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 The rapid urbanization observed in Asian tropics has resulted in extensive landscape 
transformations, giving rise to novel challenges such as conflicts of interest among citizens and 
threats to biodiversity. To facilitate informed urban management policies, there is a pressing 
need for contemporary land use and cover maps that provide precise insights into the evolving 
landscape. In this paper, we present the city of Bengaluru, India (covering an area of 365,879 ha) 
as a case study. We introduce an open-source-driven pipeline method capable of generating an 
updated 11-class land cover map at a high resolution of 10 m, achieving a global F1 score of 0.82. 
Notably, our proposed pipeline represents a pioneering solution that effectively addresses the 
persistent issue of cloud cover caused by monsoons, enhancing the utility of such maps for urban 
management, and planning in rapidly evolving regions.

1. Introduction

 The rapid urbanization witnessed in Asian tropics has given rise to a unique set of challenges. 
Among these challenges, one noteworthy concern is the escalating human–bee conflict 
stemming from the encroachment of urban expansion into areas critical for ecosystem services 
and the survival of insect populations. In particular, colonies of the giant honey bee, Apis 
dorsata, have increasingly targeted surfaces within Indian urban centers like Bengaluru for 
nesting and foraging. Apis dorsata exhibits a distinct preference for nesting in elevated structures 
such as high-rise apartments and tall urban trees. However, owing to their inherent 
aggressiveness and substantial physical size (often twice that of an Apis mellifera individual), 
these bees evoke fear among the populace, prompting calls to pest management services for the 
destruction of their nests. Recognizing the vital role played by Apis dorsata as pollinators of 
plants and crops in the Bengaluru region,(1) it has become imperative to protect and conserve 
these important pollinators. To address these complex urban challenges within a megacity such 
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as Bengaluru, we have undertaken the task of creating a comprehensive land cover map to be 
able to study their precise nesting and foraging areas. Additionally, we aim to establish a 
transparent pipeline that enables the regular updating of this map, providing valuable resources 
for researchers and urban policymakers alike as they strive to mitigate the human–bee conflict 
and other associated issues.
 The land use land cover (LULC) represents the land surface type, such as forests, water, 
built-up, or rocky areas. The increasing availability of high-temporal- and high-spectral-
resolution data from artificial Earth observation (EO) satellites and the emergence of powerful 
algorithms and processing platforms to take advantage of a high volume of data have made 
remote sensing a valuable tool to map the landscape and conduct large-scale spatial analysis to 
assess human impact over ecosystems and environmental evolution.(2)

 Some studies have been conducted to map natural and artificial areas around the city of 
Bengaluru. Vanjare et al.(3) used images from the National Aeronautics and Space Administration 
(NASA) satellites Landsat 1 to 7 to evaluate urban growth in Bengaluru with a four-class land 
cover map (Built-up, Vegetation, Water, Barren land). Alex et al.(4) also made a four-class land 
cover map (Water, Barren land, Built-up, and Vegetation) from Landsat 7 images and GHS 
datasets (for Global Human Settlement, which are maps of built-up presence expressed as 
probabilities, made available using Sentinel Hub services) with a 30 m resolution in Bengaluru to 
assess green areas and built-up proportions over time. Ramachandra et al. used Landsat images 
to predict urbanization over time with IDRIS software and previous years’ land covers as an 
input.(5) Similarly, Dehingia et al. produced a seven-class land cover classification map with 
Landsat, Indian Remote Sensing (IRS), and Sentinel-2A images to measure urbanization and 
predict it for 2030 and 2050.(6) In June 2022, Google released a paper on the “Dynamic World 
Model”, a LULC deep learning model made from Sentinel-2 imagery aiming to make near real-
time LULC parallel to Sentinel-2 acquisitions to cover various user needs. This model is a nine-
class classification: Water, Trees, Grass, Crops, Shrub and Scrub, Flooded Vegetation, Built-Up, 
Bare Ground, and Snow & Ice.(7)

