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The modeling of an electrostatically tunable microgyroscope is presented. The main 
structure of the rnicrogyroscope developed consists of two micro-suspended plates driven 
by electrostatic combs in the antisymmetric tuning-fork mode. The natural frequency of 

the plates in the direction normal to the comb driving direction is tunable to match the 
frequencies of the gyroscope. Modeling and derivation of the dynamic properties of the 
model are discussed. The issues in this process are those commonly associated with the 
modeling and simulation of MEMS' devices. 

1. Introduction

Considerable work has been carried out on developing surface-micromachined reso­
nant microgyroscopes.c 1

,
2J Surface-machined microgyroscopes have attractive features 

such as low manufacturing cost, small size, relatively high performance and low power 
consumption. The drawback is their dimensional inaccuracy compared with the device 
size due to rnicromachining enors inherent in the etching processes. Therefore the natural 
frequencies of such devices tend to drift away from designed values. Attempts have been 

made to come up with designs in which the effective stiffness of the device structure is 
modified using fringing-field forces.<3•

4> 
In the rnicrogyroscope described herein, the effective stiffness, and thus the natural 

frequency is tuned by electrostatic forces between two parallel plates. To design the 
device, a simple and effective model of the micro gyroscope is developed. The structure of 
the microgyroscope has several distinctive features. The calculation of the stiffnesses and 
dampings of the gyroscope structure is discussed in detail. 

*To whom correspondence should be directed.
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2. The Tunable Microgyroscope

The features of the microgyroscope are as follows: 

a. It has a surface micro-machined poly-Si structure.
b. It is driven by electrostatic combs.
c. It detects changes in capacitance due to an induced Coriolis force.
d. The natural frequency of the out-of-plane motion of the plate is tunable.
Figure 1 shows the schematic diagram of the microgyroscope. The two plates are

driven in the antisymmetric tuning-fork mode by electrostatic combs. When the input 
angular rate Q is imposed on the device and the plates are excited, Coriolis forces are 

developed that push the plates in opposite directions toward or away from the substrate 
electrodes. These motions change the capacitances in the gaps between the plates and the 
bottom electrodes on the substrates. 

The term Vv in the diagram is the comb drive voltage. The effective stiffness of the 
structure in the z-direction can be adjusted by the voltage Ve, which is applied between the 
plate and the bottom electrode and develops an electrostatic force pulling the plate toward 
the bottom electrode. The large holes in the plates reduce the inertia and improve the 

release etch of the sacrificial layer. Figure 2 shows a SEM picture of the manufactured 
microgyroscope. 

3. Mechanical Model of the Microgyroscope

Only half of the structure of the microgyroscope is modeled since both halves are 

symmetrical. Figure 3 shows a simple mechanical model of the structure assuming that the 
plate oscillates only in a translational mode. 

Because the plate is much stiffer compared to other parts of the structure, it is modeled 
as a rigid mass. The stiffnesses and dampings of the structure are modeled by the dampers 

z� 
X 

Plate Mass 

Fig. 1. Schematic diagram. 
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Fig. 2. SEM picture of the manufactured micro gyroscope. 
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Fig. 3. Mechanical model of the microgyroscope. 
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and springs in the x- and z-directions. The electrostatic force developed by the voltage Ve 

applied between the plate and the bottom electrode is modeled by a nonlinear spring. 

The presence of the nonlinear spring changes the stiffness of the structure in the z­
direction. When the initial gap d0 between the plate and the electrode is reduced to d due to 

the Coriolis force induced by the external angular velocity in addition to the applied 
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electrostatic force, the force developed in the mechanical spring becomes.fz_s
p
ring 

= kz(d0-d). 
Then the electrostatic force or the force developed in the nonlinear spring becomes 

f z,spring = -½ EA Vz. I d2 . A is the area of the plate surface facing the electrode on the

substrate, and Eis the permeability. 
Static equilibrium is achieved when the magnitudes of the two spring forces are the 

same. In the absence of the Coriolis force, the spring constant k,.e1,c, of the electrostatic 
force at the equilibrium position is defined by the equilibrium condition as kz.elec, = 2kz.spril,g 
(dofd,q-1) Small amplitudes of oscillations are considered. We obtain the effective 
stiffnesses of the nonlinear spring in the z-direction as 

Therefore, the effective stiffness in the z-direction becomes 

f z,ejfect = kz,spring - kz,elect 

do 
= kz,spring (3 - 2-)

deq 

The control voltage can also be determined from the equilibrium relation 

as 

(1) 

(2) 

(3) 

Due to the change in the effective stiffness in the z-direction, the natural frequency in the 
dirnction also changes to 

R(J)z,ejfect = (J)z,spring , 
q 

(4) 

where Wz,spring 
is the natural frequency of the structure in the z-direction in the absence of the 

applied electrostatic force. 
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4. The Equations of the Motion

The equations of motion of the plate in the x- and z-directions are, respectively,

m/i + cx .x + kxx = fo sin mt 

mz2 + czz + kzz = f c. 

417 

(Sa) 

(Sb) 

The effective mass of the plate in the z-direction is slightly larger than that in the x­
direction. 

