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 Hypertension is a major risk factor for cardiovascular disease, coronary heart disease, stroke, 
and other diseases. According to statistics from the World Health Organization, the number of 
deaths caused by cardiovascular disease is as high as 17 million each year. In this study, a 
convolutional fuzzy neural predictor (CFNP) model was developed to estimate systolic blood 
pressure (SBP), diastolic blood pressure (DBP), and mean arterial pressure (MAP). The 
developed CFNP model uses a convolutional layer to extract features from photoplethysmography 
and electrocardiography sensing signals. It then uses a maximum pooling layer to compress 
these features to reduce the number of calculations. A feature fusion layer is added to the 
developed model to integrate information from the convolutional layer and reduce the input 
dimension of the fuzzy neural network (FNN). Finally, the fused feature information is sent to 
the FNN for prediction. The Shapley additive explanations (SHAP) method was used in this 
study to perform feature analysis and calculate the contribution of each extracted feature. On the 
basis of the aforementioned analysis and calculations, superior feature sets were selected for the 
developed model. Experimental results indicated that the mean absolute errors (MAEs) of the 
CFNP model in predicting MAP, SBP, and DBP when using the superior feature sets obtained 
through SHAP analysis were 9.34, 14.13, and 9.39 mmHg, respectively. The proposed model also 
outperformed other machine learning models in terms of MAE in MAP, SBP, and DBP 
predictions.

1. Introduction

 Human beings live in a society with plenty of food and clothing, but diseases of modern 
civilization quietly appear in our lives, such as high blood pressure, diabetes, and cardiovascular 
disease. Today, clinicians routinely diagnose and classify diseases on the basis of signal 
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information collected from physiological sensors. Biomedical sensing signals, if processed 
correctly and efficiently, have the potential to facilitate advanced monitoring, diagnosis, and 
treatment planning.(1) Biomedical sensors use semiconductor technology to measure human 
physiological parameters in a continuous, real-time, and noninvasive manner.(2) 
Electrocardiography (ECG)-,(3) electromyography (EMG)-,(4) and electroencephalography 
(EEG)-(5) based sensors merge the fields of microelectromechanics, biology, and chemistry. The 
development of electrochemical sensors is particularly promising owing to their low cost, 
simplicity, and portability.(6)