 The authors of Refs. 2–6 mainly focused on urbanization assessment and temporal evolution. 
Moreover, the outputs of the presented pipelines do not match the targeted classes because they 
distinguish too few classes or provide too large resolutions (Landsat imagery provides a 30 m 
resolution at maximum). Indeed, we aim at 11 classes with a resolution of at least 10 m. Also, 
training data and LULC models for the previous papers are usually not easily downloadable. The 
“Dynamic World Model” distinguishes many different classes but only collects Sentinel-2 
images and is unusable during the long monsoon period in India when cloud coverage is high.
 Our work presents a novel pipeline for mapping multiclass land cover around Bengaluru 
using multitemporal and multispectral EO satellite images from multiple publicly available 
datasets. Using powerful free tools such as Google Earth Engine, Orfeo Toolbox, and machine 
learning algorithms, we ran all steps of an Object-based Image Analysis (OBIA) to produce an 
11-class land cover map of more than 365,000 ha around Bengaluru. Using data from different 
sensors made it possible to overcome the limits raised by cloud coverage during the monsoon 
period. This method can be easily reproduced at a different time with cloud tools. The research 
objectives are as follows.
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1.  Produce an easily downloadable and up-to-date land cover map of the Bengaluru 
Agglomeration that covers all ground surface areas regardless of the cloud coverage at the 
time of data extraction.

2.  Develop an easy to reproduce method to map the land cover around a fast-changing urban 
landscape city using open-source tools and open data.

2. Study Area and Materials

2.1 Study area

 Bengaluru, the capital of the South Indian State of Karnataka, is located at 12.972N;77.595E 
and covers an area of 365,879 ha (Fig. 1). It comprises the urban center (Bengaluru urban) and 
the rural surrounding area (Bengaluru rural) of the city. In 2017, Ma et al. found that most 
supervised object-based land-cover image classification studies, areas of less than 300 ha (95.6% 
of the papers they reviewed) were investigated, which is a thousand times smaller than our 
working area.(8)

Fig. 1. (Color online) Map of Bengaluru study area and its location in the Karnataka region in India.
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2.2 Materials

2.2.1 Data source

 Here, the objective function F is computed for different values of the two parameters: spatial 
radius (Hs) and range radius (Hr), which are inputs. The two hypotheses that should be checked 
regarding the chosen data resolution are as follows.
(1)  Objects of interest on the surface are larger than a pixel size.
(2)  One pixel is composed of a single type of LULC.
 The data used for this study are chosen to fit these hypotheses. They are from open access 
resources and are mainly from satellite imagery captured by remote sensing techniques. We use 
the European Sentinel-2 and Sentinel-1 datasets, the Indian Satellite CartoSat Digital Elevation 
Model (DEM) dataset, and data from the collaborative cartographic project OpenStreetMap. 
Sentinel-2 images are Level-2A with atmospherically corrected surface reflectance and extracted 
using the Google Earth Engine cloud platform. Nearly all bands are extracted from the Sentinel-2 
dataset (from two satellites, 2A and 2B): Blue (2A:496.6 nm, 2B:492.1 nm), Green (2A:560 nm, 
2B:559 nm), Red (2A:664.5 nm, 2B:665 nm), Red Edge 1 (2A:703.9 nm, 2B:703.8 nm), Red Edge 
2 (2A:740.2 nm, 2B:739.1 nm), Red Edge 3 (2A:782.5 nm, 2B:779.7 nm), Red Edge 4 (2A:864.8 
nm, 2B:864 nm), NIR (Near Infrared, 2A:835.1 nm, 2B:833 nm), SWIR1 (Shortwave Infrared 1, 
2A:1613.7 nm, 2B:1610.4 nm), and SWIR2 (Shortwave Infrared 2, 2A:2202.4 nm, 2B:2185.7 nm).  
Extracted bands are rescaled to a 10 m resolution if necessary (The S2 bands used have an initial 
resolution of 10 or 20 m). Sentinel-2 images are composites extracted after applying cloud 
masks. 
 Sentinel-1 images are captured from a dual-polarization C-band synthetic aperture radar 
(SAR) instrument. Contrary to optic satellites, radar satellites have an active instrument that 
emits a wave toward its target and receives a new wave reflected by it. Commonly, radar waves 
can be transmitted and received in two polarizations: horizontal linear (H) and vertical linear 
(V). Since the scatter can change the polarization of the scattered wave compared with the 
original emitted wave, radar antennas are often made to emit and receive multiple polarizations. 
The instrument mode chosen is Interferometric Wide Swath (IW), which is available in single 
polarization (HH or VV) and dual polarization (HH + HV or VV + VH). Only VH and VV 
polarizations are kept since they are the only images of available areas all over Bengaluru under 
Sentinel-1 coverage. The resolution of Sentinel-1 images is 10 m. Only the “descending” orbit 
mode is available during our period of interest. The extraction is made using the Google Earth 
Engine cloud platform, and the preprocessing implements all steps from the Sentinel-1 
Toolbox.(9)

