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 Effective trajectory selection and classification are pivotal in user tracking systems utilizing 
spatiotemporal data collected from city sensors. However, the inherent limitations in sensor 
technologies and data collection point distributions often result in low-quality spatiotemporal 
data. Real-life trajectory classification encounters challenges due to the following: (1) high-order 
and sparse activity data encompassing both temporal and spatial contexts, and (2) inherent 
vagueness in the semantics of visited locations, making it difficult to represent behavioral 
intentions. Traditional statistics-based or trajectory-based feature approaches prove ineffective 
with non-discriminate features. In response to these challenges, we introduce a novel 
classification method that integrates fuzzy spatiotemporal features and crowd habit features. 
This approach involves feature extraction using the Time-Geo Hash (TGH) and User Transit 
Pattern and Similarity (UTPS) models, followed by the training of a machine learning 
classification model. On the basis of the performance indicators of classification models, we 
identify two classification algorithms, incorporate the Bagging algorithm from ensemble 
learning to enhance the UTPS classification model, and combine the TGH and UTPS models 
through specified rules. Extensive experiments demonstrate that our proposed model 
significantly outperforms other classification baselines when applied to a labeled real-life 
dataset, emphasizing its effectiveness in handling noisy and challenging spatiotemporal data for 
trajectory classification in user tracking systems.

1. Introduction

 The widespread usage of the mobile Internet has resulted in a heavy reliance on mobile 
devices to access online services. Concurrently, the massive data collected by these devices 
capture individuals’ behavioral features, particularly their spatiotemporal patterns, which have 
attracted significant attention from researchers. It is a consistent and significant direction to 
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study the use of spatiotemporal information for identifying and classifying different behavioral 
groups.(1)

 The collection of movement behaviors can be achieved comprehensively by utilizing location 
information from cell phones. The movement trajectory data encompasses specific time and 
location information, essentially, spatiotemporal data. By leveraging spatiotemporal information, 
it becomes possible to reconstruct individuals’ activity trajectories, enabling the analysis of their 
habitual characteristics and behavior patterns.(2–4) A crucial application scenario of 
spatiotemporal data involves classifying individuals based on spatiotemporal information. 
Extracting discriminated features that strongly correlate with specific application scenarios is 
very useful for machine learning. For example, Du et al.(5) utilized user check-in data from 
social media during morning rush hours, working hours, evening rush hours, and nonworking 
leisure hours as features, thereby acquiring user movement behaviors from datasets. By 
employing the k-means clustering method and k-nearest neighbor algorithm, citizens were 
successfully classified on the basis of the above features, facilitating the identification of 
additional personal details such as workplace, residence, and occupation. Furthermore, 
researchers have investigated the regularity of individuals’ activity trajectories. Song and 
coworkers (6,7) highlighted that people’s activities can be predicted, with a predictability rate of 
up to 93%. De Montjoye et al.(8) proved the uniqueness of individuals’ activities. Additionally, it 
can be concluded that the activity trajectories of individuals are related to their social 
connections, as observed in Ref. 9: the closer the relationship between individuals and their 
social connections, the greater the similarity observed in their activity trajectories.
 Despite the significant benefits of these methods in classifying or predicting human 
behaviors, they present some challenges to our problem. The selection of trajectories from the 
vast spatiotemporal data collected by sensors in a city encounters limitations. Owing to 
limitations in collection technologies and the distribution of collection points, the spatiotemporal 
data is frequently characterized by sparsity, positional offset, and high feature dimension. 
Moreover, the sparsity of data hampers the accurate reflection of activity trajectories, whereas 
the high feature dimension introduces computational complexity and can potentially impair the 
performance of conventional classification models, namely, the curse of dimensionality.(10) 
Consequently, conventional classification models struggle to attain satisfactory results in this 
context.
 To address the challenges associated with sparse and diverse trajectory data, we propose a 
method of extracting crowd habit features on the basis of fuzzy spatiotemporal data. The 
proposed method aims to improve classification performance by integrating it with classification 
models. The key steps and contributions are as follows.

