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Lead zirconate titanate (PZT) ceramic microstructures have been obtained by two 
reciprocal approaches, both of which are batch-fabrication-oriented. One approach starts 
from PZT powders using a lost Si mold technique, where a Si mold is prepared by deep 
reactive ion etching (RIE) and sintering of PZT after slurry casting is performed by glass
encapsulated hot i$ostatic pressing (HIP). The Si mold is finally etched away selectively 
by XeF2 • The resulting PZT structures are of high density and accurately reflect the 

· complementary shapes of the Si molds. The highest aspect ratio is over 15. Fine PZT rod
arrays for ultrasonic microtransducers and parallel plates for stacked piezoelectric
microactuators have been achieved. The finest rods are 7 µm square in cross section, 90
µm in height and 12 µm in period; the 25-µm-pitch PZT plates are 18 µm thick and 130 µm

high. The other approach is to fabricate bulk PZT substrates into microstructures by deep
RIE using SF6 gas with electroplated Ni films as protective masks. The etch depth is 70 µm

and the etch rate is 0.3 µm/min.

1. Introduction

Due to its superior piezoelectric and fenoelectric properties, lead zirconate titanate 
(PZT) ceramic has been widely applied in sensors, actuators and electronic components. 
To meet device pe1formance requirements, fabrication techniques of fine PZT structures 
are strongly desired. 

In the case of high-resolution ultrasonic transducers for medical diagnosis and nonde-
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structive testing, PZT/polymer 1-3 composites have been employed to realize good 
performance and acoustic impedance matching. As illustrated in Fig. 1, such a 1-3 
composite generally consists of a PZT rod array embedded in a piezoelectrically inactive 
polymer matrix. It has been shown that among existing fabrication techniques, the lost 

mold process is the most suitable for 1-3 composites in the frequency range higher than 20 
MHz, where fine-scale and high-aspect-ratio PZT features are essentiaI.Cll However, 
significant structure deformation seems unavoidable in the conventional lost mold process 
when the feature sizes are smaller than 20 µm due to the necessity of removing the plastic 
mold before PZT sintering,c2J which therefore limits the forming of finer-scale PZT 
structures. 

In the case of actuators, stacked PZT structures have been used to lower the driving 

voltage. Figure 2 shows the concept of a stacked piezoelectric actuator consisting of PZT 

plates intercalated by electrodes. The driving voltage is proportional to the PZT plate 
thickness. Such structures have been conventionally fabricated by tape castingC3l or paste 
printingC4l methods where the driving voltage can be lowered to 40 V with the PZT sheet 
thickness of about 40 µrn. However, these methods have reached their limitations in 
lowering the actuator driving voltage because of the difficulty of forming thinner PZT 
sheets. 

In order to achieve a breakthrough, we have developed a lost Si mold process, C5l by 

which finer PZT structures have been achieved with high design flexibility, which will 
meet the device requirements mentioned above. 

On the other hand, it is desirable to carve bulk PZT into fine structures without 
degrading its original material properties. For this purpose, methods such as diamond saw 
dicing,C6l ultrasonic cuttingOl and laser-assisted etchingCSJ have been developed. Besides the 
cost and yield limitations of dicing and cutting methods, it is also difficult to fabricate PZT 

structures finer than 20 µm by these methods. RIE techniques using halogen plasma have 

been used for fine structure patterning on PZT thin films due to their high degree of 
anisotropy. c9-1 IJ However, there are no reports on deep RIE of PZT so far due to low etch 
rates, an issue which this paper will address. 

Fig. 1. Schematic of PZT/polymer 1-3 composite. 
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2. Lost Si Mold Technique
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The lost Si mold process, depicted in Fig. 3, is a combination of Si micromachining and

ceramic sintering techniques. First, deep RIE is used to fabricate the Si mold of designed 
PZT 1-3 structures. The protection mask used is a patterned photoresist (PR) layer. 

Second, PZT slurry is cast into the Si mold. The slurry is made of 0.3 µm PZT powder 

(Pb(Zr052Ti048)03, Sakai Chemical Corp.) with 10% polyvinyl alcohol (PVA) used as a 

binder. After natural solidification, calcination is performed at 500°C to burn out the 

Fig. 2. Concept of stacked piezoelectric actuator. 

1) 2) 
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Fig. 3. Lost Si mold process: 1) fabrication of a Si mold by deep RIE, 2) PZT slurry casting, 
solidification and calcination, 3) PZT sintering by HIP, 4) removal of the Si mold. 
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binder completely. Third, glass-encapsulated hot isostatic pressing (HIP) is performed at 
l 100°C under 70 MPa for two hours to sinter the PZT powders in the Si mold. Lastly, the 
Si mold is selectively removed by-XeF2 etching.(1 2) Details of the above process have been 

described in ref. (5).

A scanning electron microscope (SEM) image of the obtained PZT rod array is shown 

in Fig. 4. The 12-µm-period rods are 7 µm square (rounded comers) in cross section and 90 
µm in height, meaning an aspect ratio of over 12. Figure 5 shows another example where 
rod cross sections gradually decrease from 12.5 µm square at the bottom to 9 µm square at 
the top. The aspect ratio is higher than 15. In view of acoustic impedance matching, the 

structure shown in Fig. 5 may be superior to that in Fig. 4 because its composite acoustic 
impedance varies successively in the thickness direction, and therefore tlie matching will 

be better. Its transducer resonant frequencies, determined mainly by the PZT rod height, 
will be almost the same as that of a composite using rods of the same height but with 
uniform cross sections. 

