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 Building collapse arising from destructive earthquakes is often the primary cause of 
casualties and economic loss. Building damage assessment is one of the top priorities in 
earthquake emergency work. Quad-polarimetric synthetic aperture radar (PolSAR) data not 
only have the advantages of radar imaging being neither exposed to sunlight nor blocked by 
clouds, but also contain the most abundant information of the four polarimetric channels. Only 
using conventional polarimetric decomposition methods may lead to overestimations of the 
number of collapsed buildings and the exaggeration of the degree of earthquake damage. We 
proposed a parameter called the sector texture feature of the Fourier amplitude spectrum 
(STFFAS) to describe frequency-domain texture features based on the Fourier amplitude 
spectrum in order to solve the overestimation of earthquake building damage. In addition, we 
proposed a scheme to recognize building earthquake damage using only a single post-earthquake 
PolSAR image combined with STFFAS and the improved Yamaguchi four-component 
decomposition method. The 4.14 Ms7.1 Yushu earthquake that occurred in Yushu County, 
China, in 2010 is taken as the experimental case. Compared with conventional polarimetric 
decomposition methods, this method successfully separated 70.18% of standing buildings from 
the ground objects mixed with collapsed buildings, thus significantly improving the extraction 
accuracy and reliability of building earthquake damage information.

1. Introduction

 In the recent decade, earthquakes have occurred frequently around the world, causing huge 
losses to human life and property.(1) In urban areas, earthquake casualties are mainly caused by 
collapsed buildings. During search and rescue operations for people buried in the rubble, the 
sooner the information about the collapse of buildings is obtained, the higher the probability of 
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human survival. Therefore, fast and accurate statistics on the distribution of collapsed buildings 
in the earthquake-stricken area is a top priority after an earthquake as well as a guideline for 
developing other earthquake emergency plans. The main method of traditional earthquake 
damage information acquisition is the door-to-door field survey. Although this method has a 
high reliability of information acquisition, it often has a large workload and low efficiency when 
carried out in a large area. Remote sensing technology enables the quick monitoring of disasters 
on a large scale and has become an important means of earthquake emergency response and 
post-earthquake damage assessment. Earthquakes often occur at night or are accompanied by 
severe weather conditions, such as overcast, rain and snow, making optical remote sensing 
ineffective. However, radar waves are not affected by sunlight and can pass through thick clouds 
to obtain information about the disaster areas isolated from the outside world. Synthetic aperture 
radar (SAR) remote sensing technology can achieve effective ground target imaging under any 
weather or climate conditions. Therefore, the use of radar remote sensing for post-earthquake 
disaster monitoring seems more secure. In the past, multitemporal SAR data were collected 
before and after an earthquake, and the differences between the pre- and post-event data were 
used to identify the disaster site. However, the collection of pre-earthquake SAR data is time-
consuming and labor-intensive, and pre-earthquake data of some remote areas are not archived. 
In order to save time and labor, we use only post-earthquake single-temporal SAR data to 
recognize building earthquake damage in the disaster area. In this way, multitemporal data 
registration can also be avoided. Quad-polarimetric SAR (PolSAR) data contain considerably 
more information than do single-polarimetric and dual-polarimetric SAR data since PolSAR has 
HH, HV, VH and VV polarimetric channels, where H indicates horizontal polarization and V 
indicates vertical polarization. Therefore, when only post-earthquake single-scene SAR images 
are used for earthquake building damage assessment, we adopt PolSAR images as data sources 
to achieve a higher earthquake damage recognition accuracy and highly reliable earthquake 
damage assessment results.
 As PolSAR data sources are becoming increasingly available, many scholars and institutions 
have applied PolSAR to post-earthquake damage recognition because of the excellent 
performance of PolSAR in recognizing ground objects.(2) Since PolSAR data sources are 
challenging to obtain in some remote areas and there are no pre-earthquake archived data, 
together with the fact that the information contained in PolSAR data is sufficient for single-
temporal SAR image earthquake damage recognition, a continuously increasing number of 
scholars have begun to use only post-earthquake single-scene PolSAR data to recognize building 
earthquake damage in recent years.(3–4) Experiments have proved that recognition results 
obtained from a single post-earthquake PolSAR image can meet the requirements of accurate 
and speedy earthquake damage recognition,(5) The recognition accuracy is at least as good as 
that when using multitemporal SAR data. Wang et al. analyzed the backscattering mechanism of 
the damaged buildings in airborne multipolarization SAR images.(6) Li et al. proposed a new 
H−α−ρ method based on the circular polarization correlation coefficient for extracting the 
spatial distribution of collapsed buildings from RADARSAT-2 fine-mode PolSAR data.(7) Chen 
et al. presented a modified Freeman decomposition including selective deorientation and surface 
scattering characteristic parameter constraint, and used the contribution of the double-bounce 
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component to extract the collapsed building spatial distribution from post-disaster 
RADARSAT-2 SAR data.(8) Zhai et al. created a novel polarimetric feature parameter, the 
normalized difference of the dihedral component (NDDC), to evaluate the degree of building 
damage.(9) Ji et al. proposed a new unsupervised damage assessment method in accordance with 
four conditions for damaged-building identification.(10) Zhai et al. developed two new 
polarimetric features λ_H and H_λ on the basis of entropy and eigenvalues of a T3 matrix to 
discriminate five different types of buildings in disaster areas.(11) Liu et al. established a model 
based on components obtained by Touzi decomposition for damage assessment mapping in built-
up areas.(12) Zhai et al. developed a new polarimetric feature, the variable coefficient of angle 
domains based on the Fourier amplitude spectrum parameter (CV_AFI) to assess the degree of 
building earthquake damage.(13) Miao et al. improved the Freeman polarization decomposition 
method applicable to earthquake-induced building damage identification.(14) Nie et al. created a 
new polarization feature—the maximal power contrast (MaxC) feature—via the optimization of 
the polarimetric contrast enhancement (OPCE) matching algorithm for identifying collapsed 
buildings.(15) Texture features are as important as polarimetric features contained in PolSAR 
data, and in many cases, exhibit even stronger recognition performance than polarimetric 
features. Bai et al. found that the polarimetric features demonstrated poorer performance than 
texture features in terms of distinguishing between damage categories.(16) Li et al. introduced 
texture parameters of different statistical models to address the problem of confusing collapsed 
and oriented buildings.(17) Zhai et al. proposed the precision-weighted multifeature fusion 
(PWMF) method to fuse four texture features for collapsed building extraction from PolSAR 
images.(18) Chen et al. proposed a statistical texture feature G0-para arising from the G0 
distribution of SAR images to distinguish buildings in complex urban areas after a disaster.(19) In 
recent years, because of the rapid development of deep learning technology(20) and its high-
precision recognition advantages,(21) many scholars are using the convolutional neural network 
(CNN) algorithm to recognize building earthquake damage information.(22,23)

