a timely 
and accurate update of the customer–transformer relationship. To improve the efficiency of the 
customer–transformer relationship identification method, the mayfly algorithm (MA) is 
introduced to optimize DBSCAN parameters, abnormal users are identified on the basis of the 
similarity in the trend of the change of the voltage–time series curve of the same station, and 
finally, the trend distance measure time series similarity (SMVT) is introduced to measure the 
distance between the station and each user to achieve an effective identification of the customer–
transformer relationship.

2. Modelling

2.1 Abnormal station area determination

 The line loss rate is closely related to the profit income of electric power enterprises. Because 
the rule of the change in line loss rate in a normal station area should follow a stable trend for a 
long time, when the relationship between a customer and a transformer is abnormal, the line loss 
rate may become negative or experience a significant fluctuation within the transformers.(15) 
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This fluctuation refers to a substantial change in line loss rate within a relatively short period of 
time, compared with its long-term stable trend. Therefore, the analysis of the line loss rate in a 
station area enables an intuitive and effective identification of an abnormal station area. Current 
line loss rate anomalies and their causes are shown in Table 1.
 According to the line characteristics of the research object, the abnormal threshold of a 10 kV 
line loss rate is 10%, so the line loss anomaly identification condition of the existing transformer 
area is that the line loss rate exceeds 10%. The line loss rate anomaly determination conditions 
of an urban network and a rural network low-voltage area are line loss rates greater than 8% and 
11%, respectively. The line loss rate calculation formula is as follows.
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Here, δ represents the line loss rate of the station area, FM,i represents the transformer load of the 
Mth station area on the ith day, and fM,i−1 represents the total power consumption of the Mth 
station area users on the ith day.
 Line loss data for August 1 to August 10, 2022 in six different station areas were calculated 
using existing data and analyzed using Eq. (1). Because of space limitations, the results for only 
one station area are shown in Table 2. For the abnormal line loss rate area, the identification of 
the customer–transformer relationship was reverified.

Table 1
Line loss phenomena and causes.
Index Phenomenon Cause

1 Adjacent-area line loss rate 'waxing and waning' User–transformer relationship anomaly
System–client relationship is not updated in time

2 Overall instability of line loss rate, high 
frequency of abnormal fluctuations Meter reading error

3 Line loss rate short-term instability User–transformer relationship anomaly
Meter reading error

4 Long-term high line loss rate Three-phase load imbalance of transformer

Table 2
Example of line loss rate data.
Area number Date Line loss rate (%)
017*****030 2022-08-01 3.23
017*****030 2022-08-02 2.13
017*****030 2022-08-03 3.41
017*****030 2022-08-04 4.56
017*****030 2022-08-05 4.23
017*****030 2022-08-06 4.51
017*****030 2022-08-07 6.42
017*****030 2022-08-08 10.76
017*****030 2022-08-09 3.17
017*****030 2022-08-10 3.28
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2.2 Data processing model

 The line loss data of six districts in 2022 are analyzed using existing data, and the results are 
shown in Table 2. For the abnormal line loss rate area, the identification of the customer–
transformer relationship is reverified.
 With the continuous advancement of digital power grid construction, the use of smart meters 
is gradually becoming popular in daily life, laying a technical foundation for the online 
identification of customer–transformer relationships and further promoting the fine management 
of power enterprises. The connection mode of the electric energy meter, collector, concentrator, 
and main station adopted at the present stage is shown in Fig. 1.
 With the data acquisition scheme shown above, the voltage, current, and power data over a 
certain time period can be collected, but there are still irregular missing links in data acquisition 
and transmission mitigation. Because cubic spline interpolation has the advantages of simple 
calculation and good convergence and is effective in optimizing the smoothness of curves, it is 
widely used in the design of ships, automobiles, and spacecraft. Here, the cubic spline 
interpolation algorithm is used to process the missing values.
 If function ( ) [ ]2 ,S Cx a b∈  is a cubic polynomial at each interval [xj, xj+1], where 
a = x0 ˂ x1 ˂ ... ˂ xn = b is a given node, then S(x) is called a cubic spline function on node 
x0, x1, ..., xn. If the function value yj = f(xj)( j = 0, ..., n) is given on node xj and satisfies S(xj) = yj, 
then S(x) is a cubic spline interpolation function. To calculate the cubic spline interpolation, in 
addition to the conditions mentioned above, it is necessary to satisfy the boundary conditions 
and determine a unique spline interpolation. Among them, the existing boundary conditions are 
mainly the following three kinds:
(1) The first-order derivative values at both ends are known.

