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We present the application of time-harmonic finite element techniques to model the 
behavior of CMOS test structures. Our test structures are designed to measure the heat 
capacity of CMOS thin films. The dynamic nature of heat capacity implies a time­
dependent approach for both measurement and simulation. The devices are excited by AC 
heating. A 3-D finite element analysis tool incorporating harmonic time-dependent 
analysis capabilities-has been developed to simulate the behavior of such devices. We 
verify our method by comparing the results of simulations and measurements with the 
device. 

1. Introduction

The characterization of thermal properties of materials is crucial for the design and 
optimization of microsensors. The materials available in standard IC processes are thin 
films to which bulk material parameters do not necessarily apply. Special test structures 
are required to characterize these films. A test structure has been developedCll to measure 
the specific heat of thin films. The specific heat determines the dynamic behavior of 
thermal microsystems; it is therefore important in all time-critical applications. Its 
dynamic nature implies a time-dependent approach for the measurement. In the setup 
presented here, AC heating is applied, and the frequency-dependent response of the system 
is measured. 
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An analytical model0l of the AC response of the structure was developed to extract the 
material properties from the measurement. The validity of this model rests on a number of 
assumptions concerning the form of the temperature field. To verify these assumptions, 
numerical simulations were performed. We have incorporated thermal Ac analysis into 
our finite element framework and calculated the temperature distribution on the device to 
verify if a lumped, one-dimensional model is applicable. 

2. Test Structure

The test structure is shown in Figs. l(a) and l(b). A 200-µm-long freestanding 
cantilever is formed using the dielectric layers. It contains both the gate polysilicon and the 
metallization layer. At the front of the cantilever, a heating resistor made of polysilicon is 
integrated. The resistor contacts four metal lines for accurate determination of dissipated 
power. Eight polysilicon stripes are integrated into the cantilever, running from the heating 
resistor to the silicon support. The contact of these stripes to metal structures at different 
positions allows the temperature to be measured at different points on the cantilever by 
means of the Seebeck effect. The Seebeck coefficient, which relates the temperatures to 

a) 

Thermocouple Contacts 

b) 

Fig. 1. (a) Micrograph and (b) schematic mask layout of the CMOS heat capacity characterization 

structure. The underetched cavity ensures thermal insulation of the protruding beam sandwich. 
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the measured voltages, has been determined separately.(2) The device is operated under 
vacuum, forcing the heat to flow only along the cantilever into the substrate. When the 
heater is fed with a sinusoidal current, temperature oscillation occurs in the heater. This 
oscillation propagates along the cantilever. Because the thermal time constants are short in 
such a small system, it is possible to obtain sinusoidally varying temperatures with 
frequencies in the range of 100 Hz. The amplitudes and phases of the oscillations are 
measured at the four thermocouple contacts. The temperature distribution depends on the 
frequency, the thermal conductivity, and the heat capacity of the materials. The thermal 
conductivity is extracted from a static measurement, and the heat capacity is evaluated 
from AC results. 

3. Analytical Model

The governing equation for thermal effects is the heat transfer equation, which is given 
by(3) 

a 
c(x)-T(x,t)-V ·(K"(x)VT(x,t)) = P(x,t) , 

dt 
(1) 

where T(x,t), P(x,t), c(x), K(x) and t denote the temperature distribution in time and space, 
the density of the heat power source, the volumetric heat capacity, the heat conductivity 
tensor and the time, respectively. Furthermore, conditions must be specified on the 
boundary of the solution domain. We apply frequency domain analysis to this problem. 
Assuming that all heat sources and boundary conditions vary sinusoidally in time, the 
temperature varies sinusoidally as well (i denotes � ): 

P(x,t) = P(x)eiwt 

T(x,t) = T(x)eiwt 

From eq. (1), a complexly valued partial differential equation is obtained: 

c(x)icoT(x, co)-V · ( K"(x)VT(x, co))= P(x, co). 

(2) 

(3) 

(4) 

The complex temperature distribution is time-independent, and the complex value at each 
point in space gives the phase and amplitude of the temperature oscillation. If no heat 
sources exist inside the solution domain and the heat capacitance and thermal conductivi­
ties are constant in the domain, the equation has the following analytical solution for a one­
dimensional geometry: 
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(5) 

where A and B are complex integration constants determined by the boundary conditions, 
and f3 is given by 

(6) 

The solution has the form of an exponentially damped thermal wave. The damping length 
is proportional to the square root of the thermal diffusivity, i.e., the ratio of the specific heat 
and the thermal conductivity. Note that this simple model is restricted to a device where the 
temperature and phase distribution vary in one dimension only. The test structures were 
designed in view of the application of such a one-dimensional model. To check if this 
assumption is valid for the test structure, a full, 3-D numerical analysis was performed. 