 The DEM from CartoSat was produced in May 2015 and extracted from the Bhuvan platform. 
OpenStreetMap data of roads are extracted for March 2022 with the QGIS plugin OSM. 
Sentinel-2 images, Google Earth WMS services, Google Street View, and local knowledge are 
used to create the ground truth for the training data.
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2.2.2	 Study	area	specificities

 An important criterion for the choice of the extraction date is the climate of the Karnataka 
region. Bengaluru City experiences a tropical climate, which is classified as Aw Köppen’s 
climate. This type of climate is characterized by a monthly temperature above 18 °C (22.9 °C in 
Bengaluru) and a distinct wintry dry season with less than 60 mm of rainfall per month (less 
than 50 mm for the Bengaluru dry season, which is from January to May).(10) In contrast, a 
monsoon period occurs from May to October with more than 125 mm of monthly rainfall. 
Naturally, the sky over Bengaluru is quite cloudy during this period, rendering the extraction of 
Sentinel-2 images difficult and justifying the use of available Sentinel-1 data regardless of the 
cloud cover. 
 Furthermore, extracting data to make an up-to-date LULC map justifies the choice of recent 
images. That is why Sentinel-2 images are extracted from January 2022 to May 2022 and 
Sentinel-1 images from January 2021 to June 2022. Sentinel-1 images were extracted during 
2021 to obtain crop cycle information. We chose not to use Sentinel-2 data in 2021 because there 
were almost no available images during this period due to the large number of monsoons in 
2021.

3. Methods

 LULC classification techniques are powerful and versatile tools to analyze, assess, map, and 
monitor changes in the landscape structure. Technological advances in the acquisition of 
information from Earth’s surface, algorithms to process them, and computational power have led 
to a quick augmentation of papers on the subject. Apart from deep learning approaches, there are 
two main approaches for LULC classification tasks: pixel-based classification and object-based 
classification. Pixel-based classification techniques classify each pixel in terms of its spectral 
value for different raster bands. Pixels from the same class are assumed to share similar spectral 
information. OBIA uses objects that are clusters of multiple homogenous pixels in terms of 
spectral information. It is a way of avoiding the “salt and pepper” effect of the pixel-based 
method caused by outlier pixels. It also provides the possibility to use textural information. 
Some groups also use a “subpixel-based approach,” which considers clusters of pixels with a size 
between a pixel and an object.(2) The method used here is OBIA since targeted objects are 
multiple pixels wide, and it is considered a more robust method for potential outliers. The 
different steps of the method are Segmentation, Feature Extraction, and Classification. The 
pipeline is shown in Fig. 2.

3.1 Targeted classes

  The targeted classes in this study are as follows.
●	 	Built-up:	Urbanized	 areas	 in	 the	 city	 center,	 villages	 in	 the	 urban	 part,	 or	 other	 artificial	

infrastructures (such as airports)
●	 	Buildings:	High	structures	with	multiple	apartments
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●	 	Croplands:	Agricultural	areas	covered	by	nonperennial	cultivations	(divided	into	planted	and	
nonplanted croplands between January and May 2022)

●	 	Forest:	Wild	natural	areas	covered	with	trees
●	 	Garden/Park:	Enclosed	land,	partly	wooded,	designed	for	walking
●	 	Plantation:	Agricultural	areas	covered	by	perennial	cultivations
●	 	Shrublands:	Wild	areas	that	are	mainly	covered	with	shrubs,	bushes,	and	sub-shrubs
●	 	Roads
●	 	Waterbody:	Lakes,	ponds,	and	rivers
●	 	Drought	wastelands:	Drought	and	sterile	areas

Fig.	2.	 (Color	online)	Full	pipeline	of	the	classification	process.
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3.2 Segmentation