 In post-earthquake SAR images, the walls of many damaged buildings collapse, resulting in 
the destruction of the dihedral structures formed by the walls and the ground, making it 
impossible to attain the double-bounce scattering characteristics of SAR images with a high 
scattering intensity, causing volume scattering to be dominant over double-bounce scattering. 
This results in the scattering intensity of collapsed buildings being lower than that of standing 
buildings. However, a particular phenomenon that some standing buildings are not arranged 
parallel to the SAR flight path exists in SAR images; such buildings are called obliquely oriented 
buildings. With the rotation of the polarization basis of obliquely oriented buildings, these 
buildings are strongly depolarized, and volume scattering is their predominant scattering 
mechanism, giving a low scattering intensity. Therefore, obliquely oriented and collapsed 
buildings have similar scattering mechanisms and scattering intensities, so serious mutual 
confusion exists in SAR images, leading to the overestimation of damaged buildings. To solve 
this problem, we propose a novel frequency-domain texture feature based on Fourier transform, 
i.e., the sector texture feature of the Fourier amplitude spectrum (STFFAS). In addition,  
STFFAS is used to design the building earthquake damage recognition scheme. Experimental 
results showed that the earthquake damage recognition accuracy can be significantly improved 
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by using STFFAS proposed in this paper. Our research design and experiment will be introduced 
in detail below.

