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 Industrial environments frequently encounter complex time-series data such as machine 
vibration patterns, motor thermal imaging, and sensor pressure metrics. Equipment failure 
prediction grapples with the temporal nature of the data and the challenge posed by minority 
failure instances. In this paper, we introduce a refined generative mechanism, building on the 
foundation of the Wasserstein generative adversarial network (WGAN) and the borderline 
synthetic minority oversampling technique (Borderline-SMOTE). By utilizing time-series 
features, the proposed method effectively addresses the intricacies of predictive modeling. To 
demonstrate its efficacy, we used a complex and multisensor hydraulic system dataset for 
validation. Experimental results indicate that the proposed method outperforms existing 
strategies, enhancing the F1 score by at least 2.21% and achieving a recall rate of 95.51%. This 
suggests a promising direction for enhancing fault prediction in complex industrial settings.

1. Introduction

 In manufacturing and production workflows, precise forecasting and identification of 
machinery malfunctions are vital for preventing unanticipated operational interruptions and 
maintaining uninterrupted processes. However, the stark minority of failure data frequently 
results in an imbalance between normal and failure datasets,(1) thereby rendering the 
development of dependable predictive models considerably challenging. Furthermore, the 
majority of accessible data comprise complex time-series information,(2) such as machine 
vibration patterns, motor thermal imaging, and sensor pressure metrics, thereby amplifying the 
challenges associated with attaining accurate predictions.
 In response to these multifaceted challenges, we introduce a novel approach termed the time-
series-based equipment failure diagnosis mechanism in the context of minority failure samples 
(TS-DMMF). The proposed method aims to enhance the accuracy and reliability of equipment 
failure prediction and diagnosis, despite the constraints of limited and intricate data.
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 Over the past few years, the field of imbalanced data research has focused on two primary 
approaches: imbalanced learning and data generation.(3) The first approach, imbalanced 
learning, encompasses various techniques designed to address class imbalance. One of the most 
prominent methods in this category is the synthetic minority oversampling technique 
(SMOTE),(4) which generates new synthetic samples within the feature space of minority class 
instances instead of merely duplicating existing minority samples. Several variants of SMOTE 
have been proposed, including Borderline-SMOTE, wherein a variation generates samples close 
to the decision boundary. Furthermore, there are numerous other adaptations, such as SMOTE 
for Nominal and Continuous attributes (SMOTE-NC) for handling mixed data and support 
vector machine (SVM)-SMOTE for improving synthesis accuracy.(5) Another type of algorithm 
enhances the importance of the minority class by increasing their weights.(6–8) Lastly, few-shot 
learning aims to capture the differences between classes from an extremely limited amount of 
training data, enabling models to effectively recognize and classify samples from new 
categories.(9) The second approach is data generation, which has gained popularity owing to the 
rapid development of deep learning research. Data generation, particularly through generative 
adversarial networks (GANs), creates synthetic minority class samples with similar feature 
distributions, improving the recognition ability of machine learning algorithms for minority 
class samples and enhancing classification performance. The generator’s goal is to produce 
seemingly authentic synthetic data, while the discriminator’s goal is to distinguish between real 
and synthetic data. By alternately training the generator and discriminator, the generator learns 
to create increasingly realistic data.(10–12) In recent research, a hybrid generative model has been 
developed by combining the advantages of both GANs and SMOTE.(13,14)

 Equipment failure data predominantly comprises time-series data; therefore, it is crucial to 
consider this type of information during data generation to prevent the loss of temporal features. 
To effectively characterize the cyclical variations in time-series data, an automated approach for 
feature extraction from cyclical time-series data has been employed, encompassing various 
aspects such as statistical features, frequency domain features, and shape-based features.(15,16) A 
parallel feature extraction strategy based on sliding windows has been implemented for time-
series feature extraction, facilitating the efficient processing of large-scale time-series data.(17,18) 
Furthermore, certain studies have integrated data generation with time-series features, thereby 
enhancing the efficacy of generating minority samples in time-series data.(19)

 This paper’s primary contribution focuses on designing a time-series-based mechanism for 
generating minority equipment failure data. The proposed mechanism encompasses two stages. 
Initially, we amalgamate multiple time-series feature generation methodologies to establish an 
appropriate time-series feature extraction technique specifically designed for equipment failure 
data. Subsequently, considering the inherent constraints of Wasserstein GAN (WGAN),(20) 
which necessitates a substantial volume of equipment failure data for its generator, we 
incorporate the Borderline-SMOTE approach to synthesize the required data for the generator 
and employ authentic equipment failure training data for the validation of the discriminator. This 
strategy effectively addresses the limitations associated with both Borderline-SMOTE (i.e., 
excessive similarity in the synthesized data) and WGAN (i.e., constraints that require large 
amounts of data to synthesize). We have compiled the advantages and disadvantages of relevant 
generative literature in Table 1.
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 The remainder of this paper is organized as follows. In Sect. 2, we introduce the framework 
for generating minority class data in time series. In Sect. 3, we focus on the experimental design 
and comparison with similar models. In Sect. 4, we conclude the paper by summarizing its 
contributions and outlining future research directions.