 OBIA classifies objects that are composed of multiple pixels. The first step of the method is 
called segmentation and consists in splitting the area into multiple objects, which are groups of 
pixels. These objects can also be called “segments”. In our work, the segmentation is 
accomplished using a single-date raster with multiple bands. The following two constraints  
should be considered.
●	 	Objects	should	contain	pixels	that	are	homogenous	in	terms	of	spectral	information.
●	 	Two	 contiguous	 objects	 should	 contain	 pixels	 that	 are	 heterogeneous	 in	 terms	 of	 spectral	

information.
 Segmentation is a crucial step since the quality of feature extraction and classification highly 
depends on the precision of the segmentation.(11) If an object from segmentation is too large and 
thus made of two classes, it will confuse the classification algorithm. With very small objects, 
misclassifications due to outlier values may occur since one pixel’s value has more importance in 
the classification. Ideally, segmentation objects should be the same size as the objects we want to 
detect. Segmentation methods can be categorized into spectrally based methods, spatially based 
methods, hybrid methods, and semantic methods.(12) Here, we use the Region Growing method 
MeanShift whose algorithm LSMS is made available by the open-source software Orfeo Toolbox 
(OTB). It chains the four steps of the MeanShift framework: MeanShiftSmoothing, 
LSMSSegmentation, LSMSSmallRegionsMerging, and LSMSVectorization.
 Most OBIA studies do not use a segmentation accuracy assessment method to calibrate the 
segmentation parameters and only perform qualitative visual assessments.(13) However, we 
consider that this step has a crucial effect on the final classification quality. With a poorly 
performing segmentation, two objects from different classes can be segmented as one single 
object, which will confuse the classification algorithm. Currently, there are two types of method 
to assess the segmentation quality: supervised and unsupervised approaches.(12) Here, we use 
the unsupervised segmentation assessment method from Parameter selection for region-
growing image segmentation algorithms using spatial autocorrelation.(14) We compute two 
indexes, the intersegment variance α (measuring the homogeneity of  the intersegment pixel 
values) and Moran’s I autocorrelation index (measuring the heterogeneity of the intersegment 
pixel values):
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where zi is the deviation of the brightness value of object i from the mean of all objects (xi-x̄ ), wi,j  
is the spatial weight between objects i and j, which is one for adjacent regions or zero otherwise, 
n is the total number of objects, and S0 is the aggregate of all spatial weights.
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The goal is to minimize α and β. Then, the objective function is given by F(v, I) = F(v) + F(I), 
where F(v) and F(I) are normalization functions.
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Here, the objective function F is computed for different values of the two parameters, spatial 
radius (Hs) and range radius (Hr), which are inputs of the LSMS algorithm. Hs is the spatial limit 
above which two pixels are not merged. Hr is the maximum distance between two pixels in 
terms of band values above which two pixels are not merged. The segmentations are made with 
red, green, blue, and infrared bands of a Sentinel-2 composite image taken in January 2021. 
Random square patches of the image are selected for segmentation assessment. The proportion 
of the area used in segmentation assessment is the same as in the original paper. This date is 
chosen because it is the only date when we were able to extract a raster without any cloud 
coverage.	 δ	 is	 calculated	 for	 each	 segment	 from	 the	 output	 of	 LSMS	 for	 the	 January	 2021	
grayscale raster. In particular, α is computed using the Python packages geopandas and 
rasterstats and β with the Python package PySAL. The minimum size parameter of LSMS is set 
to 10000 m2 (which corresponds to the area of an object made up of 100 Sentinel-2 pixels) since 
it is the size of the most miniature targeted objects, namely, small lakes of 10000 m2. Hs is tested 
in an interval of 2 to 40 with a step of 2 and Hr in an interval of 2 to 30 with a step of 2. Finally, 
after segmentation, roads are clipped from the segmentation output. Roads are originally line 
vectors extracted from the OpenStreetMap open-source API. Five types of roads are then 
converted to polygons using the QGIS built-in Buffer function with a buffer distance depending 
on the type of road. The chosen buffer diameters are as follows: 40 m for Highway motorway, 30 
m for Highway trunk, 20 m for Highway primary, 20 m for Highway secondary, 10 m for 
Highway tertiary, 10 m for Highway residential, and 10 m for Highway unclassified. The 
presented road nomenclature is taken from OpenStreetMap.

3.3 Feature extraction

 Feature extraction is the process of collecting traits that are unique to each object and 
selecting the most meaningful of them to discriminate and classify them into the targeted 
classes. A feature is a numeric representation of an aspect of the raw data. This classification 
step aims to extract features from raw data and make new combinations that are meaningful for 
the classification machine learning model (this step is called feature engineering). Then feature 
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selection aims at filtering the most meaningful features: too many features compared with the 
number of training samples leads to difficult learning and sometimes impossible model 
convergence to a proper classification scheme. All the features’ values extracted in this part are 
extracted at the pixel scale; then, summary statistics are calculated at the object scale. The latter 
are computed with the OTB ZonalStatistics algorithm. This algorithm takes a raster and a 
polygon shapefile to extract the maximum, mean, standard deviation, and minimum of each 
band of the raster for all segments.