2. Methods

2.1 Polarimetric decomposition method

 Different scattering components can be obtained by polarimetric decomposition. In post-
earthquake PolSAR images, buildings in different states correspond to different scattering 
components, e.g., some standing buildings that are parallel to the SAR flight path are called 
parallel standing buildings, and their dominant scattering component is the double-bounce 
scattering component; therefore, the earthquake damage recognition results of such buildings in 
earthquake-stricken areas can be directly obtained by polarimetric decomposition. In our work, 
the buildings that are undamaged and whose dominant scattering component is the volume 
scattering component are regarded as obliquely oriented buildings. Both collapsed buildings and 
standing obliquely oriented buildings in earthquake-stricken areas are dominated by the volume 
scattering component. In our research, we have conducted the polarimetric decomposition of 
PolSAR data using the improved Yamaguchi four-component decomposition (Y4R) method to 
recognize standing buildings (including parallel standing and obliquely oriented buildings) in a 
more complete manner. The Y4R method was proposed by Yamaguchi et al. as an improved 
version of the traditional Yamaguchi four-component decomposition model (Y4O) to increase 
the building recognition accuracy and recognize obliquely oriented buildings as comprehensively 
and accurately as possible (for more details on the Y4R method, see Ref. 24).

2.2 STFFAS

 Volume scattering components obtained by polarimetric decomposition correspond to 
obliquely oriented and collapsed buildings. Although they have similar scattering mechanisms 
and scattering intensities, they exhibit different texture characteristics in PolSAR images. The 
strength of the Fourier amplitude spectrum of SAR images represents the rate of change in 
scattering intensity. Obliquely oriented buildings have relatively regular and fine textures, while 
collapsed buildings have relatively irregular and coarse textures. The differences in the 
scattering intensities and textures of the two types of buildings can be better reflected with 
frequency-domain texture features. In our research scheme, STFFAS is applied to classify the 
two types of buildings in earthquake-stricken areas to improve the over-classification of 
collapsed buildings and suppress the overcorrection of obliquely oriented buildings. STFFAS 
can well describe the difference in texture between obliquely oriented and collapsed buildings,  
and accurately recognize the two types of buildings. As shown in Fig. 1, the STFFAS values of 
obliquely oriented buildings are greater than those of collapsed buildings, indicating that 
STFFAS is adequate for recognizing the two types of buildings.
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 The STFFAS calculation method is shown in Fig. 2. The total power image of PolSAR data 
(termed the SPAN image) contains the intensity information of all polarimetric channels. The 
intensity information in the SPAN image is the most abundant. Therefore, STFFAS of PolSAR 
data is calculated with the SPAN image. SPAN is calculated as 

 SPAN = HH2 + HV2 + VH2 + VV2. (1)

 Traverse the whole-scene SPAN image with the calculation window, calculate the STFFAS 
values of each calculation window, and obtain the STFFAS data of the PolSAR imagery. The 
STFFAS calculation method is described below, taking the calculation procedure for STFFAS 
values in one calculation window as an example.
 WI is the SPAN image in the calculation window. There are seven steps in the calculation of 
STFFAS. 
Step 1.  Perform a two-dimensional fast Fourier transform (FFT) on WI to obtain FWI (for 

details on FFT, refer to Ref. 25).
Step 2.  Calculate the amplitude spectrum of FWI to obtain AFWI. 
Step 3.  As shown in Fig. 2, take the center point of the AFWI image as the origin of the 

coordinates and divide the circle of 2π equally into n parts around the origin of the 
coordinates, with a vertex angle of 2π/n radians at the origin coordinates of each equal 
part. Calculate the sum of AFWI values of all pixels in the ith equal part to obtain 
AFWI_Ai. Calculate the sum of the AFWI values of all pixels for each equal part in turn 
to obtain n AFWI_Ai values {AFWI_A1, AFWI_A2, AFWI_A3, …, AFWI_An}. 

Step 4.  Calculate the ADFT value of AFWI according to the fourth line of Eq. (2). 
Step 5.  As shown in Fig. 2, divide the inscribed circle of AFWI into m rings of the same width 

by taking the center point of the AFWI image as the origin coordinates. Assuming that 
each ring has a width of RW, calculate the sum of the AFWI values of all pixels in the jth 
ring to obtain AFWI_Rj. Calculate the sum of the AFWI values of all pixels in each ring 
in turn to obtain m AFWI_Rj values {AFWI_R1, AFWI_R2, AFWI_R3, …, AFWI_
Rm}. 