2. Materials and Methods 

 In this section, we introduce a mechanism that addresses the issue of equipment failure 
prediction in the context of imbalanced time-series data. The research framework comprises 
three parts: first, data collection and time-series data extraction; second, the process of 
generating minority data; and finally, model prediction. The proposed TS-DMMF framework is 
shown in Fig. 1.

2.1 Data collection and time-series feature extraction

 In this study, we amalgamate methodologies from the literature(15,16,21–23) to execute 
automated feature extraction on time-series data. This extraction includes statistical features, 
frequency domain characteristics, and autoregressive features, among others. A sliding-window-
based parallel feature extraction strategy is implemented to efficiently process large-scale time-
series data. We summarize the commonly used time-series features for equipment failure 
diagnosis in Table 2.

2.2 Minority data generation process

 The scarcity of equipment failure data presents significant challenges in generation. 
Therefore, we have designed a mechanism for generating minority failure data samples, ensuring 
both diversity and accuracy. The process of generating minority class data is illustrated in Fig. 2.
 The generation process comprises three steps. First, time feature data train the Borderline-
SMOTE model, creating boundary samples between normal and abnormal categories. These 
boundary samples are capable of more effectively differentiating between normal and fault 
categories. Second, we train the WGAN generator using the fault samples generated by 
Borderline-SMOTE and the real failure samples. The generator, capable of synthesizing samples 
from diverse distributions, and the discriminator, which filters the generated samples, ensure the 
representativeness of the samples. Third, the generated data is merged with the real data, 
forming a balanced training dataset representing both normal and failure categories.

Table 1
Analysis of literature related to data generation.

Accurate generation 
of minority data

Diversified 
generation of 

minority class data
Mixed-type data Considered time-

series data

WGAN(20) No Yes No No
Borderline-SMOTE(4) Yes No No No
SmoteNC-ctGAN(13) Yes Yes Yes No
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Fig. 1. (Color online) TS-DMMF framework.

Table 2
Analysis of related literature on time-series features.
Category Feature Description

Time-domain features

Number of peaks Evaluates the count of peaks with a minimum 
support of n within the time series

Sum of values Computes the cumulative sum of values 
across the time series

Mean Returns the arithmetic mean value

Minimum  Identifies the smallest value in the time 
series

Maximum Identifies the largest value in the time series.
Standard deviation Reports the standard deviation.

Skewness
Determines the sample skewness, calculated 

using the adjusted Fisher–Pearson 
standardized moment coefficient G1.

Kurtosis
Determines the kurtosis, calculated using 
the adjusted Fisher–Pearson standardized 

moment coefficient G2.

Autoregressive 
features Benford correlation

Beneficial for anomaly detection tasks, 
offering the correlation derived from the first 

digit distribution when applied

Frequency-domain 
features

Number of  continuous wavelet transform 
(CWT) peaks Quantifies the distinct peaks using CWT

CWT  coefficients Computes the CWT for the Ricker wavelet, 
also known as the "Mexican hat wavelet."

Fast Fourier Transform (FFT) aggregated
Presents the spectral centroid (mean), 

variance, skewness , and kurtosis of the 
absolute Fourier transform spectrum.

-

-
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2.2.1 Borderline-SMOTE

 In this study, Borderline-SMOTE is utilized.(5) Traditional SMOTE techniques may generate 
extraneous and ambiguous samples, which can blur the boundaries of classification. In contrast, 
the Borderline-SMOTE approach selectively synthesizes instances located on the borderline. 
Consequently, this results in synthesized data that better delineates classes, thereby enhancing 
the recognition capability for minority classes.(12) The approach is as follows.
 Determination of Neighbors for Each Minority Class Sample: A k-NN algorithm is employed, 
where k is typically set to 5, to identify the k closest neighbors for every minority class sample. 
Here, z symbolizes the samples within the minority class.
 Minority Class Samples Classification into Three Categories (Safe Sample, Boundary 
Sample, and Noise Sample): For a specific minority class sample z, let m represent the count of 
majority class samples among its k neighbors. If m == k, the sample is categorized as a noise 
sample. If 0 < m ≤ k/2, it is considered a safe sample. If k/2 ≤ m < k, it is classified as a boundary 
sample. The boundary sample set is X = {x1, x2, ..., xn}.
 Synthesis of New Samples: For the boundary sample X, its k neighbors are considered. From 
these neighbors, a subset of t samples is randomly selected, subject to the constraint t < k and 
typically set as t = k/2. This sample subset, defined as S = {s1, s2, ..., sn}, facilitates the 
computation of the novel minority sample X_new. Equation (1) is the calculation formula of 
X_new.

