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 Marine debris is one of the most widespread pollution problems facing oceans and waterways. 
It threatens the marine ecosystem and navigation safety. Thus, the extensive and timely 
monitoring of marine debris is crucial. In this study, we aimed to detect marine debris from 
images. You Only Look Once Version 5 (YOLOv5) was used to train a model to detect marine 
debris. Our experimental results reveal that the model achieves a mean average precision (mAP) 
of 96.8% and an inference speed of 1.3 ms per image. The optimized YOLOv5 has a higher mAP 
than a faster region-based convolutional neural network and requires less inference time than a 
single-shot multibox detector.

1. Introduction

 Marine debris is debris exposed on the ocean surface and in the oceans. The accumulation of 
marine debris in oceans, including man-made debris such as plastics, metal, glass, and nets, 
causes significant harm to marine life and human health.(1) Marine debris tends to become more 
polluted and less buoyant the longer it remains in the ocean; moreover, it sinks deeper into the 
ocean, making it more difficult to remove. Despite these risks, the amount of marine debris 
continues to grow each year, underscoring efforts to remove it.(2–4) However, as massive 
amounts of garbage are drifting in vast seas, directly removing them by humans is challenging 
in terms of cost and time.
 To address the marine debris problem, methods using autonomous underwater vehicles 
(AUVs) are attracting attention, and research to develop them more effectively is underway.(5,6) 
As the development of these AUVs continues to progress rapidly, the use of AUVs in ocean 
cleanup is becoming recognized as a more reliable method. 
 The higher the accuracy of recognizing marine debris and the higher the detection speed, the 
more effective the detection. In addition, the smaller the machine, the easier it is to install. In this 
context, an artificial intelligence (AI) algorithm should result in a lighter system. Xue et al. 
attempted to use an AI algorithm to detect marine debris objects by using ResNet50-You Only 
Look Once Version 3 (YOLOv3).(7) Zocco et al. applied the improved EfficientDets network.(6) 
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YOLOv5 small has also been applied to detect marine debris.(5) However, its performance was 
poor because it learned without sufficient training data. 
 In this study, we aimed to detect marine debris by utilizing a sufficient amount of data to 
train an algorithm and improving the object detection performance based on the optimized 
model. We also compared the performance of the proposed model with those of state-of-the-art 
methods. 
 The methods section below provides a review of the object detection algorithm, transfer 
learning, and genetic algorithm (GA). The following section presents the results, followed by the 
discussion and conclusions.

2. Data, Materials, and Methods

2.1 Dataset of marine debris

 In this study, we used the marine debris images provided by the AI Hub site of the National 
Information Society Agency. These data comprised 43306 images of 11 types of marine debris 
objects obtained near the coast of the Republic of Korea. The details of these 11 objects are listed 
in Table 1. This dataset consists of 38494 training sets and 4812 test sets. We divided the dataset 
into 33269 training sets, 5225 validation sets, and 4812 test sets for deep learning; the ratio was 
intended to be approximately 8:1:1. 

2.2 YOLOv5

 Object detection is a technique based on surrounding visual objects in a bounding box to 
display the detection instances of objects. Traditional object detection algorithms in deep 
learning-based computer vision tasks are largely divided into one-stage and two-stage detectors. 
A one-stage detector divides an image into regions, predicts bounding boxes, and classifies class 
probabilities all at once. The object detection speed is “breakneck” and helpful for real-time 
detection applications. Representative models include YOLO and the single-shot multibox 
detector (SSD).(8,9)

Table 1
Overview of variables used in this study.
Class name Number of objects Ratio
Styrofoam_Piece 14506 5.25
Plastic_ETC 10656 3.86
Styrofoam_Bouy 4099 1.48
Styrofoam_Box 2733 0.99
Pet_Bottle 41287 14.96
Plastic_Buoy 107386 38.90
Metal 21918 7.94
Plastic_Buoy_China 6017 2.18
Rope 34565 12.52
Net 19149 6.94
Glass 13742 4.98
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 In contrast, a two-stage detector proceeds in two stages: extracting object proposals and then 
using classifiers to verify the class. The two-stage detector is relatively slow, but it has a higher 
accuracy than the one-stage detector. A faster region-based convolutional neural network 
(R-CNN) exemplifies this model and has been utilized in various research areas.(10,11)