In the preceding equations,f0is the magnitude of the electrostatic force developed in the 
comb due to the comb drive voltage Vv = Vd + V

p
sinmt and can be expressed as 

(6) 

where Cv is the total capacitance of the comb. Also fc, the Coriolis force induced on the 
plate due to the external input rotational velocity Q of the structure, is expressed as 

fc =-2mf2z. (7) 

The plate is driven by the electrostati�.f-orce developed in the comb, and the motion in 
the x-direction can be determined when it is used in eq. (Sa). The plate is driven in the z­
direction by the Coriolis force, which can be determined from Q and the solution x from 
eq. (Sa). It is modeled as eq. (Sb), the solution of .which is 

(8) 

where Rx and R, are the magnification factors in the x- and z-directions respectively, <Px and 
</), the phase lags due to structural dampings in the corresponding directions, and co,,, is the 
natural angular velocity. When the·natural frequencies in the x- and z-directions are the 
same, the magnitude of z is maximized. 

Once the solution is known, the sensitivity of the capacitance in the rnicrogyroscope 
can be calculated using the following relations: 

and 

t:..C = & Jc 1 
Q Q dz 

z-d,q 

JC 
t:..C=&-lz=d Jz 

eq 

(9a) 

(9b) 
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5. Calculation of Structural Properties

The calculation of the stiffnesses of the structure in the x- and z-dir�ctions can be
carried out in a straightforward manner. The stiffness in the x-direction kx can be 
determined by considering the four arms supporting the plate as Euler beams as shown in 
Fig. 4. As presented in Fig. 4, the four arms that connect the plate to the side support beams 
are very flexible compared to other parts. Therefore, they can be assumed to act as Euler 
beams while the other parts are assumed to be rigid. For the calculation of the effective 
stiffness in the z-direction, we need to know the pure structural stiffness. The behavior of 
the device in the z-direction illustrated in Fig. 5 is not as simple as the case in the x­

direction. 
The whole structure is modeled with finite elements and the stiffness is calculated using 

the finite element model. The effective stiffness can be obtained from eq. (2). 
The most difficult part of the analysis is to calculate the damping coefficients. In the 

calculation of damping coefficients, air is assumed to be a viscous fluid. · The in-plane 
damping, or the damping in the x-direction, is expressed as follows when a uniform 
velocity gradient in the gap between the plate and the bottom electrode is assumed: 

(10) 

where µ is the viscosity of the air, h is the gap size, and A is the surface area of the plate. 
Of course, this model may be too simple to represent the actual situation. When the 

small oscillations are involved, it could give reas2nable results. Otherwise the velocity 
field of the surrounding fluid must be compute¢ 'from the Navier-Stokes equation to 
calculate the viscous drag damping force. However, for a low viscosity fluid like air, 
slipping occurs and the normal component ofthe velocity vanishes on the surface. 

For the calculation of the out-of-plane damping or damping in the z-direction, a squeeze 
film model is adopted. Figure 6 depicts a plate with holes. As the plate moves in the 
direction normal to the plane, the air between the plate and the bottom electrode is squeezed 
and flows out through the holes. When the fluid inertia and dilatational stresses are 
neglected and small Reynolds number is assumed, the generalized Reynolds equation 
becomes 

V2p = 121!:_h 
h3 ' (11) 

where p is the gage pressure of the air in the gap. 
Having large holes in the plate provides a big advantage, for when there are no such 

holes, the air must escape the gap through the sides of the plate. As the frequency of the 
motion of the plate increase, the air trapped in the gap does not have enough time to 
respond and thus acts like a spring. The big holes prevent the air from acting like spring 
and at the same time allow excellent release etch of the plate. 
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Fig. 4. In-plane motion of the plate. 
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Fig. 5. Out-of-plane motion of the plate. 
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Fig. 6. Squeeze film model for the damping coefficient C,. 
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As shown in Fig. 6, only a representative portion of the plate is taken as the problem 
domain. The underlying assumption is that most of the air escapes through these holes 
when compressed. The size of the squeeze hole is denoted by b and the size of the domain 
by a. Boundary conditions are 

p=O (12a) 

on the sides of the hole and 

(12b) 

on the rest of the boundary of the domain. 
The solution p is calculated using a finite element method with eq. (11) and the 

boundary conditions in eq. (12). Once the pressure field is obtained, the damping 
coefficient Cz can be calculated as 

c
)
i= J

n
pdQ 

= fz,Res · 
(13) 

To investigate the effect of hole size on damping, two dimensionless parameters are 
defined as 

and 

a=bla 

D 
- (h!a)4 

Jae - fz,Res 
µhh 

(14) 

(15) 

The value of Dfac is calculated and plotted for different values of a and is shown in Fig. 
7. When the hole size is known, Dfac can be obtained from the plot. Then the damping
coefficient can be calculated from the eqs. (13) and (15) as

h 
C =µD N---z Jae 

(hf a)4' 
(16) 

where N is the number of the holes of the plate. The plot in Fig. 7 is very useful for 
determining the effects of hole size and gap width on the damping coefficient. 

