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	 Sensing images in the underwater environment is a significant issue in ocean engineering. 
Acquiring clear underwater images involves many challenges, such as climate, environment, and 
human factors. The most important problems are the fogging effect caused by the dispersion of 
light and the energy of each light wavelength when it propagates in water. Then, a color cast is 
caused by inconsistent attenuation. A common issue is the dispersion of light that occurs in 
underwater photography, which can impact the overall color balance of an imager. While current 
research can make use of good approaches for obtaining good visual quality and quantitative 
indicators, having a wider color gamut space and a dynamic image range can improve visible 
details. Therefore, we propose a module for enhancing underwater color image sensing with 
robust adaptive tone mapping for inferring degradation models using deep learning models and 
with adaptive tone mapping for further improving the image dynamic range. We address issues 
with limited dynamic range and brightness in underwater image sensing and recognition using a 
robust adaptive tone mapping method. Quantitative and qualitative results show that our method 
performs relatively well in the Underwater Image Enhancement Benchmark dataset compared 
with other recent methods that apply appropriate tone mapping to the large-scale layers of the 
image to preserve details and avoid over-enhancement. Therefore, the color gamut of our 
augmented image has a large scale and is evenly distributed when visualized in the Y’CbCr 
color space. In the future, our research method is expected to be applied to different types of 
underwater work and environment, and to reduce the severe degradation problems that usually 
occur in underwater images.
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1.	 Introduction

	 Images captured underwater often suffer from severe degradation issues such as color cast 
and background light scattering. Our solution to this problem consists of two stages: (1) an 
enhanced color recognition of underwater color sensing using robust adaptive tone mapping and 
(2) improved clear underwater scenes by enhanced color sensing. Substances such as tiny 
particles in water absorb most of the light energy and scatter the reflected light in the scene 
before it reaches the camera. Therefore, images tend to have low contrast. Owing to the high 
requirement for capturing high-quality underwater images, underwater image imprinting and 
enhancement have become active research areas in recent years.
	 Various algorithms have been developed to perform this task using traditional image 
processing and computer vision methods. These methods can be divided into enhancement and 
restoration methods. Enhancement methods aim to improve image quality purely by 
redistributing pixel intensities or using image pixel statistics, such as adopting color sensing and 
correction, restoration filters, histogram equalization, or a fusion of the above methods,(1,2) and 
applying them to improve the image quality. Restoration methods rely on models of underwater 
image formation, which describe the relationship between the captured scene and the underwater 
environment, and are aimed at restoring the image assumed to be degraded. 
	 In recent years, convolutional neural networks (CNNs) have proven effective in solving 
computer vision tasks such as image segmentation and object recognition. Therefore, many 
novel CNN-based methods have been proposed to solve the problem of underwater image 
restoration. The lack of training data for underwater images is a major challenge, so generative 
adversarial networks (GANs) are also widely used(3–7) to generate realistic underwater images 
that can assist in supervising the learning process or performing restoration tasks. Still, there is a 
large gap between synthetic datasets and images captured underwater, and these models tend to 
ignore the characteristics of the environment. An example of a supervised learning model for 
underwater image enhancement is the U-color network.(5) Li et al. improved the strength of 
feature representations using the so-called “multicolor space encoder network” by analyzing the 
input in different color spaces (such as RGB, HSV, and Lab) before passing RGB'Lab"HSV color 
space through a multilayer deep residual encoder network.(5,6) An attention mechanism(7) is 
applied to capture the most important features in all feature maps, and the decoder network is 
media-oriented to address the degradation of underwater image quality. The learning process 
combines a perceptual loss(8) and a mean squared error (MSE) loss so that the loss function can 
represent both low-level and high-level feature differences between the output and the ground 
truth image. Using this as a baseline, we will try replacing the HSV color positions with Y’CbCr, 
since HSV has been shown to be useful in the representation of color properties.
	 Unlike past experiments, no ablation study is provided on the relationship between the 
contribution of perceptual loss in the loss function and the visual quality of the results and the 
effectiveness of the training process. In this study, we examine the choice of hyperparameters 
between the perceptual loss and the MSE loss. For many underwater applications, sensing 
visible details in large areas of the image, including dark and bright areas, is highly desirable in 
addition to visual quality. We use an augmentation step in the sensing process. A method using 
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bilateral filters and adaptive tone mapping(9) is used to address this specific problem of 
enhancing the dynamic range of images. The input is first decomposed into large-scale and 
detailed layers using bilateral filters. Then, each large-scale layer is divided into three regions in 
accordance with the brightness level: dark, midtone, and light. Appropriate tone mapping is 
applied to each of these regions individually on the basis of the properties of each region. 
Adaptive tone mapping was performed on large-scale layers, thus preserving details in the 
sensing image. This approach can significantly improve the dynamic range and avoid side 
effects such as color separation caused by traditional methods such as histogram equalization. 
Our method achieves visually pleasing results while still maintaining a large amount of details 
in regions of different brightness levels. Figure 1 shows our experimental results.