 ' ' ' '
0 0( ) ( ), ( ) ( )n nS x f x S x f x= =  (2)

(2) The second derivative at both ends is known.

 '' '' '' ''
0 0( ) ( ), ( ) ( )n nS x f x S x f x= =  (3)

Fig. 1. (Color online) Data acquisition scheme.
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 When '' ''
0( ) ( ) 0nS x S x= = , the boundary condition becomes a self-admission boundary 

condition.
(3) When f(x) is a periodic function with period xn − x0 and S(x) is also a periodic function, the 
boundary condition is
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 Let S(x) be the second derivative on node a = x0 ˂ x1 ˂ ... ˂ xn = b, '' ( ) ( 0,1,..., )j jS x M j n= = , 
and hj = xj+1 − xj. Since S(x) is a cubic polynomial at the interval [xj, xj+1], S(x) is a linear function 
on it. Combining this condition with S(xj) = yj and S(xj+1) = yj+1, the following equation is 
obtained:
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 The expression of S(x) can be further obtained by integrating Eq. (5) twice, as shown 
in Eq. (6).
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 Introduce ' '
0( 0) ( 0)nS x S x+ = −  into the availability:
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 Since the trend of the change in user voltage time series data follows a trigonometric function 
with time, it is periodic. To obtain 0 1, ,..., nM M M , boundary condition 3 is used to further 
optimize Eq. (6).

 0
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 Convert Eq. (7) into a matrix form:
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2.3 Trend similarity of time series data

 The classical time series similarity measures are the Euclidean distance (ED) and 
dynamic time bending distance (DTW). ED has the advantage of being simple and easy to 
implement but does not take into account the temporal characteristics of the time series data. 
Although DTW overcomes this drawback, the calculation is complex, and the application range 
needs to be greater. Since the similarity measure of the time series trend can quickly compress 
time series data and objectively evaluate the movement of data change, it can be an effective 
measure of data. Therefore, on the basis of a similar trend of user voltage time series data in 
the same station area, SMVT is used to measure the distance between each user and the station 
area. Firstly, the dimension reduction of the time series is realized by piecewise aggregation 
approximation, and the time series data are symbolized. The time series is measured from the 
perspective of the change trend to classify the research user data intuitively and effectively. 
According to the literature,(16) the trend–distance (TD) formula is 
 

 1 2( , ) ( , )TD X X Dist M N= , (13)

where M and N represent the dimensions of the input time series. The calculation method is 
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where µd, µi, and µr represent the costs of insert, delete, and replace operations, respectively; µd 
and µi are 1, and (0,1]rµ ∈ .

2.4 Improved DBSCAN algorithm based on MA

 The DBSCAN algorithm is a density-based clustering algorithm. It can find the neighborhood 
of each point in accordance with the given object radius and density to determine the density 
reachable and core points, so as to complete the classification of research data. Compared with 
the traditional clustering algorithm, there is no need to specify the clustering center, but the 
radius and density must be set artificially, which will have a certain impact on the recognition 
results. The MA is a biomimetic intelligent algorithm that simulates the reproduction and flight 
of a mayfly. Compared with classical heuristic algorithms such as the genetic algorithm and 
particle swarm optimization, it has an excellent global search ability and can quickly obtain the 
optimal solution.(17) Therefore, the MA is used to optimize the parameters of the DBSCAN 
clustering algorithm. The specific flow chart is shown in Fig. 2.

3.	 Flow	of	User–transformer	Relationship	Identification	Algorithm	

Step 1:  Obtain the power data of each station area, use Eq. (1) to calculate the line loss rate of 
each station area, screen out the abnormal line loss station area, and re-identify the 
customer–transformer change relationship for the abnormal transformer.

Step 2:  On the basis of the existing transformer relationship, collect the voltage data of the 
transformer area and corresponding users. Process the collected data using Eqs. (10)–
(12). 