 Blood pressure (BP) is often expressed in terms of systolic BP (SBP) (i.e., the pressure within 
the blood vessels when the heart contracts) and diastolic BP (DBP) (i.e., the pressure within the 
blood vessels when the heart relaxes). Under normal circumstances, the BP of a healthy person is 
below 120/80 mmHg. If the BP is between 120/80 and 140/90 mmHg, prehypertension occurs, 
and when the BP exceeds 140/90 mmHg,(7) hypertension occurs. Hypertension is a major risk 
factor for cardiovascular disease, coronary heart disease, stroke, and other diseases. According 
to statistics from the World Health Organization,(8) the number of deaths caused by 
cardiovascular disease is as high as 17.3 million per year. Of these deaths,(8) 7.3 million are 
caused by coronary heart disease and 6.2 million are caused by stroke. Because prehypertension 
usually has no obvious symptoms and most people do not measure their BP regularly, they do 
not know that they have high BP until their vital organs are damaged. Therefore, the regular 
monitoring of BP is crucial for the early diagnosis of hypertension. Currently, the standard 
sphygmomanometers(9) used in clinical practice are the mercury sphygmomanometer and 
electronic sphygmomanometer.
  Because the aforementioned two devices can be used for the intermittent measurement of 
BP, many researchers(10–13) have attempted to develop noninvasive cuffless BP measurement 
technology. Most noninvasive cuffless BP measurement methods involve extracting features 
from electrocardiography (ECG) or photoplethysmography (PPG) signals and using these 
features to estimate BP. Poon and Zhang(10) developed a cuffless and noninvasive technique for 
BP prediction. This technique involves predicting BP by using the time interval from the R wave 
of an ECG signal to the feature point of a PPG signal at a predetermined threshold in the same 
heartbeat cycle. This time interval is called pulse transit time (PTT). The cuffless BP 
measurement technology proposed in Ref. 10 can meet the standards required for medical 
diagnosis and can be used in wearable devices. If the PTT is insufficiently long for tracking the 
low-frequency (LF) oscillation of arterial BP (ABP), the accuracy of BP prediction is 
unsatisfactory. To overcome this problem, Ding et al.(11) proposed a new feature called 
photoplethysmogram intensity ratio (PIR). This feature can be used to track LF oscillations of 
changes in BP caused by changes in arterial diameter. The aforementioned authors developed a 
BP prediction model based on PIR and PTT, and this model was more accurate than the model 
based on only PTT. Thambiraj et al.(12) proposed an algorithm that takes the PTT, PIR, and 
Womersley number (α) as inputs to achieve continuous cuffless BP monitoring. The Womersley 
number of the viscous effect influences BP, and the results in Ref. 12 indicated that a high 
accuracy was achieved when α was used to predict BP.  Cattivelli and Garudadri(13) proposed a 
method for predicting BP on the basis of pulse arrival time (PAT) and heart rate (HR). PAT 
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represents the delay between the Q-, R-, and S-wave (QRS) peak of an ECG signal and the 
corresponding point of a PPG signal. HR and PAT are used to achieve high robustness in 
measurements of random deviation. Therefore, these parameters were the input features of the 
model developed in this study.
 Continuous and noninvasive BP prediction has not been fully realized in previous studies. 
With the rapid development of artificial intelligence, machine learning methods have been 
introduced into medicine, including those for noninvasive BP prediction. For example, Zhang et 
al.(14) proposed a classification and regression tree model based on features such as ECG signals, 
PPG signals, PTT, oxygen saturation (SPO2), and HR for BP prediction. This model uses a cross-
validation method for automatically determining and optimizing the aforementioned parameters. 
The results described in Ref. 16 indicated that the prediction accuracy of the aforementioned 
model was more than 90%, with an error range of ±5 mmHg. Hsieh et al.(15) proposed a linear 
regression model for predicting SBP and DBP. This model combines static and dynamic PTT 
features to achieve a high correlation coefficient (R2) and a low mean squared error (MSE). 
However, finding features related to BP for machine-learning-based BP prediction models 
requires considerable time and relevant knowledge. Therefore, some studies have used deep 
learning methods for BP prediction. Lee and Chang(16) proposed a regression model based on a 
deep belief network, which is a type of deep neural network, and artificial features obtained 
through bootstrap technology to predict SBP and DBP.(17) This model outperformed traditional 
algorithms and achieved an overall grade of A in terms of the British Hypertension Society 
score. Pan et al.(18) developed an automatic BP measurement method based on deep learning. A 
convolutional neural network (CNN) was used to identify Korotkoff sounds, which are heard 
with a stethoscope during noninvasive BP measurement. The results described in Ref. 18 
indicated that the aforementioned method is effective and can be used as an alternative to 
oscillometry-based automatic BP measurement.
 CNNs are currently the most commonly used deep learning networks, and they consist of 
convolutional layers, pooling layers, flat layers, and fully connected layers. Compared with 
traditional machine learning algorithms, CNNs can more effectively automatically extract 
crucial features and identify rules from them. However, the fully connected layers used in a 
CNN increase its number of parameters, hardware requirements, and computing time. Therefore, 
some researchers have used fuzzy neural networks (FNNs) to reduce the number of model 
parameters. Fuzzy logic is a multivalued logic that takes infinite values in the interval [0, 1]. In 
fuzzy logic, a membership function is used to represent the degree to which an element belongs 
to a fuzzy set. Fuzzy logic resembles human thinking and can be used to solve complex problems 
easily by using expert knowledge. FNNs(19) are frequently used in medical diagnosis. Jang(20) 