2.	 Related Works

	 Inspired by the blurring problem of outdoor images, a key issue of an optical model, we used 
the image formation model (IFM) to describe the formation of blurred or degraded images. The 
formula for IFM is

	 ( ) ( ) ( )( ) { }1 ,  , , c c cI J x T x A T x c r g b= + − ∈ ,	 (1)

where Ic is the observed intensity, Jc is the scene radiance, Ac is the homogeneous ambient or 
background light, and T(x) is the medium transmission map indicating the amount of light that 

Fig. 1.	 (Color online) Visual demonstration of our underwater color sensing and restoration method. (a) is an 
original image, (b) is a translated image reconstructed by the network using the inferred causes, and (c) is a result of 
enhancement using adaptive tone mapping. Their corresponding visualization color gamut CIELAB color space 
with an enhanced result is shown in the white box, whereas the other color space shown as a solid line shows the 
gamut volume. The gamut volume is used as an objective function to optimize the imaging system.
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reaches the camera. Most of the current methods use IFM as the starting point where the goal is 
to retrieve Jc through inverse operation if other variables are known.
	 Much intensive research has been performed in the field of underwater image processing 
methods. In general, we divide some state-of-the-art quality improvement methods into 
conventional improvement and deep-learning-based methods.

2.1	 Conventional improvement methods

	 As mentioned in Sect. 1, the above two methods are aimed at enhancing images, while our 
approach is aimed at restoring degraded scenes. The main difference is whether the restoration 
method relies on the physical model of the image to make assumptions.
	 Underwater image enhancement algorithms focus on reallocating pixels to improve image 
quality using traditional methods. Owing to the limited number of scenes captured underwater, 
there are often severe distortions and artifacts. In the past, a fusion-based approach was 
developed to address this problem. On the basis of four fusion weights computed by the 
Laplacian, two inputs are combined using color sensing contrast, local contrast, saliency, and 
exposure to produce an output image with significantly improved visual quality. The visual 
quality of the image is further improved by incorporating a multiscale fusion strategy to reduce 
artifacts in the low-frequency parts of images enhanced by earlier algorithms. 
	 Underwater image restoration methods are based on assumptions about how images are 
physically degraded by factors such as light absorption and scattering. The most famous of these 
is dark channel prior (DCP), which is used for outdoor image dephasing. Underwater DCP 
(UDCP), which calculates the dark channel on the basis of only the blue and green channels, is 
tailored for specific uses in underwater environments. Peng et al. proposed the red channel prior, 
where the dark channel is computed from the cyan and inverse red channels, to generalize these 
assumptions. Peng et al. proposed a generic dark channel before covering the different properties 
of all these different environments (not just underwater).(10)

2.2	 Deep-learning-based methods

	 With the success of deep learning, Li et al. proposed to use a synthetic underwater database 
to train a CNN-based model to regenerate sharp and restored images.(11) There are still large 
discrepancies between synthetic data and real underwater images. To solve the problem of 
insufficient underwater training datasets, Li et al. also constructed an underwater image 
enhancement benchmark dataset for the comprehensive study of various enhancement 
algorithms.(12) Furthermore, the power of CNN is fused in order to combine the advantages of 
restoration and enhancement methods. Li et al. proposed Ucolor’s network,(5) which uses a 
multicolor space embedding and attention mechanism as the basis of the encoder network. 
Features in color spaces other than RGB can be considered and selectively enhanced. At the 
same time, the media transport graph is used to effectively guide the decoder network to the area 
of quality degradation. 
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3.	 Proposed Method

	 We propose a method based on deep learning while utilizing traditional augmentation 
methods to solve the problem of underwater image restoration. The architecture design is 
divided into a learning network for quality improvement and an adaptive tone mapping module 
to further increase the dynamic range. We used the network architecture proposed in this paper 
as the network design. Tone mapping is used with bilateral filters to sensor the visibility of 
details, especially in dark areas, without overexposing and distorting the image. Furthermore, 
we conducted a study to analyze the effect of hyperparameters on learning the loss function used 
in the network.