The dampings in the x- and z-directions determine the amplitude of the response in the 
z-direction. The dampings in both directions are functions of the viscosity of air. There-
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Fig. 7. Dimensionless parameter for the hole size. 
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fore, the motion in the z-direction in eq. (8) can be explicitly expressed as a function of the 
air viscosity. The dampings in eqs. (10) and (16) are expressed as constants times the 
viscosity of air for a fixed hole size. 

(17a) 

h 
cz = µC2, C2 = DfacN 

(h I a)4 (17b) 

Rx= Rx(cx) 
= Rx(µ)

Rz = R/cz) = R2
(µ) (17c) 

As a result, one can write 

(18) 

The actual microgyroscope is driven under very low air pressure. Therefore, once the 
relation between the viscosity and the air pressure is known, z can be easily predicted using 
eq. (18). 

In fact, as the pressure decreases, the molecular mean path becomes larger, so the 
rarefied air cannot be treated as a continuum. The air flow under low pressure cannot be 
considered as a continuum, and is called slip flow. Recently, Veijola et af.C5l presented a 
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model that includes the damping and spring force created by the squeezed air film. 
Under low .pressure, the flow in a narrow gap can be expressed using the effective 

viscosity µ,ff as 

'(19) 

whereµ is the viscosity, Kn= }Jd is the Knudsen number, dis the gap width, and ,'.l is the 
molecular mean free path. The mean free path ,'.l is inversely proportional to pressureC6l 

,'.l = Po ,'.l 
p 

o, (20) 

where P0 is a reference pressure and� is the mean free path at pressure P0• The mean free 
path� is 70.0 ± 0.7 nm when the pressure P0 is 1 atm. 

Figure 8 shows the effective viscosity using the function f(Kn ) = 9.683K�.159 pre­
sented by Veijola et al. cs) Once the relation between vjscosity and ambient air pressure is 
obtained, the output displacement of eq. (18) induced by the external angular velocity can 
be evaluated for the specified dimensional parameters. To achieve the targeted sensitivity, 
it is necessary to determine the value of ambient air pressure using the relations discussed 
above. The sensitivity of the microgyroscope depends on the value of the viscosity of the 
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Fig. 8. Effective viscosity coefficient for values of different pressure. 
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ambient air pressure under which the rnicrogyroscope operates. For the desired specifica­

tion of this design shown in Table 1, the calculated value of ambient pressure was 0.001 

atm. 

6. Results and Discussions

Table 1 shows the predicted performance of the microgyroscope using the model 

discussed. Fabrication errors, however, change the designed dimensions. The effects of 

fabrication errors can be controlled by the tuning process using the control voltage. In that 
case, the driving voltage VD and the pressure also need to be changed to obtain adequate 

sensitivity to the external angular velocity. Thus, the designed specifications of the 
rnicrogyroscope deviate from the designed values. 

In our fabricated microgyroscopes, the final working frequency has been tuned to 5.8 

kHz at a control voltage of 2 V. The driving voltage is increased to an AC drive voltage of 

2 V with a DC bias voltage of 3 V at a pressure of 0.00013 atm. The frequency-tuned 

rnicrogyroscope has been tested on the rate table. Figure 9(a) shows the unmodulated 

detected signal of 160 m V -P-P under an input angular velocity .Q = 0° /s, and Fig. 9(b) 
presents the detected output signal of amplitude 20 m V -P-P for Q = 50°/s atf = 4 Hz. The 

detected signal in Fig. 9(b) represents an amplitude modulation of the carrier frequency ,.fc 

= 5.8 kHz, and the input angular velocity frequency f = 4 Hz. 

Table 1 
Design values of the system variables. 

System variables 

Spring width 
Thickness 
Initial gap do 
Gap at equilibrium deq
Plate mass, mx 
Effective plate mass in z, m

2 

Stiffness kx 
Effective stiffness in z, k, 

Working frequency 
Control voltage V c 
Driving voltage Vv 
Sensing range 
Linearity 
Sensitivity C/ Q 
Working pressure p 

Designed values 

3µm 

6µm 
2.lµm
1.78 µm
2.43 µg
2.57 µg
2.42M/m
3.89 Nim

5.0 kHz
2.3 V
1.5 ± 1.5 sincot V
± 180 deg/s
1 %FS
1.2fF/(deg/s)
0.001 atm
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Fig. 9. Output of the frequency-matched microgyroscope (fc = 5.8 kHz). 

7. Conclusion

Dynamic modeling of a surface-machined microgyroscope and practical issues in the 
modeling have been discussed in detail. In particular, the modeling of dampings was 
treated in detail. The ideas and procedures presented can be effectively adopted in the 
design of similar MEMS devices. 

The following fundamental questions can be raised. The material properties of Si 
depend on the fabrication processes, and therefore exact values are unknown in the design 
stage. Regarding the calculation of damping, several issues must be very carefully treated. 
The surface roughness of the etched surface of the plate is quite significant compared with 
other dimensional scales of the structures. Therefore, the validity of the model used in the 
calculation of dampings should be carefully checked. The working air pressure of the 
microgyroscope is very low. Therefore, material damping cannot be totally neglected. To 
clarify these issues, well-designed experimental studies are required. 
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