• Regarding high spatiotemporal dimensions in data, we come up with the Time-Geo Hash 
(TGH) model. The TGH model effectively handles time information by processing it in 
fragments and encoding spatial location information in a vague manner. Additionally, the 
TGH model maps adjacent acquisition time points to the same time slice, thereby reducing 
the number of time dimensions. Furthermore, applying the hash algorithm to the location 
information mapping of the collected data significantly reduces the number of spatial 
dimensions.
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• The User Transit Pattern and Similarity (UTPS) model is developed to extract user habits. It 
involves the calculation of spatiotemporal information collected through the media access 
control (MAC) address, which can be regarded as the identity of the mobile device during 
various work and rest periods, as well as the evaluation of the similarity of daily activities for 
each MAC. The model depicts the intensity and regularity of daily activities in different 
regions in various time periods of each MAC. Additionally, the Bagging algorithm of 
ensemble learning is introduced to imporve the UTPS model.

• Eventually, the TGH and UTPS models are synergistically combined for comprehensive 
decision-making. The experimental results show that the combined model considerably 
improves the classification accuracy compared with a single model. Lift value calculation 
results indicate that the proposed model can better classify and predict people with diverse 
behaviors.

2. Related Work

2.1 Ensemble learning

 Ensemble learning, which originated from the concepts of strongly and weakly learnable 
concepts,(10) has emerged as a fundamental technique in machine learning. It has proven to be 
instrumental in improving the generalization ability and prediction accuracy of classifiers.(11) 
Integrated learning can be observed in both narrow and broad senses. In the narrow sense, 
multiple subsets are randomly selected from the training set, and the same classification 
algorithm is applied to each subset to enhance the generalization ability of each classifier. On the 
other hand, in the broad sense, the same problem is tackled using multiple learners. The 
ensemble learning process mainly involves three steps: generating training subsets, training 
base classifiers, and integrating the results obtained from these classifiers. Bagging(12) and 
Boosting are representatives and most commonly used in ensemble learning methods.(13) 

2.2 Similarity calculation of spatiotemporal information

 According to the spatiotemporal information used in calculating similarity, research on the 
similarity of spatiotemporal information can be divided into three categories.
(1) Spatial similarity focuses solely on spatial information and does not consider temporal 

aspects. Research studies on this primarily explore the geometric shapes of spatiotemporal 
trajectories using distance metrics such as Euclidean distance,(14,15) longest common 
subsequence (LCSS),(16) edit distance on real sequence (EDR),(17) and graph structure 
similarity(18) to measure the similarity between trajectories.

(2) Time similarity concentrates on analyzing the similarity based on time series data. For 
example, the Fast search method for dynamic time warping (DTW)(19) is used to calculate the 
distance between two time series.

(3) Spatiotemporal similarity considers both spatial and temporal information, such as by 
implementing k-most-similar-trajectory (K-MST) queries using data structures similar to 
R-trees,(20) utilizing low-resolution trajectories to compose sets of crowd classification rules 
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(FCRs),(21) or employing the top-bottom clustering algorithm for small crowd classification 
based on offline crowd trajectories.(22)

 The representation form of spatiotemporal information in the similarity calculation process 
can be divided into two categories: multidimensional vector and string forms. The multi-
dimensional vector form requires more computational resources but provides a higher 
accuracy.(23) Therefore, in this study, the multidimensional vector form is utilized.