3.1.	 Network architecture

	 The main components include the Residual Learning Module (RES-MOD), Channel 
Attention Module (CA-MOD), and Transfer Guidance Module (TRANS-MOD). Gray boxes  in 
Fig. 2 indicate input or output quantities and are dimensionalized. All convolutional layers used 
in the network have filters of size 3 × 3 and stride 1. The residual module is written as, for 
example, RES-MOD 128, indicating that the number of filters for the convolution operation in 
the module is 128. Downsampling is performed by max pooling operation and upsampling by 
bilinear interpolation. The encoding module architecture of the above method is shown in Fig. 
2(a) and the decoding module architecture in Fig. 2(b).
	 The flowchart and detailed architecture of the network are shown in Figs. 2(a), 2(b), and 3. 
The network architecture consists of a color space encoder (Sect. 3.1.1), residual and attention 
modules (Sects. 3.1.2 and 3.1.3), a medium transmission guidance module (Sect. 3.1.4), and a loss 
function (Sect. 3.1.5). The adaptive tone mapping module is described in a separate section (Sect. 
3.2).
	 In the encoder network, the input passes through a color space encoder involving color space 
conversion from RGB to CIELAB and Y’CbCr color spaces. In each encoding, input passes 
through three residual learning modules, and 2× downsampling is applied between them. For the 
color space encoding path, there will be three levels of feature representations of ×1, ×1/2, and 
×1/4 sizes. For each level, the outputs of the three color spaces are concatenated into volumes of 
different features and recalibrated according to the weights of each channel by a channel 
attention module.
	 For the decoder network, three different levels of feature quantities ×1, ×1/2, and ×1/4 are 
combined with correspondingly sized reverse medium transfer (RMT) maps in the transfer 
guiding module. RMT maps of three different sizes can also be obtained by 2× downsampling. 
The ×1/4 output of this module is forwarded through another residual learning module, followed 
by 2× upsampling. Then, its output is concatenated with the ×1/2 output of the medium transfer 
module and again passed through the residual learning module with 2× upsampling. We then 
connect the media transmission guidance result of level ×1 with the previous operation result and 
perform a convolution to reconstruct the result to obtain a more accurate resolution and remove 
fog.
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Fig. 2.	 (Color online) (a) Encoding module and (b) decoding module.

(a)

(b)
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3.1.1.	 Color space encoder

	 The network starts with a color space transformation of the degraded underwater image. 
Owing to the shortcomings of the HSV color space, the multicolor space encoder module was 
replaced by the luminance-based color space YCbCr or Y’CbCr because human vision is more 
sensitive to changes in brightness than to changes in color. Y’CbCr values are normalized to the 
[0, 1] range before being fed into the trained network as follows:

	 16
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3.1.2.	 Residual enhancement module

	 To address both increasing and decreasing network depth, a residual learning framework is 
used in both encoder and decoder networks. Figure 3 illustrates the building blocks of this 
module. This module uses the skip connection function by copying the learned layer from the 
lower layer and setting the additional layer as an identity map.

3.1.3.	 Channel attention module

	 To capture the interdependence between channel features from different color spaces, a 
squeeze-and-excitation block is integrated at the end of the encoder network. The main goal is to 
know which channels in different color spaces are more important and contribute more to the 
output. Figure 4 depicts the components of this module.

Fig. 3.	 (Color online) Residual augmentation module architecture. The input becomes x after passing through a set 
of convolutional layers with ReLU activations, then through a set of 2 CONV/ReLU layers and an additional CONV, 
and finally, without activation into F(x). The output is x + F(x). The process is repeated twice in each module.
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3.1.4.	 Medium transmission guidance module

	 The medium transfer map at the beginning of the decoder network is calculated by computing 
the RMT. It is used to evaluate the importance of each position in a feature map. More 
specifically, the more degraded a pixel, the higher the weight assigned to it because this pixel 
requires more attention.