 Among the aforementioned models, YOLO has been continually updated. It has been used in 
many studies owing to its excellent performance and ease of use.(12–14) YOLOv5 has nano, 
small, medium, and large sizes, which vary according to the number of parameters in the layers. 
The mean average precision (mAP) is commonly used to evaluate the performance of an object 
detection algorithm. For YOLOv5 small, the “Common Objects in Context” (COCO) mAP@0.5 
is 56.8 and COCO mAP@[0.5, 0.95] is 37.4. Here, “COCO mAP” indicates that the algorithm 
was evaluated using the MS-COCO dataset. mAP@0.5 is the value when the intersection over 
union (IOU) threshold is based on 0.5, and mAP@[0.5, 0.95] is the IOU threshold ranging from 
0.5 to 0.95 with an interval of 0.05 each. The corresponding mAP is averaged. In general, 
mAP@0.5 is used.
 mAP is the average of the APs in a class. The AP is an index used to account for both 
precision and recall; its value is derived from a precision–recall curve and the calculated area 
under the curve. In object detection, precision refers to the class matching accuracy of the 
detected object and recall indicates the number of matched objects in the image.(15) In this study, 
we utilized YOLOv5 to train on marine debris datasets to construct a real-time object detection 
algorithm with a small file size and good precision for an autonomous surface vessel.

2.3 Transfer learning

 The YOLO model was created by learning on the Microsoft (MS)-COCO dataset with 80 
classes, including humans, cars, and animals. MS-COCO is a challenging dataset used to train 
and evaluate commonly used object detection algorithms.(16) Therefore, new learning is required 
to detect marine debris. However, retraining the model configuration requires a long time. A 
method called transfer learning has been used to overcome this problem. 
 In this study, transfer learning denotes extracting the features of marine debris by taking a 
pretrained model and learning only a specific layer, instead of learning the entire network anew. 
If this learned weight is used, a new model can be reconstructed quickly and effectively using 
only a small amount of data. In addition, unbiased results can be obtained through transfer 
learning, as it uses a pretrained model built through a validation dataset rather than learning the 
entire layer using a personal dataset.(17)

 It is essential to set the hyperparameters in transfer learning to successfully train the model. 
A hyperparameter is an exact condition that affects model learning by identifying personal data 
characteristics. The process of optimizing these settings is called fine-tuning and is essential for 
optimizing the model output. Therefore, efforts have been made to identify and configure the 
optimal scenarios among the parameter values significantly impacting learning through fine-
tuning to complete the corresponding model. Among the numerous fine-tuning methods to 
construct an optimized YOLO model, in this study, we attempted to construct optimal 
hyperparameter scenarios using a GA, as GAs are known to have advantages over other 
optimization methods.(18)
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2.4 GA

 Theories of genetics and the evolution of organisms inspired the GA concept. This 
optimization method is based on the ability of organisms to adapt to their environments. This 
principle is based on the fact that when genetic information is transmitted from parents to the 
next generation, the genes of the next generation preferentially transmit genetic information with 
excellent environmental adaptability in each genome. By this mechanism, the algorithm first 
constructs a random set called a population of genomes, selects genes through gene encoding, 
and then continues to create new sets through crossover and mutation. 
 In this way, gene evolution proceeds, eliminating bad hyperparameter scenarios and 
automatically discovering optimal scenarios suitable for the objective function. In the context of 
this study, the hyperparameter set determined by the GA can be used to construct an optimized 
model by transferring marine debris data to the YOLOv5 model.

3. Results

3.1 Optimized hyperparameters

 To optimize the hyperparameters using the GA, the number of generations must first be 
determined. More than 300 generations are recommended.(19) However, the number varies from 
study to study. In this study, we newly configured 29 hyperparameter conditions with optimal 
values through a total of 300 generations. The detected hyperparameter values are shown in 
Fig. 1. Each of the 29 hyperparameter values are visualized and the optimal values are indicated 
with a cross symbol. Figure 1 includes the hyperparameter values obtained from 300 generations 
and the GA fitness function values, which indicate the performance according to those 
hyperparameter values. The hyperparameter values are on the x-axis and the fitness scores are 
on the y-axis. When the y-axis value is considered maximum, the corresponding x-axis value is 
finally displayed as a cross symbol. For example, the momentum in the third position is a tuning 
parameter that can improve the threshold of the gradient descent algorithm. The figure shows 
that the value is adjusted to a value between 0.8 and 0.98, and eventually, 0.956 is selected as the 
optimal value.

3.2 Optimized YOLOv5

 In this study, an optimized model was constructed by training YOLOv5 through the 29 
optimal hyperparameter sets identified by the GA. The YOLOv5 model was divided into four 
categories on the basis of the number of parameters in the layers: nano, small, medium, and 
large. Table 2 shows the comparison of the general YOLOv5 and optimized YOLOv5. The 
performance of each model changes owing to the difference in the number of parameters. In 
mAP@0.5, the figures of YOLOv5 are excellent, and there is no clear performance improvement 
between the general YOLOv5 and the optimized YOLOv5. However, there is an evident 
improvement in the mAP@[0.5, 0.95] values.
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Fig. 1. (Color online) Best combinations from hyperparameter generation with GA.
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 Figure 2 shows the detection of marine debris in a test image. Although complicated and 
entangled, the proposed model can effectively detect marine debris. Furthermore, Fig. 3 shows 
the AP@0.5 values of YOLOv5 small for 11 classes of marine litter. The average mAP@0.5 of 
these values is 0.968.