3. Problem Formulation

 Here, we introduce several basic concepts and provide a formal definition of the user 
identification problem.
 Definition 1 (Moving Point): The moving point is represented by O = (p, m, t), where p 
represents the location information, including latitude, longitude, and the name of the monitoring 
point, m refers to the MAC information, and t indicates the time information.
 Definition 2 (Path): Given a set of moving points <O> and a specific MAC address a, a path 
associated with a can be expressed as P = {O1, O2, …, On}, where ∀Oi(m) = a, and for i < j, 
Oi(t) < Oj(t).
 Definition 3 (Person of Interest): MAC addresses can be classified into two types: Person 
of Interest and General Public. The former consists of MAC addresses provided by the public 
safety department of a city, representing individuals who are of specific security or investigative 
interest. These addresses are assigned on the basis of criteria such as suspected criminal activity, 
surveillance targets, and involvement in ongoing investigations. The focus is on monitoring the 
movements and activities of these individuals for public safety and security purposes. The latter 
category includes MAC addresses associated with the general population.
 Definition 4 (Problem): The Person of Interest Identification problem is defined as 
judging whether or not a MAC address is a POI on Path P. The model is improved to obtain 
classification as precise as possible.

4. Methodology

4.1 Overall framework

 As shown in Fig. 1, the overall framework is constructed according to the following steps: (1) 
data preprocessing, (2) spatiotemporal information coding and user behavioral modeling, (3) 
Bagging algorithm, and (4) outputting the final prediction result.
 The data on the far left in the figure represents the quintuple obtained after data cleaning. 
Through subsequent feature extraction and preprocessing, a dataset is constructed to train the 
classification model, that is, the training set. On the basis of the MAC address list of persons of 
interest provided by the public security department, classified labels can be determined in a 
training set, or in other words, whether they belong to a specific group of people.
 Note that the original location information is organized in the order of collection point and 
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time. The data quintuple after data cleaning indicates that the MAC address serves as the unit, 
and features are extracted from multiple activity records corresponding to a single MAC address 
and aggregated into a sample. Granularity is no longer a single record but the MAC address of 
mobile devices.
 As depicted in the middle of Fig. 1, our approach aims to address dimensionality reduction 
and compensate for data imperfections. To achieve this, we proposed two feature extraction 
algorithms, namely, TGH and UTPS, which offer distinct perspectives for generating training 
sets. These algorithms help overcome limitations in the data and improve its overall quality.
 Subsequently, the determined classification algorithms are employed to train and combine 
these feature extraction approaches into a robust classifier. To obtain the final prediction result, 
we employ a voting mechanism within ensemble learning. By synthesizing the outputs of the 
two feature extraction algorithms, we achieve an enhanced predictive capability that leverages 
the strengths of both approaches.

4.2 Data sources and data preprocessing 

4.2.1 Data sources

 The spatiotemporal data in our study were mainly collected via public safety sensors in a city. 
The data model can be represented by the following quintuple:

 (MAC address, sensor number, acquisition time, sensor’s latitude and longitude). 

 The quintuple can describe moving tracks of a single MAC in various time and space 
domains.

Fig. 1. (Color online) Overview of fuzzy trajectory classification system.
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4.2.2 Data preprocessing

 Since the collected data are affected by duplication and incompletion, it is necessary to 
preprocess abnormal data. Moreover, we should also deal with other problems during research, 
such as the uniform conversion of particular time formats in the data reported by some sensors, 
remove the hyphens (-) in data, and convert decimal MAC addresses into hexadecimal ones. 
After that, other smart devices such as smart air conditioners, smart sockets, and smart home 
products should be identified and discarded.

4.3 Spatiotemporal information coding

4.3.1 TGH algorithm

 In this section, we encode a given path X in time and space to reduce its dimensionality. First, 
we divide the continuous time information by the TGH algorithm and map adjacent acquisition 
time points to the same time slice (ts). Then, we use the UTPS algorithm to map the collected 
data’s location information and encode the geolocation region into a hash value lh (location 
hash). The pseudocode is described in Algorithm 1.

4.3.2 TGH algorithm details

Time slice:
 The TGH algorithm divides time into four slices, specifically, a quarter of an hour as a unit, 
and divides one hour into four slices. Thereby, there are 96 slices in a day. They are numbered 
from 1 to 96, and each is called a time slice. In Fig. 1, the time point on the right side of each 
time slice is taken from an open interval. For example, the time period corresponding to time 
slice number 1 is [00:00, 00:15] and so on.
 Through experimental comparison, 15 min was selected as the time slice granularity. When 
every 15 min is taken as a time slice, moderate time dimensions are produced with good activity 
discrimination.
Geohash location encoding:
 The latitude and longitude are encoded into a alphanumeric string by Geohash. The coded 
string represents a rectangular region of Earth. As shown in Table 1, the greater precision 
obtained with longer strings.