Fig. 2. Process of generating minority class data.

-
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 X_new = x + r * (x − s) (1)

Here, the variable definitions are as follows:
• r: a random scalar in the range between 0 and 1,
• x: the designated boundary sample,
• s: the set of neighboring samples corresponding to x.
 Borderline SMOTE employs a boundary detection approach for sample synthesis, as 
illustrated in Algorithm 1.

2.2.2 Wasserstein GAN

 The WGAN introduces an innovative solution to lessen the complexities associated with the 
training of standard GANs and circumvent the prevalent issue of mode collapse.(20)  The WGAN 
adopts a distinctive structure for sample synthesis as demonstrated in Algorithm 2. 
 The objective function of the discriminator forms the fundamental difference between a 
conventional GAN and a WGAN. In a conventional GAN, the discriminator is guided by the 
binary classification of real and synthesized samples. Conversely, the WGAN discriminator 

Algorithm 1: Borderline-SMOTE Algorithm (Pseudocode)
Input: Minority class time series feature data z, Number of nearest neighbors k
Output: Generate new minority class samples ListNew
1. for each sample i in minority class samples z:
2.  Identify the k nearest neighbors for i using k-NN algorithm
3. for each sample i in minority class samples z:
4.  Let m be the number of majority class samples among its k neighbors
5.  if m == k:
6.   i is a noise sample
7.  else if 0 < m <= k/2:
8.   i is a safe sample
9.  else if k/2 <= m < k:

10.   i is a boundary sample

11.   for the boundary samples X = {x1, x2, ... ,xn}, find their k nearest neighbors and randomly select t 
samples from k neighbors. This sample subset, defined as S = {s1, s2, ... ,sn}

12.   Generate new minority class samples using Eq(1) where r is a random number between 0 and 1.
13.   Add X_new to ListNew
14. return ListNew

Algorithm 2: Wasserstein GAN Algorithm (Pseudocode)
Input: Real fault data x ~ Dr, synthetic fault data y ~ Ds, discriminator D, generator G, learning rates α1, α2
Output: Trained generator G and generated samples X_new
1. Initialize an empty list X_new to store generated samples
2. for each training iteration:
3.  for each step of discriminator:
4.   Sample real data x and noise z
5.   Update D by gradient ascent using x and G(y) to minimize the EM distance using Eq(2)
6.  Sample noise z
7.  Update G by gradient descent using D(G(y))
8.  Generate new sample X_new = G(y)
9.  Add X_new to ListNew

10. return ListNew
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employs the Earth-Mover (EM) distance between real and synthesized sample distributions as 
its objective function. As a result, the learning task for the WGAN discriminator evolves into a 
regression problem.(24) The EM distance is defined using Eq. (2).

 ( ) ( ) ( ), , ~, inf Dr Ps x yW Dr Ds E x yγ γ∈Π  = −   (2)

Here, the variable definitions are as follows:
• The symbol inf denotes the infimum (greatest lower bound).
• The set Π(Dr, Ds) denotes the set of all joint distributions γ(x, y) whose marginals are Dr and 

Ds, respectively.
• The symbol ||x – y|| denotes the L1 norm (Euclidean distance) between x and y.
• The expectation ( ), ~x yE x yγ  −  is taken over samples (x, y) drawn according to the joint 

distribution γ(x, y).
 The Wasserstein distance represents the minimum mean distance required to shift the mass 
from one distribution to another, considering the distance as the Euclidean distance between 
data space points. Often referred to as the EM distance, it can be intuitively comprehended as the 
minimum expenditure of converting one pile of earth (distribution) to another, where the cost is 
a function of the quantity of earth moved multiplied by the distance it is moved.

2.2.3 Data combination

 In this study, the aim is to reach a balance between fault and normal operation data using 
synthetic and real fault data. Total data in this research originate from two distinct sources: real 
data and WGAN generated fault data. The data combination process is illustrated in Algorithm 
3.