3.1.5.	 Loss function

	 Affected by the use of perceptual loss in computer vision tasks such as super-resolution and 
style transfer,(11) the loss function Lf is set to be the linear combination loss Lper:

	 1 2f MSE perL L Lλ λ= + ,	 (5)

where λ1 and λ2 are set as hyperparameters. The MSE loss LMSE is a measure of the per-pixel 
difference between the output feature map and the original feature map y calculated using the 
Euclidean distance:

	 ( ) 2
2

1,ˆ  ˆMSEL y y y y
C H W

= −
× ×

.	 (6)

	 Instead of using per-pixel loss as the training target, LPer can perceive the loss of the output 
image ŷ to have a pattern feature representation and structure as similar as possible to the target 
image y that is close to the real image effect without a degraded pixel. This is carried out by 
processing the result ŷ and the ground truth y by pretraining the layer j of the network. The 
perceptual loss is the squared and mean Euclidean distance between these two outputs:

Fig. 4.	 (Color online) Channel attention module architecture. First, the feature volume is squeezed into a 1 × 1 × N 
vector by global average pooling. Through a fully connected (FC) layer, the weights are learned together with other 
parameters. ReLU and Sigmoid are used to select the most representative features and produce feature scores. The 
final result is obtained by multiplying the feature score with the original feature pixel by pixel.
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where ϕj(x) is the activation of the jth layer of the ϕ network. Here, ϕ is defined as the pretrained 
VGG-19 network on the ImageNet dataset,(13) and the jth layer is the relu5_4 of the VGG-19 
network.

3.2.	 Enhancement using bilateral filters and adaptive tone mapping

	 The algorithm uses a bilateral filter to divide the luminance channel Y ' into a large-scale 
layer and a detailed layer. The chroma channels Cb and Cr are kept unchanged to avoid 
corrupting the input color information. Subsequent operations are only applied to large-scale 
layers to keep sharp edges, textures, and details.
	 We used Otsu’s thresholding to divide the large-scale layer into three regions of brightness 
level: dark, midtone, and light. Then, we divided the large-scale layer into two thresholded 
regions in accordance with to the value T. The operation flow is shown in Fig. 5. Figure 6 shows 
the approximate values for the three regions of different brightness levels. Readers can refer to 
the article of Hu et al.(9) for more details about the implementation.

Fig. 5.	 (Color online) Flowchart for dividing the large-scale layer and the detailed layer with the bilateral filter 
algorithm.
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4.	 Results and Discussion

4.1.	 Training and validation

	 We used the UIEB dataset(12) as the training dataset to train the model in this study. In the 
selection of hyperparameters, the training data is randomly cropped to a size of 128 × 128. We 
trained the network with minibatch gradient descent with a batch size of 16. The adaptive 
moment estimation optimizer (ADAM) was used for training optimization, and β1 was set to 0.5. 
The learning rate was set to 1 × 10−4.
	 As for the weights λ1 and λ2 of the per-pixel loss and the perceptual loss of the loss function, it 
can be seen that λ2 considerably affects the quality of the output image as well as the training 
process. λ2 in the range [0.001, 0.01] results in test images with low contrast and unnaturalness, 
whereas λ2 in the range [0.01, 1.0] results in images that are more visually pleasing. On the other 
hand, the lower the λ2, the faster the training and validation errors converge to 0. Finally, we set 
the parameters to λ1 = 5 and λ2 = 0.05.

4.2.	 Experiment settings

	 We used the following datasets for experiment and comparison.
•	 UIEB-90: the remaining 90 pairs of images in the UIEB dataset.(12)

•	 UIEB-60: 60 underwater images from the UIEB dataset, which are deemed more challenging 
and do not have corresponding reference images.

•	 SQUID: 16 images taken from the SQUID dataset(12) that contains 57 underwater image pairs 

Fig. 6.	 (Color online) Visual results of various restoration methods for the UIEB-90 dataset consisting of 60 
challenging images taken from the UIEB dataset without corresponding reference values. 
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taken from various dive sites in Israel. Same as Test-C60, these data do not have 
corresponding ground truths or reference images.