3.3.1 Feature engineering

 All bands from Sentinel-2 images from the most recent available images are extracted: Red, 
Green, Blue, NIR, RE1, RE2, RE2, RE4, SWIR1, and SWIR2 for monthly composites from 
December 2021 to May 2022. Then neochannels (which are new bands whose formula is made 
up of multiple bands) are computed from raw Sentinel-2 bands for each date:(15–17)
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 Neochannels are computed using the Google Engine cloud platform. The neochannels are 
chosen for their ability to distinguish classes that seemed to have similar spectral signatures in 
preliminary tests. Values of the Cartosat-1 DEM are also extracted. From DEM, slopes are 
computed with the QGIS built-in slope tool. Moreover, some of the Haralick textures are 
extracted from the grayscale raster of January 2022.(18) Texture can be defined as a spatial 
organization of physical elements showing a repeated pattern robust to translation, although 
there is considerable spectral variability. The Gray Level Co-occurrence Matrix (GLCM) is 
computed with a 3 × 3 size sliding kernel. Among all available texture features, eight are 
computed using the HaralickTextureExtraction function from OTB in the QGIS environment: 
Energy, Entropy, Correlation, Inverse Difference Moment, Inertia, Cluster Shade, Cluster 
Prominence, and Haralick Correlation. Finally, VH and VV polarizations are extracted from 
Sentinel-1 datasets between January 2021 and June 2022 in the form of monthly composites. 
Since Sentinel-1 data are available every month without the constraint of monsoons, we extracted 
information within a wider period than data from Sentinel-2 to capture crop dynamics. A 
neochannel is also computed:(19)
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All these indexes were proven to be able to distinguish between classes with close spectral 
signatures. For example, NDVI can help in discriminating classes of different vegetation types.

3.3.2 Feature selection

 Finally, 404 features are extracted from raw rasters and ε to θ. Fitting a machine learning 
model with too many features might cause the problem of the curse of dimensionality: having 
too many features compared with the training sample size (Fig. 3) implies a risk of overfitting 
for the model, which will incur difficulties in understanding borders between classes. 
Regrouping samples into classes needs a lot of training data to clearly define the borders. 
Otherwise, we will have a poor accuracy with real data. Working with high-dimensional data 
may make the search of patterns more difficult. A less complex model is also easier to interpret 
and quicker to train. To solve this problem, feature selection methods are used. The first method 
to remove some useless features is to use correlations between features. Correlation is a 
statistical technique measuring how one variable relates to another. It is a bivariate analysis that 
shows how the  change of one variable is linked to the variations of the other. The correlation 
coefficient computed here is the Pearson correlation, which is defined as
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 On the basis of pairwise correlations with a threshold of 0.90 (positive or negative), we can 
delete one of the two correlated features in each pair. Then, the wrapper selection method, 
named forward selection, from the Python package Scikit-learn is applied.(20) It is an iterative 
and greedy method that evaluates model performance when adding each feature one at a time. 

Fig. 3. (Color online) Sizes of classes in training sets.
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Each addition is made considering the lowest p-value among features. Finally, PCA could be 
used to reduce the feature space dimension but does not prove effective in our case. We trained 
the model for different sizes of the feature set: 10 to 50 with a step of 10. F1 is the metric used to 
evaluate the performance for each number of features. F1 for one class is defined as follows.

 1 2 precision recallF
precision recall
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+
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tp fp
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+
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tp is the number of objects classified to the targeted class that they really belong to, fp is the 
number of objects classified to the targeted class that they do not belong to, and fn is the number 
of objects that are classified in a class other than the one targeted, but which, in fact, belong to 
the targeted class.