2.3 Model learning and applications

 To validate the efficacy of the proposed method, it is applied to equipment failure prediction 
and diagnosis. The aim is to measure differences in predictive performance between the 
unprocessed original dataset and the newly synthesized dataset. There are two types of 
equipment fault prediction. One is binary classification, where we distinguish between faults 
and non-faults in the fault diagnosis results. The other is multi-class classification, which 
classifies diagnosis results into various fault modes based on different faults. As equipment, 
operation data are often limited in quantity and not ideal for deep learning methods; in this 
study, we chose the popular CatBoost Classifier method.

Algorithm 3: Data Combination (Pseudocode)
Input: Real failure data R, Wasserstein GAN synthesized failure data W_new
Output: Balanced failure dataset T_new
1.  Add R and W_new to T_new
2. return T_new
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2.3.1	 CatBoost	Classifier	and	Optuna

 CatBoost is an ensemble-learning algorithm that stems from the gradient boosting decision 
tree.(25) By deploying an ordered boosting strategy and a greedy algorithm, it efficiently 
addresses issues related to iterative gradient descent, thereby mitigating the risk of overfitting. 
To enhance model precision and overall performance, we incorporated Optuna for 
hyperparameter optimization.(26)

2.3.2 Model evaluation

 The accuracy of equipment fault prediction is paramount in the evaluation metrics. 
Conversely, the impact of inaccuracies  operations lessens. The confusion matrix is utilized to 
display the instances of accurate equipment predictions and misclassifications, as defined in the 
format of Table 3. Simultaneously. The selection of metrics includes recall, accuracy, and F1 
score(27) present in Eqs. (3) to (5).

 Recall rate = TP/(TP + FN) (3)

 Precision = TP/(TP + FP) (4)

 F1 Score = 2/((1/Precision) + (1/Recall)) (5)

3. Results and Discussion

 In this section, we outline the experimental design, validation results, and comparisons with 
similar models.

3.1 Dataset description

 To verify the effectiveness of the proposed method in the experiment, we choose a dataset for 
predicting equipment failure, which contains time-series and imbalanced data.(28) The dataset 
includes 17 complex sensors, such as pressure, motor power, volume flow, and operating 
vibration, among others. Moreover, the data is raw, without any feature extraction. The sensors 
relevant to the hydraulic system and the corresponding fault labels are listed in Tables 4 and 5, 
respectively.

Table 3
Confusion matrix for fault diagnosis dataset.

Actual 
Failure Normal

Prediction Failure TP (True positive) FP (False positive)
Normal FN (False negative) TN (True negative)
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 Valve condition data is imbalanced. The distribution is depicted in Fig. 3, where state 100 
signifies normal samples, while other states indicate either deteriorating equipment or equipment 
fault samples.

3.2 Parameter settings

 In this experiment, the parameter settings for WGAN and CatBoost are listed in Tables 6 and 
7, respectively.

3.3 Evaluation of generated data

 The real and generated data are analyzed by PCA and TSE, as shown in Fig. 4. The pink color 
represents the real data after PCA and TSE, the gray color represents the synthetic data after 
PCA and TSE by TS-DMMF, and the deep red color represents regions where the real data and 
synthetic data generated by TS-DMMF are close or even overlap. The result indicates that the 
synthetic data generated by TS-DMMF exhibits a similar distribution to the real data.

3.4 Experiment results

 In the preliminary stages of model validation, the dataset undergoes meticulous feature 
engineering, accompanied by rectification of its class imbalance. Following this meticulous 
preprocessing, the synthesis of minority class samples is initiated. To ensure class equilibrium, 
the Borderline-SMOTE technique is employed. Subsequent to this balancing procedure, the 
curated data is fed into a WGAN. Within this architecture, dedicated training models are devised 

Table 4 
Sensor description and sampling rate.
Sensor ID Description Unit Sampling rate (Hz)
PS1-PS6 Pipeline pressure bar 100
EPS1 Motor power W 100
FS1-FS2 Volume flow l/min 10
TS1-TS4 Pipeline temperature ℃ 1
VS1 Operating vibration mm/s 1
CE Cooling efficiency % 1
CP Cooling power % 1
SE Efficiency factor % 1

Table 5
Types of valve operational states.

Status Number of data

Valve Condition

100: optimal switching behavior 1125 (50.02%)
90: small lag 360 (16.33%)
80: severe lag 360 (16.33%)

73: close to total failure 360 (16.33%)
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explicitly for the minority classes: Class 73, Class 80, and Class 90. Consequently, individual 
models tailored to each of these three classes emerge. Each model independently produces 765 
samples, thereby ensuring a harmonious representation across the dataset.
 Data validation was performed using threefold cross-validation. The predicted results of 
valve condition are shown in Table 8.
 The results indicate that the fault prediction results are close to the predicted results for 
normal operations, indicating that the issue of insufficient fault data has been resolved. 
Additionally, the overall average prediction accuracy exceeds 95%.