Step 3:  Input the processed data into the improved DBSCAN algorithm based on the MA, and 
calculate the similarity distance of time series data between a certain station and each 
user using Eq. (14). 
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Step 4:  On the basis of the optimized ε and MinPts parameters, calculate the core and density 
reachable points, and continuously update the classification results. The specific process 
is shown in Fig. 2.

Step 5:  Refer to the classification results to compare and analyze the relationship between each 
user and the transformer area. Verify the accuracy of the design method using the 
customer–transformer relationship during the normal period of the line loss rate of the 
transformer area so as to determine the recognition accuracy of the customer–
transformer relationship of the abnormal transformer area.

Fig. 2. Improved DBSCAN algorithm flow chart based on MA.
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4. Experimental Analysis

 The 10-day voltage data from August 1 to August 10, 2022 of 269 end users in six transformer 
areas in a certain area are selected to verify the proposed method. The relative positional 
relationship between each transformer area and the user is shown in Fig. 3.
 On the basis of the actual collected data, the Davies-Bouldin Index of the clustering algorithm 
is taken as the target value, and the clustering radius ε and density MinPts of the DASCAN 
algorithm are determined to be 2 and 7, respectively, by using the MA. Taking the trend 
similarity of voltage time series data between users as the distance, the DASCAN algorithm is 
used to identify abnormal users. The identification results are shown in Fig. 4, and the final 
analysis results are shown in Table 3 and Table 4.

Fig. 3. (Color online) Original marketing relationship of each user.

Fig. 4. (Color online) User–transformer relationship identification results.
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 From the clustering results in Fig. 4, a schematic diagram of the transformer substation 
relationship can be obtained. The results for the example of the 28 users of transformer No. 5 are 
shown in Fig. 5. The results for the other categories are essentially the same.
 The voltage time series curves obtained using the clustering results are shown in Fig. 5 for 
two stations and some corresponding other users. Among them, the station area is equivalent to 
the cluster center, and the curves in Figs. 5(a) and 5(b) are the cluster center curves of station 
areas 1 and 2, respectively. The curve clusters in Figs. 5(c) and 5(d) are the time series voltage 
curves of some other users in categories 1 and 2. It can be seen from Fig. 5 that the change trend, 
peak, and trough of the user voltage time series curve in the same station area are highly similar, 

Table 3
Identification method accuracy.
Method Accuracy (%)
K-means 81.2
OPTICS 84.9
DBSCAN 86.25
Design method 96.3

Table 4
Example of line loss rate data.
Index Number of users/customers
1 29
2 93
3 43
4 35
5 28
6 41
Total 269

Fig. 5. (Color online) Voltage time series curve of the station area and some users. (a) Voltage curve of area 1, (b) 
voltage curve of area  2, (c) station 1 user voltage sequence curve, and (d) voltage time series curve of station 2 user.

(a) (b)

(c) (d)
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while the cluster center and user curves in different categories show obvious differences. By the 
shape-based clustering method for time series data, the user voltage curves with similar 
fluctuation trends can be clustered into one class, which represents the commonality of all user 
voltage curves in that class, and good results in the study of the relationship identification of the 
distribution transformer area have been achieved.

5. Conclusions

 Using the DBSCAN algorithm, we studied the clustering of time series data in a power 
distribution station area. In view of the lack of data collected using equipment, the cubic spline 
interpolation algorithm was used to process the original data, followed by the calculation of the 
line loss rate of each station area using the power data of the station area and the user. Then, the 
abnormal station area was screened out. On the basis of the principle that the voltage time series 
curves of the same station area have the same trend, the improved DBSCAN clustering algorithm 
was used to recheck the relationship of the abnormal station area using the trend similarity of the 
time series data as the distance. The application of the method proposed in this paper can save 
manpower and material costs and further promote the development of digital power grids. 
Because of the effects of data acquisition time, power outage correlation, user address, and other 
factors, we examined only the voltage time series curve and line loss data; this reduced the 
calculation amount and improved the recognition efficiency to a certain extent. However, the 
scope of application of the algorithm and the stability of the calculation results must still be 
further studied.
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