3.4	 Classification

 We train three easy-to-use models widely employed for classification: Support Vector 
Machine (SVM),(20) Random Forest,(21) and the Gradient Boosted classification algorithm 
LightGBM.(21–23) Hyperparameters were set to default values, and the global F1 score was used 
as the classification accuracy metric. Classification algorithms compared in this work have been 
widely used in remote sensing papers. Classification pipelines are implemented using the Python 
packages Scikit-Learn and Yellowbrick. Training is done using the wrapper method, first, to 
define the best features for each model and for different feature set sizes, then run on the best 
subset of features. One important criterion for training is the number of training samples and the 
number of samples per class. Unbalanced classes should be avoided since large classes would 
affect the model considerably. Moreover, small classes with poor accuracy will not  greatly 
influence global accuracy and go unnoticed. Models will have difficulties generalizing on small 
classes. Thus, following two constraints must be considered.
●	 Having	enough	training	samples
●	 	Having	balanced	classes
 To create the training samples, the grid produced for segmentation is used. One hundred 
sixty-two cells are selected, and the objects from segmentation in them are annotated. Two 
thousand one hundred and eighty samples have been annotated (2% of the total number of 
objects after segmentation). Proportions of each class are presented in Fig. 3. The respective 
proportions are representative of real surface frequency. Some classes are smaller owing to the 
lack of real surfaces in the chosen annotated areas.
 The best subsets of features are trained through fivefold cross-validation. It consists of 
training the model multiple times on different data splits. Each split is composed of a training 
and a testing set. For each split, the model is trained on the training set and evaluated on the 
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testing set. This technique avoids splitting of the data that would not be representative of the 
global data. Accuracies reported in this paper are means over the whole fivefold cross-validation 
process. In addition to that, stratified sampling, which is a sampling method applied to data 
before allocating them to the folds, is applied to the splitting. Its role is to produce testing and 
training samples that have the same proportions of each class as in the original data. By applying 
stratified sampling and k-fold cross-validation, we ensure that each training–testing sampling 
pair is representative of the original set of training data and that training accuracy is not affected 
by outlier training sets.

3.5 Accuracy assessment

 The model’s accuracy is assessed at the object scale, which means that the accuracy is 
computed depending on the class allocated to the objects. The main accuracy assessment metric 
used in this work is the F1 score. Global F1 scores are used for features and model selections, 
and the per-class F1 score is used to obtain detailed results for each class using the best model. 
Precision and recall metrics can also provide information about the classification. The use of the 
confusion matrix also gives details about which classes are difficult to distinguish.

4. Results

4.1 Segmentation

 The results of the segmentation are presented in Fig. 4. The maximum of the objective 
function F, which means low intra-object heterogeneity and high inter-object heterogeneity is 
reached for a value of 26 for Hs and 10 for Hr. Values of F can vary considerably between two 
close points, which might show that either the method is not robust and causes randomness since 

Fig. 4. (Color online) Values of the Segmentation Objective Function for all parameter pairs.
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two close segmentations can be very different, or the differences between two segmentations are 
small in absolute values. However, there is a real tendency of a global increase in F along the Hr 
axis. We can find out visually that the Hr parameter affects the value of the objective function 
much more than Hs. Indeed, the Pearson correlation coefficient between Hr and F	is	−0.64	with	
a p-value of 2.41−36, whereas it is 0.12 with a p-value of 0.03 between Hs and F. This indicates 
that it will not be necessary to compute all (Hs, Hr) pairs if the method is reproduced, which will 
save much computational time. On the basis of the results of the segmentation, the segmentation 
with the parameters Hr = 10 and Hs = 26 is chosen. An example of the segmentation outputs is 
shown in Fig. 5.

4.2 Feature selection

 Results for each model are presented in Figs. 6 and 7. F1 scores output from the k-fold cross-
validation for each combination are close. Output scores are often over 0.80, which means that 
the feature selection method successfully filtered hundreds of features to keep a few dozen that 
are meaningful and sufficient to distinguish all classes. Further tests with more features did not 
show a significant improvement in accuracy. Adding even more features again will ultimately 
decrease accuracy, since, when we trained the model with all features, we obtained a very low 
accuracy (global F1 score < 0.50).
 The best combination selected by the method is Random Forest using 40 features. Scores are 
very close, and we chose to select the best global F1 score.

Fig. 5. (Color online) An example of segmentation outputs.
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 Among the best selected features, EVI and BSI are considered interesting in many months 
(January, March, April, and May). Since these indexes are designed to monitor vegetation 
density, we can assume that they are selected to quantify vegetation differences between the 
beginning and the end of the summer period to detect crops that had been planted in contrast to 

Fig. 6. (Color online) F1 score for all classes with each combination of model and number of features.

Fig. 7. (Color online) Global F1 score with each combination of model and number of features.
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croplands with no crops cultivated during summer and the ground without any plants. NDVI is 
also selected for May, probably partly for the same goal. Sentinel-1 VH, VV (copolarized and 
cross-polarized backscattered data collected from Sentinel-1 data), and the Radar Vegetation 
Index (RVI) are also selected for multiple months and confirm this analysis. EVI, NDVI, and 
Sentinel-1 data must also help to distinguish plantations and forests. The SWIR2 (shortwave 
infrared 2) band from Sentinel-2 is selected in April 2022. This could help to distinguish rocky 
areas.(24) Slope and DEM features are selected, which suggest that some types of surface are 
more represented in certain heights, altitudes, and steepness. All selected indexes are listed in 
Appendix 1.