proposed an adaptive neurofuzzy inference system, using a hybrid algorithm to improve the 
accuracy of diabetes classification for increasing the accuracy of predicting patients with 
cardiovascular disease. Terrada et al.(21) used fuzzy logic to establish a fuzzy expert system for 
the diagnosis of heart disease. Le(22) proposed a fuzzy C-means clustering interval type-2 
cerebellar model articulation neural network to improve the diagnostic accuracy of breast cancer 
and liver disease.
 In this study, a convolutional fuzzy neural predictor (CFNP) model was developed for the 
noninvasive continuous prediction of SBP, DBP, and mean arterial pressure (MAP). The input of 
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this model comprises features extracted from denoised PPG and ECG signals. The developed 
CFNP comprises a convolutional layer, a feature fusion layer, and an FNN layer. The feature 
fusion layer is used to integrate information from the convolutional layer and reduce the input 
dimension of the FNN. To reduce the number of adjustable parameters, an FNN is used instead 
of a fully connected neural network. The Shapley additive explanations (SHAP) method is used 
to analyze the contribution of each feature for conducting dimensionality reduction. In summary, 
the major contributions of this study are as follows.
(1) A CFNP model is proposed for the prediction of SBP, DBP, and MAP based on the features 

extracted from PPG and ECG signals.
(2) Four fusion methods, namely, global max pooling (GMP), global average pooling (GAP), 

channel max pooling (CMP), and channel average pooling (CAP), are used in the proposed 
model to integrate information from its convolutional layer. These fusion methods reduce the 
input dimension and shorten the operation time of the predictor network.

(3) An FNN is used instead of a fully connected neural network in the proposed CFNP model to 
reduce the number of parameters to be adjusted in this model.

(4) The SHAP method is used to analyze the contribution of each feature extracted from PPG 
and ECG signals to establish a CFNP model with low-dimensional feature input.

 The rest of this paper is organized as follows. Section 2 provides a detailed introduction of the 
overall architecture of the developed model. Section 3 presents the experimental results obtained 
using the developed CFNP model and other models. Section 4 concludes the study and provides 
recommendations for future research.

2. Materials and Methods

 Figure 1 shows the architecture of the proposed model for cuffless BP prediction. The steps 
involved in the proposed model are described in the following text. First, PPG and ECG signals 
are preprocessed and features are extracted. Second, the extracted features are used as the input 
signal of the CFNP model. Third, the one-dimensional (1D) convolutional layer in the CFNP is 
used to extract features of the input data. Fourth, fusion methods are used to reduce the number 
of model parameters. Fifth, the features obtained from the fusion layer are used as the input of 
the FNN. Sixth, the FNN outputs the predicted SBP, DBP, and MAP. These steps are detailed in 
the following subsections.

2.1 Preprocessing and feature extraction

 The signal preprocessing method in Ref. 23 was used in this study. The third-order 
Butterworth bandpass finite impulse response filter was used to remove artifacts from the 
collected signals. The 23 features used in Refs. 23 and 24 were used as the input of the proposed 
model. The definitions of these features are presented in Table 1.
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Fig. 1. (Color online) Architecture of the proposed model for cuffless BP prediction. 

Table 1
Detailed definitions of the features used in Refs. 23 and 24.
Feature Name Definition Feature Name Definition
alpha Womersley number SW25 Systolic Width at 25%

hrfinal Heart rate SW25+DW25 Systolic Width at 25% +
Diastolic Width at 25%

ih Highest intensity of PPG DW25/SW25 Diastolic Width at 25% /
Systolic Width at 25%

il Lowest intensity of PPG SW33 Systolic Width at 33%

meu AC component max amplitude of PPG SW33+DW33 Systolic Width at 33% +
Diastolic Width at 33%

PIR Photoplethysmogram intensity ratio DW33/SW33 Diastolic Width at 33% /
Systolic Width at 33%

PTT Pulse transmission time SW50 Systolic Width at 50%

SUT Systolic upstroke time SW50+DW50 Systolic Width at 50% +
Diastolic Width at 50%

DT Diastolic time DW50/SW50 Diastolic Width at 50% /
Systolic Width at 50%

SW10 Systolic width at 10% SW66+DW66 Systolic Width at 66% +
Diastolic Width at 66%

SW10+DW10 Systolic width at 10% +
Diastolic width at 10% SW75+DW75 Systolic Width at 75% +

Diastolic Width at 75%

DW10/SW10 Diastolic width at 10% /
Systolic width at 10%
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2.2 Proposed CFNP

 The proposed CFNP has a three-layer network architecture. It comprises a convolutional 
layer, a feature fusion layer, and an FNN layer. Each layer is described in detail as follows.