Fig. 1. (Color online) Recognition performance of STFFAS for obliquely oriented and collapsed buildings. Blue 
and red points in the fi gure represent 1000 obliquely oriented building samples and 1000 collapsed building samples, 
respectively.
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Step 6.  Calculate the RDFT value of AFWI according to the fifth line of Eq. (2). 
Step 7.  Calculate the STFFAS value of WI according to the last line of Eq. (2).
 STFFAS can be expressed as
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Fig. 2. (Color online) Schematic diagram of STFFAS calculation.
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Here, real and imag represent the real and imaginary parts of a complex number, respectively; 
mean, std, and lg represent the calculated mean value, variance, and logarithm to the base 10, 
respectively.

2.3 Building earthquake damage information extraction procedure

 As shown in Fig. 3, the building earthquake damage information extraction procedure 
includes the following six steps:
Step 1.  Perform a polarimetric decomposition of the PolSAR data by the Y4R method to extract 

the double-bounce and volume scattering components.
Step 2.  Classify the objects to be recognized in the PolSAR image, whose dominant scattering 

components correspond to the double-bounce scattering components, as the parallel 
standing buildings. 

Step 3.  Extract the SPAN image from the PolSAR data according to Eq. (1). 
Step 4.  Set up an appropriate calculation window, traverse the entire SPAN image by the 

STFFAS calculation method shown in Fig. 2 and Eq. (2), calculate the STFFAS values, 
and obtain the entire STFFAS image of the PolSAR data. 

Step 5.  Choose an appropriate threshold value for STFFAS, and divide the volume scattering 
components obtained by polarimetric decomposition into collapsed and obliquely 
oriented buildings on the basis of the classification rule expressed by Eq. (3). From Fig. 
1, the STFFAS values of the obliquely oriented buildings are found to be greater than 
those of the collapsed buildings. Therefore, the classification rule of STFFAS can be 
expressed as follows.

Fig. 3. (Color online) Procedure of extracting damaged and undamaged buildings.
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Here, ε indicates the threshold value for distinguishing between collapsed and obliquely 
oriented buildings using STFFAS. 

Step 6.  Merge the obliquely oriented and parallel standing buildings as undamaged buildings, 
and define collapsed buildings as damaged buildings.

3. Materials

 The case study presented in this paper is based on the 4.14 Ms7.1 Yushu earthquake that 
occurred in Yushu County, Qinghai Province, China, on April 14, 2010. The epicentre of this 
earthquake was located at (33.1°N, 96.6°E). Yushu County is at a high altitude where the climate 
is dry and cold. There is very little vegetation in the urban area. It is sparsely distributed and 
mostly low vegetation, which has little impact on the identification of buildings in the 
earthquake-stricken area, so the ground object of vegetation was ignored in this experiment. The 
mountains surrounding the county were masked using the boundary .shp data of Yushu County, 
and only earthquake damage information of buildings in the urban area was extracted.
 The experimental data was the airborne high-resolution PolSAR image obtained by the 
Chinese airborne SAR mapping system (SARMapper) one day after the earthquake. Additional 
information about the PolSAR data used in this experiment is listed in Table 1. Figure 4 presents 
the 8192 × 4384 pixel SPAN image of the PolSAR data used to calculate STFFAS. In this 
experiment, 25000 verification samples were selected for collapsed, obliquely oriented, and 
parallel standing buildings, using the Google Earth Map and being colored red, blue, and green 
in Fig. 4, respectively.

4. Results

 Damaged and undamaged buildings were extracted from the PolSAR data used in the 
experiment by the building earthquake damage recognition procedure in Fig. 3. STFFAS was 
calculated by the method shown in Fig. 2. In this work, the calculation window of STFFAS was 

Table 1
Specific information of PolSAR data used in our experiment.