4.3	 Classification

 The best algorithm with the best subset of features are kept for final classification. The best 
combination is the Random Forest algorithm with 40 features from Sentinel-2 images, Haralick 
features, DEM, slopes, and Sentinel-1 images. The Random Forest is trained on all training data 
using a stratified fivefold cross-validation method. The confusion matrix of the training step is 
presented in Fig. 8. It is the sum of all confusion matrices from the k-fold training. Most of the 
training samples are in the diagonal, meaning they are well classified in the process. The 

Fig.	8.	 (Color	online)	Confusion	matrix	from	classification	process.
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training results in an overall accuracy of 0.846. As expected in the explanatory study, most of 
the confusion arises between vegetation classes. Twenty croplands that had been planted in 2022 
are misclassified as nonplanted ones and 17 of them as plantations. Concerning the former, it 
could be due to training samples in the early stage of the plantations that have a spectral 
signature between planted and nonplanted crops. The latter could be the result of the confusion 
between croplands and sparse plantations. Misclassifications are also made for drought 
wastelands that are classified as nonplanted croplands. This must be because these two types of 
soil are physically similar. Moreover, 15 plantations are classified as forests and 16 forests as 
plantations. The amount of misclassifications between forests and plantations is small, 
considering the difficulty in distinguishing these two classes estimated during the preliminary 
analysis. Finally, 47% of the open forest/plantation are misclassified into Forest or Plantation. 
This is probably due to the similarity of spectral signatures between these classes. More 
importantly, the resolution of Sentinel-2 images makes it difficult to estimate vegetation density 
compared with more precise data. Also, the class open forests/plantations were qualitatively 
defined and may lack a quantitative definition.
 Recall, Precision, and F1 score metrics for all classes are presented in Fig. 9. Precision is, for 
one class, the number of correctly classified objects among all objects that are classified in it. 
Recall is, for one class, the number of correctly classified objects among all objects that should 
have been classified in it. When precision is high, it means that most objects in a class belong to 
it. When recall is high, it means that most objects that really belong to a class are really classified 
in it. Precision is greater than recall for planted croplands, open forests/plantations, water 
bodies, drought wastelands, rocky areas, and shrublands, which means that these classes capture 
fewer objects than the others, but when they are classified, they have a good chance of being well 
classified. However, some objects that should be classified in it are not. For the other classes, 
most of the objects that really belong in them are well classified, but they may have many false 
positive classifications. Open forests/plantations have a very low recall, meaning that many 
areas considered as belonging to them are classified in other classes. To a slightly lesser extent, 
planted croplands, drought wastelands, and rocky areas also have low recall. These results have 
a negative impact on the F1 score, which is very low for open forest/plantations. This class’s 

Fig. 9. (Color online) Recall, Precision, and F1	score	for	each	class	from	classification	process.
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recall barely reaches 40%, meaning that half of the actual open forest/plantations are 
misclassified. The final classification run over the whole area with the model trained on all 
examples is presented in Fig. 10.

5. Discussion

 The study area is unusually larger than those used in standard remote sensing papers.(8) This 
constraint requires many training samples to be overcome. Despite the limited size of the 
training set, the model achieves good accuracy. In particular, the crops, plantations, and forest 
classes are well distinguished. However, the classification accuracies of rocky areas and open 
forests/plantations are low owing to their being confused with forests or shrublands and built-up 
or shrublands, respectively. The accuracy of open forests/plantations probably suffers from the 
low resolution of the data that does not correctly reflect the vegetation density. High-resolution 
data paired with high-resolution textures could solve this problem. Moreover, whereas open 
forests and plantations were only defined as tree areas with openings, a quantitative definition 
with a percentage of tree coverage should be explored in the future. For now, we could also 
merge “forests” with “open forests” and “rocky areas” with “shrublands” to achieve higher 
accuracy. More training samples for these classes that are not the most numerous could also help 
to tackle this problem.