Algorithm 1: Time-Geo Hash (TGH)
Input: given path P
Output: Encoded path feature queue <PF> // Path Features
<PF> initialized to empty
for Oi in P do
 ts ← TimeSlice(Oi), lh ← GeoHash(Oi)
 if ts, lh ∈ <PF> then
  continue;
 else 
  <PF> ← ts, lh
return <PF>
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 Considering the division of urban functional blocks and the dimension quantity of the entire 
city, latitude and longitude coordinates are converted into 5-bit Geohash codes. This conversion 
enables a more precise representation of geographic locations. As seen in the table, each Geohash 
code roughly corresponds to the length of 2.4 km of the rectangular region.
Space-time encoding:
 A single MAC address yields path information, and after encoding through the TGH model, 
it contains a total of 486 features as below.

 (label, mac, time-features, geo-features) 

 For a specific MAC address, the labels are represented in the first column, indicating whether 
the owner of the mobile device associated with the MAC address is a follower. A label value 1 
denotes “yes,” whereas 0 denotes “no.” The second column denotes the unique MAC address. 
The third column consists of a series of values representing the number of times the MAC 
address is collected in each time slice. This sequence is determined to be 96 dimensions, as 
established previously. Following that, a collection of 5-digit Geohash codes represents the 
frequency of data collection for the MAC address in each corresponding geographical area. As 
determined earlier, there are a total of 388 codes.

4.4 User behavioral habit model

4.4.1 UTPS algorithm

 The UTPS model is proposed for each MAC address in different work and rest time periods 
during the working day, and each MAC address corresponds to similarities in the daily activities 
of the mobile terminal holder.
 As shown in Algorithm 2, UTPS is mainly used to describe the degree and similarity of 
activities of users in different time periods and regions. It can be used to compensate for 
deficiencies such as missing data collection. In addition, the similarity of daily behavior is 
incorporated into the statistics to extract features from a new perspective.

Table 1
Correspondence between Geohash coding length and error.
Code length Error (km)
1 ±2500
2 630
3 78
4 20
5 2.4
6 0.61
7 0.076
8 0.019
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4.4.2 UTPS algorithm details

Proportion of spatiotemporal information:
 Inspired by some research,(5–8,24) the UTPS algorithm defines the time period division table 
as below, in accordance with work and rest habits of office workers in work days.
 Given the inherent disparities in transit behaviors between work days and holidays, the UTPS 
algorithm is purposefully designed to prioritize the analysis of data collected exclusively on 
work days. This approach incorporates the invaluable expertise and experience of the public 
security department, which serves to comprehensively consider the distinct patterns and 
unpredictable activities characteristic of nonworking days.
Similarity information:
 The UTPS algorithm uses the TGH algorithm to convert all quintuples of data collected daily 
for each MAC address into a sample piece of data, such as

 (S1, S2, …, Sdim, g1, g2, …, gdim), 

where Sdim indicates the dimensions of time features and gdim the dimensions of geo-features. In 
a specified time period, the number of days on which the activity record of each MAC address is 
collected corresponds to the number of multidimensional vectors.
 Then, we set the dimension of the multidimensional vectors as vdim = sdim + gdim and define 
all multidimensional vectors as

 ( )1 2 1 2, , ..., , , , ..., ,
dim dimi s gv s s s g g g=  

where i = 1, 2, …, n and vi [ j] represents the j-th element of vi, j = 1, 2, …, vdim.
 The similarity of space-time vectors of multiple days should be calculated to determine 
whether the user behavior is regular. The process can be divided into three steps.
Step 1: Combine vi into a multidimensional vector mix with the same dimensions.
 If at least one of the values of the first dimension in vi is 1, the first dimension of the mix will 
be 1. Otherwise, it is 0. All subsequent dimensions are processed in return in the same way, 