	 Our network results are compared with the results from Ucolor(5) and the enhanced results 
using adaptive tone mapping, since our goal is to see if there is any improvement over the 
original architecture. We run tensorflow on the same version of the UIEB dataset and keep all 
the best hyperparameters mentioned in the original work, and compare examples of different 
recovery methods, such as those by Peng et al.,(2) UcycleGAN,(3) and UWCNN.(11) Li et al.(5) 
showed that compared with these methods, our network architecture through training and 
validation is superior to the above results (2,3,5,11) on the UIEB dataset.
	 In a comparison between two UIEB-90 datasets, the visual representation of the results is 
quantitatively evaluated against ground truth data using the mean square error (MSE) metric, 
the peak signal-to-noise ratio (PSNR) metric, and the structural similarity metric (SSIM). A low 
MSE score must be near 0, a higher PSNR value is better, and a higher SSIM score near 1 is 
better, indicating that the visual representation structure of the recovery image is closer to the  
results in references.(2,3,5,11)

	 To evaluate the effectiveness of the adaptive tone mapping augmentation method, we 
compared different results by visualizing the color gamut of each image in the CIELAB color 
space. The goal is to further improve details in shadow areas, so the result of a color gamut with 
a larger volume and an even distribution on the luminance L axis is considered visually better.
	 We show visual results in Figs. 6–8. It can be observed that our method improves the 
visibility of the overall image structure and removes the color cast very effectively. Li et al.(4) 
and Li et al.(5) produced severe additional color artifacts, indicating the lack of robustness of 
traditional restoration methods and the ineffectiveness of GAN for underwater imaging 

Fig. 7.	 (Color online) Visual results of various restoration methods for the UIEB-90 dataset consisting of 90 
images taken from the UIEB dataset with corresponding reference values. 
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enhancement, which is also more obvious in the UIEB-60 dataset, as shown in Fig. 9. For 
UWCNN,(14) the color cast in the input is not completely removed and has high turbidity. 
Ucolor(8) performs relatively well in removing the green-blue cast and restoring sharpness in raw 
images. However, there are some parts that are not recovered uniformly in a single image, 
resulting in images with small halos, such as the unusual gray areas in Figs. 7(b) and 7(d) or Figs. 
7(a), 7(b), and 6(c). In contrast, our network not only does not produce such artifacts, but also has 
visually pleasing colors and reasonable brightness and contrast. As for the adaptive tone 
mapping method, details in the enhanced result, especially in dark areas, are more visible. In 
images with limited illumination that our network fails to improve, as shown in Fig. 6(d), tone 
mapping also manages to reveal many details in the background. The tone mapping is still able 
to capture parts such as the rocky cliffs in Fig. 6(d), the background in Fig. 6(b), the coral reef in 
Fig. 8(c), and the rocks in Fig. 8(a). Visual comparisons highlight the effectiveness of the system, 
which produces satisfactory results even in degraded environments.

4.3	 Quantitative evaluation

	 The different methods are quantitatively compared using the MSE metric, PSNR metric, and 
SSIM on the UIEB-90 dataset. The average scores are shown in Table 1. As can be seen from the 
table, our network achieves higher quantitative average scores than other methods 
(0.015/19.32/0.8674 in terms of MSE/PSNR/SSIM, respectively). Compared with Ucolor, our 
network achieves a percentage gain of 6.25/1.45/0.51% in terms of MSE/PSNR/SSIM, 
respectively.
	 Next, we analyze the effect of the tone mapping augmentation module on different images. 
For each comparison, we visualize the gamut of the image. The gamut of the augmented result is 
visualized with a white box, whereas the other gamuts are white solid lines. It can be seen that 
the enhanced results have the largest gamut volumes [194053 in Fig. 9(a), 223764 in Fig. 9(b), 
and 175768 in Fig. 9(c)]. In all three examples, the gamut of our unenhanced results manages to 

Fig. 8.	 (Color online) Visual results of various restoration methods for the SQUID dataset.
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Table 1 
Various methods evaluated on the UIEB-R90 dataset in terms of mean MSE, PSNR (dB), and SSIM values.
Method MSE PSNR SSIM
UWCNN(14) 0.026 16.719 0.807
Peng et al.(4) 0.026 15.777 0.791
UcycleGAN(5) 0.025 16.65 0.684
Ucolor(8) 0.016 19.043 0.863
Our network 0.015 19.32 0.8674

Fig. 9.	 (Color online) Visual demonstration of our underwater restoration method. The gamut volumes in CIELAB 
color space are shown and the corresponding gamuts are visualized.
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cover a larger volume while still occupying relatively the same space in the CIELAB color 
space. On the other hand, the gamut of the enhanced image shows that the tone mapping method 
stretches the graph contrast of images, showing that our method can generate images with 
slightly more vibrant colors and better contrast.