Fig.	10.	 (Color	online)	Land	cover	classification	of	Bengaluru.
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 Furthermore, since classified objects are outputs of segmentation, classification accuracy 
highly depends on it. Parameter selection methods are scarce for segmentation, and the one used 
in this study only allows the mobilization of four Sentinel-2 bands: Red, Green, Blue, and NIR 
for January 2022. Results of the segmentation part, and, by extension, results of the classification, 
could be enhanced with the use of more bands or indexes (such as the vegetation index to better 
cluster spatial vegetation patches, for example). Whereas different parameters with the same 
bands only correct some object breakdowns, the use of several more bands through PCA might 
increase the precision of the results for this step. Indeed, in the final segmentation, we can see 
some objects are wrongly bound and cause uncertainties during the annotation step and complex 
classification. This problem would not be solved using a different model or a model with better 
parameterization.
 Concerning the annotation step, we assume that we can gain a few accuracy percentage 
points with more training samples. Another obstacle is the availability of good satellite images 
for the period of interest and the lack of terrain knowledge. Ground truth was not made by 
people on the ground in India. Images for annotation validation were made using Sentinel-2 
images and Google Earth’s high-resolution images. Since the latter were not the latest up-to-date 
images, we could not use them for crop states, for example. Moreover, images were insufficient 
from June because of the occurrence of monsoons. Using Google Street View, Sentinel-2 images, 
and local knowledge with Indian researchers, a satisfactory training set was made. However, a 
ground truth training set made by people in the field using high-resolution and up-to-date data 
could bring more assurance to its validity. It could also make it possible to distinguish crop and 
plantation species and determine a more precise land cover with more classes.
 However, the training results and the model resolution should be sufficient to map nesting 
and foraging sites because the foraging location that is decoded from the study of the waggle 
dances of Apis dorsata is on the order of meters and beyond.(25) Thus, a precision higher than a 
meter would not make sense. Some studies have succeeded in showing the tendencies of foraging 
places with less classes and less precise land use land cover maps.(26) In urban and peri-urban 
spaces, honey bees nest near and forage in large green areas, small parks, and small green 
patches as well.(27) Our classification will surely be sufficient to detect most foraging areas that 
could help local groups to estimate places important to Apis dorsata colonies. Nevertheless, we 
could not clearly capture all the landscape details. After detecting the most visited places, it 
could be relevant to make another classification with better resolution.

6. Conclusion

 This research was carried out to produce the most recent 11-class and 10-m precision land 
cover map of the complete metropolitan area of the tropical megacity Bengaluru. Land cover 
maps of such large areas have only rarely been produced so far. Moreover, the proposed pipeline 
uses only open data and cost-free alternatives. Researchers could reuse this pipeline to create up-
to-date maps in the future. We incorporated three machine learning algorithms: Random Forest, 
SVM, and LightGBM. Notably, Random Forest emerged as the top performer, achieving an 
impressive global F1 score of 0.82. In our analysis, we utilized training data from multiple 
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sensors, spanning January 2021 to June 2022, and a DEM from 2015. These data, both in their 
raw form and as engineered features (including EVI and RVI), were employed to train our 
classification model. Leveraging feature selection techniques, we identified the 40 most 
informative features for classification. Our exploration of data from multiple sensors proved 
pivotal in addressing a significant challenge—overcoming dense cloud cover associated with 
annual monsoons, which traditionally hindered optical image classification. We believe that the 
availability of large-scale, easily generated land cover maps will be instrumental in future 
endeavors to assess the impacts of escalating urbanization on conflicts of interest among humans 
and the associated threats to the environment and biodiversity.
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'S2_2022-3_EVI_Stdv',
'S2_2022-3_red_Stdv',
'S2_2022-4_EVI_Stdv',
'S2_2022-4_MBI_Stdv',
'S2_2022-4_BSI_Mean',
'S2_2022-4_EVI_Mean',
'S2_2022-4_MBI_Mean',

'S2_2022-4_NDWI_Mean',
'S2_2022-4_RE4_Mean',

'S2_2022-4_SWIR2_Mean',
'S1_2021-1_VH_Mean',
'S1_2021-1_VV_Stdv',
'S1_2021-2_VH_Stdv',
'S1_2021-3_RVI_Stdv',
'S1_2021-6_RVI_Stdv',
'S1_2022-2_RVI_Stdv',
'S1_2022-4_RVI_Mean',
'S1_2022-6_VV_Mean',
'S1_2022-4_VH_Stdv',

'CS_DEM_Mean',
'CS_SLOPE_Mean',

'HAR_2022-1_sent_100_Stdv',
'HAR_2022-1_sent_100_Mean'