4. 3-D Numerical Simulation

To solve the heat transfer equation numerically, a spatial discretization is necessary. 
We use the finite element method, but the approach presented here is valid for other 
discretization schemes. A discretization method transforms the partial differential equa­
tion into a set of ordinary differential equations; in the case of linear heat conduction, the 
resulting equation is:<3l 

d 
Ku(t) + M -u(t) = f (t) 

dt (7) 

where Kand M denote the real, symmetric, positive definite conductance and capacitance 
matrices, u, the vector of the temperatures at the finite element nodes,!, the heat source and 
boundary condition terms, and t, the time. To solve this system of ordinary differential 
equations, frequency domain or harmonic analysis may be used the same way as for the 
continuous case. Assuming harmonic time-dependence of all sources and temperatures, 
i.e.,

f(t) = f(w)eiwt 

u(t) = u( w )eiwt '

a complex, linear algebraic equation system 

Ku(w) + imMu(w) = J(w) 

(8) 

(9) 

(10)
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is obtained, where the vector u now denotes complex quantities at the node points, 
specifying the amplitude and phase of the harmonically varying temperature. For each 
distinct frequency, a complex linear equation system must be solved. We now write the 
solution and the excitation in terms of their real and imaginary parts: 

u( OJ)= u, (OJ)+ iui (OJ) 

/(OJ)= /,(OJ)+ i/JOJ). 

We insert eq. (11) into eq. (10) and separately collect the real and imaginary parts, 

(11) 

(Ku,( OJ)+ OJMui (OJ))+ i( Kui (OJ)+ OJMu, (OJ))= f ,(OJ)+ ifi (OJ) (12) 

yielding a real, nonsymmetric linear equation system of double size: 

[K - OJM][u'] = [/'] 
OJM K u; Ji 

(13) 

This system is solved by a standard linear solver for real, nonsymmetric linear equations. 
Using this technique, frequency sweeps are simi.iiated. In principle, it is possible to 
calculate the response of the system to any given signal using Fourier transformation. The 
harmonic method has been)mplemented into our finite element framework, and calcula­
tions have be,en made on a model of our heat capacity characterization device.

5. Results

Two different designs of the measurement structure were simulated. In the first 
structure, termed the reference device, the entire top is covered by the metallization. In the 
second structure, termed the stripe device, the metal area is reduced to 6-µm-wide stripes 
separated by 14 µm. The cross-sectional areas of metal and dielectrics are therefore 
different in these two devices. Comparison of the two structures allows the separation of 
the thermal properties of the dielectrics and the metallization. 

The 3-D finite element model of the reference device was constructed and is shown in 
Fig. 2. The thermal conductivity and heat capacity were deduced from measurements 
using the one-dimensional analytical model described in ref. (1). These material param­
eters were used to pe1form a 3-D simulation. The temperature field was examined for 
uniformity across the cantilever. The amplitude and phase varied less than 0.3% and 0.2°, 
respectively, along any cut perpendicular to the heat flow. Therefore, the conditions for 
applying the one-dimensional model were satisfied. In the next step, the simulations were 
compared with the measurements. Figures 3(a) and 3(b) show the frequency-dependent 
temperature amplitudes and phases at the thermocouple contacts. The agreement between 
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Polysilicon Stripes Metal Cover 

Symmetry Plane 

Fig. 2. Finite element model of the device shown in Fig. 1. The mesh corresponding to the 

dielectric layers has been removed to reveal the inner structure. The symmetry plane represents a 

homogenous Neumann boundary condition. The extremities of the silicon wafer are kept at ambient 
temperature by a Dirichlet boundary condition. Because the device is operated in vacuum, the cavity 

is not included in the simulation. 

g 
3 

� 2 
C. 
E 

(a) <C

I!!

E 

{!!. 
0 800 1600 

Angular Frequency [s"1]

45' 

..... 
...... 

• • • Measurements
Q) 

30' 

(b) 
CL 

Q) 

i 15'
"iii 
a: 

o·
0 800 1600 

Angular Frequency [s"1]

Fig. 3. Simulation results (solid lines) and measurements (dots) at each thermocouple contact. (a) 

Temperature amplitude and (b) phase for a harmonically varying beam tip heating power, P(t) = ei'J)t· 
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simulation and measurements is excellent for the reference device. This confirms that 

extraction of thermal parameters using the one-dimensional model is sound for this 

structure. 
Second, a finite element model of the striped device was created and is shown in Fig 4. 

The temperature field was simulated at m = 750 s-1
, which is the largest frequency used in 

the measurements. The temperature phase along a cut perpendicular to the heat flow is 

shown in Fig. 5. Here, uniformity is broken, and the phase varies considerably across the 

cantilever. The temperature in the regions of the cantilever where no metal is present lags 

behind that measured at the contacts. The one-dimensional model is therefore not 

applicable to this device. To minimize the observed effect, the design of the device must be 
modified. 

Fig. 4. Finite element model of the striped metal device. The dielectric layers have been removed 
to show the inner structure. Apart from the patterned metal layer, the mesh and boundary conditions 

correspond to those of Fig. 2. 
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Fig. 5. Simulation results for the phase of the temperature for a fixed angular frequency of 750 s -1•

The nonuniforrnity in the phase across the device caused by the metal stripes is clearly visible. 
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The analysis method presented here is applicable to three further CMOS micromachined 

microsystems currently under development in our laboratory: an ultrasound resonator,(4l an 

electrical power converter(5l and an infrared detector. C6l A common feature of the first two 

systems is harmonic thermal excitation using an AC heating current. The latter system is 

heated using time-varying infrared radiation. 

6. Conclusions

Harmonic modeling and simulation methods have been applied to characterize heat 

capacity measurement structures. The simulations were compared with measurements 

from an actual device and showed excellent agreement for one of the structures. Through 
simulation, it was shown that for the modified, nonuniform structure, 3-D effects must be 
considered and the design must be adjusted. The method described can be rapidly 
implemented in existing finite element software and is applicable to a wide range of 
thermally excited microsensors and actuators. 
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