2.2.1 Convolutional layer
 
 The features extracted from PPG and ECG signals are used as the input of the convolutional 
layer, and a feature map is obtained through the convolution operation by using a convolutional 
kernel with a sliding window. The output formula for the convolution operation is

 ( ) ( ) ( )0 ,Xs
fm wnO fn I n X n fn

=
= ×∑ , (1)

where Ofm is the output feature map, fn is the number of output feature maps, I is the input of the 
convolutional layer, Xw is the weight of the convolutional kernel, and Xs is the size of the 
convolutional kernel.

2.2.2 Feature fusion layer

 The feature fusion layer uses four fusion methods, namely, GAP [Fig. 2(a)], GMP [Fig. 2(a)], 
CAP [Fig. 2(b)], and CMP [Fig. 2(b)], to integrate information from the convolutional layer of the 
proposed CFNP. These fusion methods reduce the input dimension of the predictor and shorten 
its operation time. The aforementioned methods and their formulas are described as follows.
(1) GAP
 GAP involves the calculation of the average value of each feature map output using the 

convolutional layer; that is, the average value of each feature map is the output.

Fig. 2. (Color online) Feature fusion methods: (a) global pooling and (b) channel pooling.

(a) (b)
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 ( ) ( )( )GAP fmO g Avg I fn=  (2)

Here, OGAP is the output of the feature fusion layer when conducting GAP, Ifm is the input 
feature map, g is the output size of the fusion layer, and fn is the number of feature maps.

(2) GMP
 GMP involves the calculation of the maximum value of each feature map output by the 

convolutional layer; that is, the maximum value of each feature map is the output.

 ( ) ( )( )GMP fmO g Max I fn=  (3)

Here, OMGP is the output of the feature fusion layer when conducting GMP, Ifm is the input 
feature map, g is the output size of the fusion layer, and fn is the number of feature maps.

(3) CAP
 CAP involves the calculation of the average value of each channel for the feature map output 

by the convolutional layer; that is, the average value of each channel is the output.

 ( ) ( )( )CAP fmO c Avg I fn=  (4)

Here, OCAP is the output of the feature fusion layer when conducting CAP, Ifm is the input 
feature map, c is the output size of the fusion layer, and fn is the number of feature maps.

(4) CMP
 CMP involves the calculation of the maximum value of each channel for the feature map 

output by the convolutional layer; that is, the maximum value of each channel is the output.

 ( ) ( )( )CMP fmO c Avg I fn=  (5)

Here, OCMP is the output of the feature fusion layer when performing CMP, Ifm is the input 
feature map, c is the output size of the fusion layer, and fn is the number of feature maps.

2.2.3 FNN

 The FNN of the proposed model comprises a fuzzification layer, a rule layer, a consequent 
layer, and an output layer.
(1) Fuzzification Layer
 First, the FNN performs a fuzzification operation on the feature map output by the feature 

fusion layer. Each node represents a fuzzy set in the interval [0, 1]. The triangular, trapezoidal, 
and Gaussian membership functions are commonly used. The application of differentiable 
membership functions to FNNs has advantages. Gaussian membership functions are popular 
as membership functions for FNNs.(25) Therefore, a Gaussian function is used in the proposed 
model, and an if–then fuzzy rule is used for fuzzy inference. The adopted Gaussian 
membership function is expressed as
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where OCMP is the output of the feature fusion layer when performing CMP, Ifm is the input 
feature map, c is the output size of the fusion layer, and fn is the number of feature maps.

(2) Rule Layer
 The rule layer determines the excitation intensity of each rule through the product operation 

for each node obtained in the previous layer. This operation is expressed as

 ( ) ( )
1

,
n

r f
i

O j I i j
=

=∏ , (7)

where Or( j) is the output of the rule layer, If(i, j) is the degree of excitation of each node, and 
n is the number of input nodes.

(3) Consequent Layer
 The consequent layer uses the mean value of the Gaussian membership function as the weight 

value. The relevant formula is 

 ( ) ( )c cO i W i= , (8)

where Or( j) is the output of the rule layer, If(i, j) is the degree of excitation of each node, and 
n is the number of input nodes.