In Fig. 6, a parallel PZT plate structure is shown with plates 18 µm thick, 130 µm high 
and 25 µm in period. The stacked piezoelectric microactuator shown in Fig. 2 can be 
obtained by filling the plate spaces with a conductive malerial as electrodes. The material 
may be a metal formed afterwards by, for example, electroplating; it may also just be Si. In 

this work, a high-conductivity Si substrate is used as the mold. After PZT sintering, 

unnecessary parts of the Si mold can be selectively removed by RIE while Si between the 
PZT plates will remain as the actuator electrodes. Since the PZT plates shown in Fig. 6 are 
18 µm thick, the driving voltage of such a piezoelectric actuator is expected to be as low as 

Fig. 4. PZT 1-3 structure for use in a high-resolution ultrasonic transducer with the 12-µm-period 

rods 7 f..Lm square (round comers) in cross section and 90 µmin height. 
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Fig. 5. PZT rod array with the square rod cross sections thinning gradually from 12.5 µm at the 

bottom to 9 µm at the top. The rod height is 190 µm.

Fig. 6. Parallel PZT plates for stacked piezoelectric microactuator with PZT plates 130 µm high, 18 

µm thick and 25 µm in period. 
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18 V. Thinner PZT plates are also formable by the above process. 
As seen in Figs. 4, 5 and 6, PZT structures obtained by the lost Si mold technique are 

fine with high aspect ratios and designable shapes; their density is also very high. X-ray 
diffraction (XRD) analyses indicate that these structures are mainly in the perovskite 
phase, which is essential for piezoelectric and ferroelectric applications. 

3. Deep RIE of PZT

The PZT deep RIE process is illustrated in Fig. 7. In the first three steps, a Ni mask 
pattern is formed on the PZT substrate: a thin Au/Cr film (0.1/0.1 µm) is first deposited on 
the PZT surface, onto which a 6-µm-thick photoresist (PR) film is coated and patterned by 
photolithography; using the exposed parts of the Au/Cr film as electrodes, Ni is then 
selectively electroplated onto the PZT substrate. After removing the photoresist with 
acetone, PZT fine structures are formed by deep RIE using SF6 plasma with the Ni pattern 
as a mask. 

In order to achieve a high etch rate and vertical profiles, a high-density inductively 
coupled plasma (ICP) RIE system03l is used. Two 13.56 MHz RF sources are used: one 
supplied to a single-tum coil which is fixed on top of the quartz chamber lid to create the 
inductively coupled plasma, and the other to the sample stage (the cathode) to create the 
self-bias. A permanent magnet is located at the center of the coil to densify the plasma at 
the chamber center. The etch rate and profiles are found to depend on the RF powers, the 
process pressure and the stage temperature. 

Typical PZT structures defined by the deep RIE process are shown in Fig. 8, and a 
close-up is shown in Fig. 9; the etch depth is 70 µm. In this experiment, the coil RF power 
is 150 W while the stage RF power is adjusted for the RF self-bias to be -390 V; the stage 
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Fig. 7. Deep RIE process: 1) Au/Cr deposition on a PZT substrate, 2) photoresist (PR) coating and 
patterning, 3) Ni electroplating, 4) deep RIE of PZT with Ni as a mask. 
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Fig. 8. SEM image of PZT structures defined by deep RIE. The etch depth is 70 µm.

Fig. 9. Close-up of the PZT structures in Fig. 8. The white top layer is the Ni mask. 
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temperature is held at 20°C, and the process pressure is kept at 6 mTorr. Under these 
conditions, the etch rate is 0.3 µm/min, and the selectivity of PZT to the Ni mask is more 
than 35. In Fig. 9, the white top fayer is the remaining Ni mask which can be selectively 
removed or retained as an electrode if necessary. The etched PZT profiles are very smooth, 
although the average grain size of the original PZT substrate (N-lQ, Tokin Corp.) is larger 
than 2 µm. The sidewalls, however, are positively sloped with the base angles being about 
75°, which may be a result of the etching protection of reaction products deposited on the 
sidewalls. A conventional evaluation has confirmed that the PZT material properties are 
almost unaffected by the deep RIE process. 

4. Discussion

In the lost Si mold process, by taking advantage of the high melting point and high 
strength of Si, PZT sintering under high pressures (HIP) within the Si mold becomes 
possible. As a result, PZT structures have high density and reflect the Si mold features 
exactly. Additionally, the present Si deep RIE techniques have enabled the control of the 
sizes and profiles of Si molds.04

•
15> Therefore, the lost Si mold process has given rise to a 

new way of realizing fine PZT structures (less than 10 µm) with high aspect ratios ( over 10) 
and three-dimensional design flexibility. Great improvements in performance can be 
expected for devices using thus-obtained PZT structures. The lost Si mold process is also 
applicable to fine structure formation of other ceramic materials. 

In the PZT deep RIE process, the high etch rate and high selectivity have made .it 
possible to pattern bulk PZT into fine structures directly without degrading the material 
properties. At present, the sidewalls of the structures are still not satisfactorily vertical. 
This may be improved by adjusting the RIE conditions and mixing other gases with the 
main gas, SF6• The improved PZT deep RIE technique will be very practical for PZT fine 
structure definition due to the retention of material properties and the simple batch
fabrication-oriented process. 
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