4.4	 Analysis of the optimization of perceptual loss

	 During tuning, the value of λ2 considerably affects the quality of the output image as well as 
the training process. As can be seen from Fig. 10, λ2 in the range [0.0001, 0.01] results in test 
images with low contrast and unnaturalness. The reproduced colors are also far from the 
reference color checker, whereas λ2 in the range [0.01, 1.0] makes the image more visually 
pleasing. On the other hand, Fig. 11 shows that the lower the λ2, the faster the training and 
validation errors converge to 0. The validation error also seems to be more stable with little 
fluctuation when λ2 is low. We can also observe that the impact of λ1 on the visual quality of 
output test images is less pronounced than that of λ2. A higher λ1 also leads to a harder 
convergence of training and validation errors, although not as significant as λ2, as shown in Fig. 
12.
	 For the second round of tuning, we then narrowed down the range of λ2 to [0.01, 0.1] and 
λ1 ∈ {1, 2, 3, 4, 5} to balance visual results and training stability. We used a grid search method 
to find the most suitable set of hyperparameters. For each group (λ1, λ2), we trained the model for 
50 epochs, using the trained weights and parameters to infer the weights λ1, λ2 for the per-pixel 
loss and the perceptual loss for the loss function on the UIEB-R90 dataset that can gain better 
the MSE, PSNR (dB), and SSIM values.. To measure the quality of the results, we used MSE/
PSNR/SSIM. As shown in Table 2, we found that λ1 = 5 and λ2 = 0.05 produced the best results. 
The hyperparameters were determined from the loss function.

Fig. 10.	 (Color online) Results of first pass tuning. λ2 values below 0.01 produce results where colors look 
unrealistic and distorted.
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Fig. 11.	 (Color online) Effect of λ2 on the training and validation processes. Here, λ1 is set to be 1. The higher the λ2 
value, the harder for the network to converge

Fig. 12.	 (Color online) Effect of λ1 on the training and validation processes. Here, λ2 is set to be 0.02. The effect of  
λ1 is not as significant as that of λ2.

Table 2. 
Results of the second round of hyperparameter tuning on the UIEB-R90 dataset are shown as mean MSE, mean 
PSNR, and mean SSIM.

λ1 λ2 MSE PSNR SSIM

1 0.01 0.019 18.285 0.838
0.05 0.022 17.71 0.836

2 0.01 0.016 17.888 0.831
0.05 0.02 18.192 0.835

3 0.01 0.018 18.62 0.85
0.05 0.02 18.06 0.837

4 0.01 0.032 16.01 0.802
0.05 0.016 19.178 0.856

5 0.01 0.017 18.782 0.845
0.05 0.015 19.32 0.867
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5.	 Conclusions

	 Our proposed method enhances color sensing and recognition for underwater color using 
deep learning models and robust adaptive tone mapping technology to infer degradation models. 
The results of our research have significantly improved the effect of the previous work of Li et 
al.(5) In our network, we tried to encode our features using Y’CbCr as well as RGB and CIELAB, 
and then we used an attention mechanism to highlight these features. The revised model also 
showed improved quantitative and qualitative results. We showed how different perceptual loss 
weights can considerably affect our results and training by monitoring our learning process and 
using quantitative metrics. As for the augmentation module, an appropriate tone map is applied 
to each region that was carefully segmented beforehand. The obtained images appear to have a 
greater dynamic range and significantly enhanced visible details compared with images inferred 
by the network alone and results from other methods. We avoided over-enhancement by only 
performing operations in large-scale layers of the image. When visualized in the CIELAB color 
space, the color gamut of our final result covers the largest volume compared with CIELAB 
color space. The volumes are also closer to the center of the color space and more evenly 
distributed across all axes. This demonstrates the effectiveness and robustness of our underwater 
recovery method, as it can be adapted to different types of underwater environment and 
constraint.
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