(4) Output Layer
 Finally, the output of the rule layer is multiplied by the weight of the consequent layer to 

obtain MAP, SBP, and DBP predictions. The relevant formula is 

 ( ) ( )
1

  
k

c c
i

O I i W i
=

=∑ , (9)

where Ic(i) is the output of the rule layer and Wc(i) is the weight of the consequent layer.

3. Experimental Results

 In this section, the data source, namely, the Multiparameter Intelligent Monitoring in 
Intensive Care (MIMIC) II waveform database, is introduced. The proposed model was 
compared with its machine learning counterparts in terms of accuracy in predicting MAP, SBP, 
and DBP. The reduced-dimensionality feature set obtained through SHAP analysis was used to 
verify the results of each BP prediction model.
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3.1 Data set

 The MIMIC II waveform data set was used in this study.(26) This data set contains data on 
three types of signal, namely, ECG signals obtained in bipolar limb lead configuration II, PPG 
signals, and ABP measured using an invasive method. The PPG, ECG, and ABP signals are 
shown in Fig. 3. The aforementioned data set contains 12000 data points, and the sampling 
frequency of each signal is 125 Hz. In the experiments conducted in this study, ABP signals 

Fig. 3. (Color online) (a) PPG, (b) ECG, and (c) ABP signals.

(a)

(b)

(c)
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were used to obtain SBP and DBP, and the MAP was then calculated from the predicted values 
of SBP and DBP. Furthermore, SBP values of ≥180 and ≤80 and DBP values of ≥130 and ≤60 
were filtered out. Finally, a total of 4631 data points remained in the data set for the experiment. 
Figure 4 and Table 2 present the descriptive statistics for MAP, SBP, and DBP. In the 
experiments, 80, 10, and 10% of the data set’s data were used as training, validation, and testing 
data, respectively.

Fig. 4. (Color online) Data distribution range for (a) MAP, (b) SBP, and (c) DBP.

(a)

(b)

(c)
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3.2 Experimental results obtained using the proposed CFNP model

 The 23 features presented in Table 1 were input into the proposed model to predict MAP, 
SBP, and DBP. Table 3 presents the mean absolute errors (MAEs) and root MSEs (RMSEs) 
obtained for MAP, SBP, and DBP when the four fusion methods adopted in this study were used. 
As presented in Table 3, the best prediction results for MAP, SBP, and DBP were obtained when 
GMP, CAP, and CMP were used, respectively. Therefore, in the following experiments, GMP, 
CAP, and CMP were used to predict MAP, SBP, and DBP, respectively.
 Tables 4–6 describe the architectures of the proposed CFNP when GMP, CAP, and CMP are 
used to predict MAP, SBP, and DBP, respectively. These architectures contain eight layers, 
including three 1D convolutional layers, one feature fusion layer, and one FNN layer.

3.3 Dimension reduction through SHAP analysis

 The architectures used to predict MAP, SBP, and DBP were analyzed using the SHAP 
method.(27) SHAP is an additive explanatory model based on the Shapley value. The Shapley 
value is a solution proposed by Lloyd Stowell Shapley(28) on the basis of cooperative game 
theory. In this study, the SHAP method was used to analyze the contribution of each factor in the 
architectures used for the predictions of MAP, SBP, and DBP; that is, the Shapley value of each 
feature was calculated to evaluate its contribution to the prediction. Figures 5–7 depict the 
results of the SHAP analysis for MAP, SBP, and DBP predictions, respectively. Figures 5(a), 6(a), 
and 7(a) represent visualizations of Shapley values. In these figures, the horizontal axis 
represents the SHAP value, each row represents a feature, and each point represents a sample. A 
higher red intensity in Figs. 5(a), 6(a), and 7(a) indicates a higher Shapley value of a feature. By 
contrast, the higher the blue intensity in these figures, the lower the Shapley value of a feature. 
As shown in Figs. 5(b), 6(b), and 7(b), the mean absolute value of the degree of influence of each 
feature on the target variable was used as the importance index of the feature. Thus, the higher 
the blue intensity of a feature, the higher its degree of influence on the prediction.
 As depicted in Fig. 5(b), il (i.e., lowest intensity of the PPG signal) was the most important 
feature affecting MAP prediction, followed by SW10 + DW10 (i.e., systolic width at 10% + 
diastolic width at 10%) and SW10 (i.e., systolic width at 10%). As shown in Fig. 6(b), the average 
Shapley values of meu and DW10/SW10, which were the 12th and 13th most important features 
affecting SBP, respectively, considerably differed. Therefore, the 12 most important features 
were used as a new feature set. Table 7 presents the 12 most important features identified 
through SHAP analysis for MAP, SBP, and DBP predictions. The remaining features were 
filtered out. Thus, dimensionality reduction was achieved to reduce the training time of the 
CFNP model.