Date Flight direction Illumination 
direction

Incidence 
angle Band Flight altitude 

(m) Spatial resolution (m)

15. April 2010 From right to left Bottom 50° P 10,079 1 (range); 1 (azimuth)
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set to be a square to simplify the experimental calculation. It can be seen from Fig. 5 that the 
overall accuracy of classification of collapsed buildings, obliquely oriented buildings, and 
parallel standing buildings is the highest when calculating STFFAS using Eq. (2) with the 
calculation window size of 57 pixels × 57 pixels. As shown in Fig. 6, during the calculation of 
ADFT shown in Fig. 2, when the number n of equally divided angular zones in the circle of 2π in 
the AFWI image is 36, that is, when the vertex angle of each equal angular zone is π/18 radians, 
the overall classification accuracy for the three kinds of buildings is the highest. From Fig. 7, it is 
seen that during the calculation of RDFT shown in Fig. 2, when the ring width RW is set to 5 
pixels, the classification of the three types of buildings has the highest overall accuracy. The 
number of rings with equal ring width into which the inscribed circle of AFWI is divided is 
equal to window size/(2 × RW), that is, m = window size/(2 × RW). As can be seen from Fig. 1, 
there is a clear dividing line between the STFFAS values of the collapsed buildings and those of 
the obliquely oriented buildings at the STFFAS value of −8.22. The curve shown in Fig. 8 further 
shows that when the STFFAS value is equal to −8.22, the overall classification accuracy of the 
three kinds of buildings is the highest. Therefore, in our experiment, when classifying collapsed 
buildings and obliquely oriented buildings using STFFAS according to Eq. (3), the classification 
threshold ε is set to −8.22.
 The extraction results of building earthquake damage information in this experiment are 
shown in Fig. 9 for only the buildings with earthquake damage in the urban area after masking 
the mountains around the urban area using the urban boundary data of Yushu County. With the 
identified samples of collapsed buildings, obliquely oriented buildings, and parallel standing 
buildings marked in Fig. 4, the accuracy of the experiment results on building earthquake 
damage recognition shown in Fig. 9 is evaluated, and the confusion matrix for the accuracy 
assessment of our experimental results is shown as Table 2. Table 2 shows that the total number 
of diagonal samples where experimental results are consistent with the reference samples 
accounted for 81.3% of the total samples. Therefore, the overall correct recognition accuracy of 
the three kinds of buildings in the research area using our proposed method reached 81.3%.

Fig. 4. (Color online) SPAN image of Yushu County marked with the three types of building samples in the 
earthquake-stricken area.
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Fig. 5. (Color online) Selection of STFFAS calculation window.

Fig. 6. (Color online) Decision for the number of angular zones with same vertex angle in the circle of 2π of AFWI 
shown in Fig. 2.

Fig. 7. (Color online) Selection for the number of rings with same width in the inscribed circle of AFWI shown in 
Fig. 2.
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Table 2
Confusion matrix for accuracy assessment of recognition results of three types of buildings.

Experiment

Collapsed buildings Obliquely oriented buildings 
(No. of samples) Parallel standing buildings

Reference
Collapsed buildings 20266 4734 0
Obliquely oriented 
buildings 7456 17544 0

Parallel standing buildings 1209 625 23166
Overall accuracy: 81.30%

Fig. 8. (Color online) Decision for the threshold value of STFFAS.

Fig. 9. (Color online) Extraction results of the three post-earthquake building types in Yushu County.
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5. Discussion