3.3 Performance comparisons with other models

 Table 3 shows the comparison of the performance characteristics of the four YOLOv5 models 
according to their sizes. The performance of YOLOv5 is compared with that of the SSD as a 
representative one-stage detector and that of the faster R-CNN as a representative two-stage 
detector. 
 The overall detection speed of the YOLOv5 model ranges from 0.8 to 5.0 ms, confirming that 
real-time object detection is possible. In addition, mAP@0.5 ranges from 0.940 to 0.981, and it is 
evident that the model has excellent object detection performance. YOLOv5 nano is a small 
model with only 3 MB; thus, its performance is lower than those of the other models. However, 
this model can be used depending on the application, because it still performs relatively well.
 In comparison with other models, we utilized SSD 512, which has the highest accuracy 
among the SSD models. YOLOv5 is 40 times faster than SSD 512. Although the mAP@0.5 of 
YOLOv5 is similar to that of SSD 512, the mAP@[0.5, 0.95] of YOLOv5 is superior to that of 
SSD 512. Moreover, the YOLOv5 model is much faster than the Faster R-CNN, but not inferior 
in terms of accuracy.

4. Discussion

 In this study, 300 generations were used to construct an optimized YOLO model. The number 
of generations indicates how many generations are required to identify the optimal 
hyperparameters in the process of evolution using the GA. As the numbers of generations and 
combinations increase, the result may or may not be good because the hyperparameter set, 
which is the result obtained through the process, evolves into a random sample. If this method is 
considered a way to obtain an answer close to the optimal solution even if the actual optimal 
solution cannot be obtained, we aimed to see if we could obtain good results. However, there is a 
resource limit, as this approach increases the GPU time. Accordingly, this study was limited to 

Table 2
Comparison of general YOLOv5 and optimized YOLOv5.
Model mAP@0.5 mAP@[0.5, 0.95]
YOLOv5 nano 0.934 0.771
Optimized YOLOv5 nano 0.940 0.788
YOLOv5 small 0.966 0.832
Optimized YOLOv5 small 0.968 0.847
YOLOv5 medium 0.979 0.872
Optimized YOLOv5 medium 0.977 0.881
YOLOv5 large 0.983 0.888
Optimized YOLOv5 large 0.981 0.895
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Table 3
Performance comparison.

Model mAP@0.5 mAP@[0.5, 0.95] Inference File size (MB)

One-stage detector

YOLOv5 nano 0.940 0.788 0.8 ms 3
YOLOv5 small 0.968 0.847 1.3 ms 13
YOLOv5 medium 0.977 0.811 3.0 ms 40
YOLOv5 large 0.981 0.895 5.0 ms 90
SSD 512 0.949 0.799 0.20 s 137

Two-stage detector Faster R-CNN 0.968 0.851 0.24 s 315

Fig. 2. (Color online) Marine debris detection.

Fig. 3. (Color online) Precision–recall curve for mAP@0.5 using YOLOv5 small.
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300 trials. In addition, the GA algorithm with 300 generations was applied to YOLOv5 small to 
obtain the optimal hyperparameters and relearned the model on the basis of the hyperparameter 
set. However, examining the results obtained by applying the GA algorithm to YOLOv5 nano, 
medium, and large is time-consuming. In the future, research should focus on improving the 
model by determining how significant the difference is as the number of generations increases 
and how improved the results are when additional efforts are made to identify the optimal values 
for each model. 
 According to the experimental results, the larger the size of the YOLO model, the better the 
performance. When the optimized hyperparameters were applied to improve each model’s 
performance, the performance improvement was evident in the smaller models with lower 
performance. However, at the same time, considering the size of the model, YOLOv5 large 
weighs 90 MB, and YOLOv5 small weighs only 13 MB. In terms of the difference in accuracy, 
that in mAP@0.5 is 0.013 and that in mAP@[0.5, 0.95] is as small as 0.048. Thus, it is judged 
that YOLOv5 small is effective for mounting in AUVs.
 In this study, we attempted to maximize the use of YOLOv5 small through an optimization 
process. However, this model has some structural limitations. The near-maximal performance 
did not change significantly. For this reason, it will be necessary to create structurally improved 
models in future research by adding model layers. 

5. Conclusions

 The increasing amount of marine debris threatens marine ecosystems. In this study, we 
utilized a YOLOv5 model based on transfer learning from marine debris data to build an AI 
model for marine debris detection. The poor performance of this model observed in previous 
studies resulted from a learning process based on insufficient data and a limited optimization 
process. In contrast, we constructed 29 optimized hyperparameter combinations using the GA 
algorithm and more training data to improve the model’s performance. The experimental results 
in this study demonstrated that the detection performance of the proposed model achieved 
mAP@0.5 of 0.968 and that the model size was suitable for loading into AUVs.
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