Table 2
Statistics related to MAP, SBP, and DBP.

Max (mmHg) Min (mmHg) Mean (mmHg) STD (mmHg)
MAP 145.83 66.81 12.43 90.4
SBP 179.98 80.09 18.89 119.34
DBP 129.25 60.03 12.61 75.93
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Table 3
MAP, SBP, and DBP predicted using the proposed CFNP model with the 23 features presented in Table 1.

Method Feature fusion MAP SBP DBP
MAE RMSE MAE RMSE MAE RMSE

CFNP

CAP 9.42 12.03 14.26 17.87 9.52 12.06
CMP 9.48 12.09 14.32 18.25 9.46 11.93
GAP 9.54 12.16 14.54 18.25 9.53 11.94
GMP 9.40 12.00 14.57 18.27 9.55 12.20

Table 4
Architecture of the proposed CFNP when using GMP for MAP prediction.
Layer Filter Kernel Layer Parameters
Input Layer — — —
Convolution Layer1 64 3 Strides = 1,ReLU
Convolution Layer2 32 2 Strides = 1,ReLU
Convolution Layer3 16 2 Strides = 1,ReLU
Global Max Pooling Layer — — —
Fuzzy Rule Layer — — Rule = 32
Consequent Layer 16 1 ReLU
Output Layer  1 1 —

Table 5
Architecture of the proposed CFNP when using CAP for SBP prediction.
Layer Filter Kernel Layer Parameters
Input Layer — — —
Convolution Layer1 64 3 Strides = 1,ReLU
Convolution Layer2 32 2 Strides = 1,ReLU
Convolution Layer3 16 2 Strides = 1,ReLU
Channel Average Pooling Layer — — —
Fuzzy Rule Layer — — Rule = 64
Consequent Layer 16 1 ReLU
Output Layer  1 1 —

Table 6
Architecture of the proposed CFNP when using CMP for DBP prediction.
Layer Filter Kernel Layer Parameters
Input Layer — — —
Convolution Layer1 64 3 Strides = 1,ReLU
Convolution Layer2 32 2 Strides = 1,ReLU
Convolution Layer3 16 2 Strides = 1,ReLU
Channel Max Pooling Layer — — —
Fuzzy Rule Layer — — Rule = 64
Consequent Layer 16 1 ReLU
Output Layer  1 1 —
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Fig. 5. (Color online) (a) Shapley values and (b) average Shapley values for MAP prediction.

Fig. 6. (Color online) (a) Shapley values and (b) average Shapley values for SBP prediction.

Fig. 7. (Color online) (a) Shapley values and (b) average Shapley values for DBP prediction.

(a) (b)

(a) (b)

(a) (b)