Fig. 3. (Color online) Distribution of valve operational states.

Table 6
Parameter settings for WGAN.(20)

Parameter Value
Batch size 64

Size of output samples Generator: (256,256,256)
Discriminator: (256,256,256)

Optimizer Adam
Clipping parameter 0.01
Learning rate 0.00005
Activation ReLU

Table 7 
Parameter settings for CatBoost (parameter optimization based on Optuna).(25)

Parameter Value
Iterations 72
Learning rate 0.02
Early stopping rounds 10 (Default)
Loss function MultiClass
Depth 6
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 Next, we conducted a comparative analysis of different generation methods. First, we 
generated fault data using various algorithms and subsequently employed the Catboost classifier 
for prediction. The results are summarized in Table 9.
 WGAN achieves the best recall performance with a score of 95.89%, indicating that the 
generated fault samples are similar to the original ones, helping the classifier to accurately 
classify fault samples. On the other hand, the Borderline-SMOTE algorithm demonstrates 
overall stability, but with a lower recall of only 92.59%, which may lead to misclassification of 
important fault samples and result in significant losses. Finally, the proposed method 
demonstrated excellent performance with a precision of 95.64% and an F1 score of 95.49%. 
Notwithstanding a recall rate that is 0.38% less than that of the WGAN, the difference remains 
within an acceptable margin. Collectively, this strategy displays robust classification efficacy, 
characterized by a recall of 95.51%—a testament to its precision in fault categorization.
 Finally, we juxtapose the proposed method with other time-series processing techniques 
applied to this dataset. The results are presented in Table 10.

Fig. 4. (Color online) PCA and t-SNE test for real and synthetic data generated by TS-DMMF.

Table 8
Predicted results of valve condition.

Status
Quantity of 

generated failure 
data

Precision (%) Recall (%) F1 Score (%)

100: optimal switching behavior 0 98.42 98.42 98.42
90: small lag 765 100 90.60 95.07
80: severe lag 765 91.45 96.40 93.86
73: close to total failure 765 92.68 96.61 94.60
Average 95.64 95.51 95.49
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 The purpose of this experiment was to demonstrate the effectiveness of the proposed time-
series method. Results indicate that, compared with the time-series method in Bidirectional 
LSTM,(29) there is an improvement of over 2.21% in the F1 Score. The Recall Rate also reaches 
95.51%, suggesting satisfactory fault classification results under time-series data.

3.5 Cause analysis

 In the decision-making process of the Catboost classifier, feature importance analysis is 
employed to pinpoint the critical sensors adept at accurately distinguishing various fault 
categories. The results are illustrated in Fig. 5.

Table 9
Comparative analysis of different generation methods.

Precision (%) Recall (%) F1 Score (%)
WGAN(20) 89.17 95.89 92.11
Borderline-SMOTE(4) 95.23 92.59 93.89
TS-DMMF (proposed method) 95.64 95.51 95.49

Table 10
Comparison of time-series processing methods implemented on this dataset.

Precision (%) Recall (%) F1 Score (%)
Multivariate time-series 
classification model(18) 92.80 92.80 92.80

Bidirectional LSTM(29) 93.63 92.94 93.28
TS-DMMF (Proposed method) 95.64 95.51 95.49

Fig. 5. (Color online) Feature importance analysis in CatBoost classifier.
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 The top five features are PS2 (Pipeline Pressure), PS1 (Pipeline Pressure), SE1 (Efficiency 
Factor), FS1 (Volume Flow), and VS1 (Operating Vibration). However, the tags of interest in this 
study are 73 and 80, as mispredictions of these two could lead to serious unplanned shutdowns. 
Regrettably, it is not discernible from the figure whether tags 73 and 80 occupy larger portions 
of the features. The aim of this experiment was to discern feature importance in an attempt to 
reduce the number of sensors, which aids in computational speed enhancement and cost 
reduction for data collection.

4. Conclusions

 In this paper, we proposed a time-series fault prediction method addressing the dual 
challenges of time-series data and the imbalance of failure instances. Experimental results 
indicate that the proposed method outperforms existing strategies, indicating improved fault 
classification performance, particularly for time-series data. Furthermore, the approach benefits 
from the inherent explainability of tree-based structures, which simplifies the model 
interpretation process. This explainability not only aids in identifying the causes of faults but 
also significantly eases maintenance operations.
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