 There are some recognized collapsed buildings with an orderly and regular distribution at the 
image boundary in the upper right corner of Fig. 9. This is because the SPAN image needs to be 
replenished to adapt to the size of the calculation window when calculating STFFAS, which is 
known as the boundary supplement effect. As seen in Table 2, when using the proposed method 
to extract building earthquake damage information, the producer’s accuracy (PA) of damaged 
buildings, which is the correct recognition rate of collapsed buildings, is 81.06%; and the PA of 
undamaged buildings, which is the correct recognition rate of obliquely oriented and parallel 
standing buildings, reaches 81.42%. That is, the PA of both damaged and undamaged buildings 
is above 80%, showing that the recognition of damaged and undamaged buildings is relatively 
balanced without an underestimation of undamaged buildings caused by the overestimation of 
damaged buildings or vice versa. Therefore, the recognition results of the proposed method are 
reliable for post-earthquake building damage assessment and support safety, because the 
overrecognition of damaged buildings will lead to a waste of rescue resources, while the  
underrecognition of damaged buildings will delay the rescue of buried people, increasing the 
danger to them.
 On the basis of the correct recognition rate of obliquely oriented buildings, 70.18% of the 
obliquely oriented buildings were separated from the volume scattering components. If such 
obliquely oriented buildings are misclassified as collapsed buildings, much manpower and 
material resources will be misdirected. By the Y4O method, all ground objects whose dominant 
scattering component is the volume scattering components will be classified as collapsed 
buildings. Although this method can achieve a recognition rate of 100% for collapsed buildings, 
the cor rect recognit ion rate of undamaged buildings is only 46.33%, i.e. 
23166/(25000 + 25000) ≈ 46.33%. Therefore, when using the Y4O method to recognize building 
earthquake damage, the inaccurate classification of the volume scattering components will 
cause an immoderate sacrifice of the correct recognition rate of undamaged buildings in 
exchange for the correct recognition rate of collapsed buildings.
 Most of the misclassified collapsed and obliquely oriented buildings appear at the junction or 
boundary of two ground objects owing to the square calculation window. A calculation window 
may contain multiple ground objects and many rows and columns. The junction of different 
objects is often only 1 or 2 pixels wide. Then, the calculation window will have a smoothing 
effect at this boundary, so the two different objects at the junction will be recognized as one 
object. Parallel standing buildings are misclassified as collapsed and obliquely oriented buildings 
mainly because some roof areas and transition zones between overlaying and shadow have lower 
scattering intensities. As a result, the parallel standing buildings with weaker scattering intensity 
are misclassified as collapsed and obliquely oriented buildings. In addition, errors in the manual 
selection of verification samples may lead to the misclassification of the three types of buildings, 
e.g., other ground object samples that do not belong to the verification sample category may be 
sporadically distributed in a complete verification sample zone. In other cases, the edges of 
selected building samples may be prone to mixing with other ground objects.
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 Since the STFFAS values of the obliquely oriented buildings are greater than those of the 
collapsed buildings, the larger the STFFAS segmentation threshold value is, the more collapsed 
buildings are recognized and the more collapsed buildings are misrecognized as obliquely 
oriented buildings. This will result in an overestimation of collapsed buildings and an 
underestimation of standing buildings. Conversely, the smaller the STFFAS segmentation 
threshold value is, the fewer collapsed buildings are recognized and the easier it becomes for 
damaged buildings to not be recognized, which may delay rescue operations and cause great 
risks to emergency rescue. Therefore, the segmentation threshold value of STFFAS for obliquely 
oriented and collapsed buildings cannot be set too small to obtain a high recognition accuracy of 
obliquely oriented buildings. It should be appropriately set on the premise that the correct 
recognition rate of collapsed buildings is not less than 80%, so as to ensure that the correct 
recognition rate of obliquely oriented buildings will be above 80%.

6. Conclusions

 To solve the problem of the overclassification of collapsed buildings when using the Y4O 
method, in this paper, we proposed a parameter called STFFAS that can describe the texture 
features for the amplitude spectrum of the frequency domain from Fourier transform. STFFAS 
proposed herein can be used to better distinguish between collapsed and obliquely oriented 
buildings, which present similar scattering intensities and are dominated by the same scattering 
component in the SAR image. STFFAS well differentiates the spatial textures of collapsed and 
obliquely oriented buildings on the basis of the frequency-domain properties. Therefore, we 
proposed to use STFFAS to process a large number of obliquely oriented buildings mixed 
amongst the collapsed buildings recognized by the Y4R method in order to improve the 
recognition accuracy of building earthquake damage. The STFFAS image corresponding to the 
SPAN image of PolSAR data was calculated. The volume scattering components obtained from 
the PolSAR data by the Y4R method were segmented using the STFFAS values and further 
divided into collapsed and obliquely oriented buildings. The overrecognition of disasters by 
directly classifying all the volume scattering components obtained by the Y4O method into 
collapsed buildings has been significantly alleviated. The experimental results also show that the 
proposed method for extracting building earthquake damage information can better recognize 
the damaged and undamaged buildings in the earthquake-stricken area, and hence attain a 
relatively high recognition accuracy of building earthquake damage. 70.18% of obliquely 
oriented buildings were successfully separated from the collapsed buildings recognized by the 
Y4R method, which has significantly improved the extraction accuracy of building earthquake 
damage information. Because of limitations in our data, no further experimental data were 
available for our experiment in this study. We will further verify the robustness of the proposed 
method when other relevant earthquake data are obtained. In addition, we will conduct in-depth 
research on the selection of segmentation thresholds to reduce artificial errors.
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