4042 Sensors and Materials, Vol. 35, No. 12 (2023)

 By using the new feature sets presented in Table 7, the CFNP model used for MAP, SBP, and 
DBP predictions was retrained. Table 8 presents the experimental results obtained when using 
the new feature sets. As presented in Table 8, the MAEs of the MAP, SBP, and DBP predictions 
decreased from 9.40, 14.26, and 9.46 to 9.34, 14.13, and 9.39, respectively.
 In addition, MAP, SBP, and DBP predictions were output from a general CNN model.(29) A 
CNN includes convolutional layers and fully connected layers. In contrast to the proposed 
CFNP, which contains an FNN, CNNs contain a fully connected layer. In this study, the number 
of parameters of the CNN model was 13745, and the numbers of parameters of the CFNP model 
for MAP, SBP, and DBP predictions were 6993, 7505, and 7505, respectively. Thus, the CFNP 
model had approximately 6000 fewer parameters than the CNN model.
 Figures 8(a)–8(c) display the prediction error histograms for the MAP, SBP, and DBP 
predicted using the CFNP model, respectively. Because SBP had a wider data range than MAP 
and DBP, the error range of SBP prediction was 30–35 mmHg larger than those of MAP and 
DBP predictions.
 Figure 9 presents the Bland–Altman plots for the MAP, SBP, and DBP predictions obtained 
using the CFNP model, respectively. As depicted in Fig. 9, the prediction errors of MAP and 
DBP were within ±20 mmHg, and the prediction error of SBP was within ±40 mmHg. However, 
for very high and very low BP values, considerable differences existed in the prediction accuracy 
of the CFNP model because limited samples with such values are limited in the adopted data set; 
therefore, poor prediction results were obtained for the aforementioned BP values.

3.4	 Comparison	of	the	results	obtained	using	different	models

 The results obtained with the proposed CFNP model were compared with those of four other 
prediction models, namely, the K-nearest neighbors (KNN),(30) support vector regression 
(SVR), (31) linear regression,(32) and CNN(33)models. Table 9 presents the BP prediction results 
obtained using the aforementioned models. The results presented in Table 9 indicate that the 
proposed CFNP model had smaller MAE and RMSE values than the KNN,(30) SVR,(31) linear 
regression,(32) and CNN(33) models in predictions of MAP, SBP, and DBP.

Table 7
New feature sets (covering the 12 most important features) obtained for MAP, SBP, and DBP predictions through 
SHAP analysis.

MAP SBP DBP
il SW75+DW75 PIR

ST10+DT10 SUT meu
SW10 SW66+DW66 hrfinal
SW25 ih PTT
meu hrfinal SW25

SW33 SW10+DW10 SW75+DW75
ih PTT il

DW10/SW10 SW33 SW33
DW25/SW25 PIR ih

hrfinal DT SW50+DW50
DW25+SW25 il SUT

PTT meu DW10/SW10
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(a)

(b)

(c)

Fig. 8. (Color online) Prediction error histograms of (a) MAP, (b) SBP, and (c) DBP obtained using the CFNP 
model.

Table 8
Experimental results obtained using the 12 most important features.

BP predict Method Parameters Regression indicator
MAE RMSE

MAP CFNP with GMP 6993 9.34 12.00
SBP CFNP with CAP 7505 14.13 17.97
DBP CFNP with CMP 7505 9.39 12.04
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Fig. 9. (Color online) Bland–Altman plots of (a) MAP, (b) SBP, and (c) DBP predictions obtained using the CFNP 
model.

(a)

(b)

(c)
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4. Conclusion

 In this study, a CFNP model was developed for the noninvasive continuous predictions of 
SBP, DBP, and MAP from sensing signals. The proposed CFNP comprises a convolutional layer, 
a feature fusion layer, and an FNN layer. The feature fusion layer is used to integrate information 
from the convolutional layer and reduce the dimensionality of the input of the FNN. An FNN is 
used instead of a fully neural network to reduce the number of adjustable model parameters. The 
SHAP method was used to analyze the contribution of each feature to the prediction for 
conducting dimensionality reduction. In addition, Bland–Altman plots of MAP, SBP, and DBP 
predicted using the proposed CFNP were analyzed. Experimental results indicated that the 
MAEs of the CFNP model in MAP, SBP, and DBP predictions when using the superior feature 
sets obtained through SHAP analysis were 9.34, 14.13, and 9.39 mmHg, respectively. Moreover, 
the proposed CFNP model had smaller MAE and RMSE values than the KNN, SVR, linear 
regression, and CNN models in MAP, SBP, and DBP predictions.
 In future studies, the proposed CFNP can be implemented in hardware devices, such as field 
programmable gate arrays (FPGAs), for real-time applications. The parameters of each layer of 
the proposed CFNP can be translated into FPGAs in the future for verification to pave the way 
for hardware implementation.
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