Algorithm 2: User Transit Pattern and Similarity (UTPS)
Input: given <P> within a certain time period of a MAC, monitoring points in key areas <KAP>
Output: Habit features <HF> // habit features
sum( f ) = 0,  f ∈ {record, ts, lc, kap} // total number of distinct eigenvalues
for P in <P> do
 Divide trajectory P into time segments p1 to p4 by time, denoted by Pi
for Oi in <P> do
sum(record), sum(record, Pi) ← #Oj // Calculate number of records and total number of records in the top-10 most 
frequent areas, which is similar for other data
if Oj(p) ∈ <KAP> then
 sum(kap), sum(kap, Pi) ← #Oj
Calculate proportion of each feature in each time period hf, <HF> ← hf
Calculate user behavior similarity, see Sect. 4.4.2
return <HF>
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obtaining a multidimensional vector mix of the same dimension. The mix can be viewed as a 
synthesis of vi.
Step 2: Calculate similarity between vi and mix.
 The Jaccard index is introduced to calculate the similarity of two multidimensional vectors as

 ( ), .qsim i j
q r s

=
+ +

 (1)

Among them, i and j are two multidimensional vectors. The value of each dimension is 0 or 1. q 
represents the number of dimensions when the same dimensions of i and j are both 1. r represents 
the number of dimensions when the same dimension of former values is 1 and that of latter 
values is 0. s represents the number of dimensions when the same dimension of former values is 
0 and that of latter values is 1.
 Equation (1) is used to compute the similarity between vi and mix. The denominator clearly 
represents the count of dimensions in a mix with a value of 1, whereas the numerator signifies 
the presence of these dimensions in vi, that is,
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Step 3: Determine the overall similarity of all multidimensional vectors by computing the 
average of all similarities in Step 2.
 It is easy to calculate the overall similarity via Eq. (3).
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 When the number of days is 1, indicating that there is only a single multidimensional vector, 
the mix is identical to that vector, resulting in an overall similarity score of 1. Similarly, if all 
multidimensional vectors are identical, the mix will also be identical to these vectors, yielding an 
overall similarity score of 1.
User habit coding:
 The UTPS algorithm generates a dataset comprising sample rows that correspond to 
individual MAC addresses. This dataset encompasses a total of 15 distinct features as below.

 (label, mac, proportion of pi records, proportion of pi regions,  
 similarity of daily activities) 
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 The proportion of pi records with i = 1, 2, 3, and 4 is defined in Table 2. It represents people’s 
activities in different time periods. The proportion of pi regions with i = 1, 2, 3, …, 10, represents 
how active the person is in the top-10 most active areas.

4.5 Model improvements

 To enhance the classification model’s performance, we leverage the Bootstrap aggregating 
algorithm within the realm of ensemble learning. This technique combines multiple weak 
classifiers, each trained by a specific algorithm, to form a robust classifier that delivers the 
ultimate prediction.
 We focus on enhancing the classification model in four key areas: (1) reducing feature 
dimensionality, (2) selecting appropriate algorithms, (3) employing Bagging ensemble 
techniques, and (4) enhancing comprehensive decision-making. As we have already explored 
feature dimensionality reduction, the subsequent sections will delve into the latter three aspects 
in detail.

4.5.1 Algorithm selection

Performance indicator of classification model:
 Accuracy (ACC) is calculated using Eq. (4).

 TP TNACC
TP TN FP FN

+
=

+ + +
 (4)

 In cases of imbalanced data, the accuracy metric may not adequately capture the overall 
performance of the classification model. Therefore, we introduce other performance indicators, 
namely, Precision (precision), Recall (recall rate), and F1, as

 ,TPPrecision
TP FP

=
+

 (5)

 ,TPRecall
TP FN

=
+

 (6)

Table 2
Division of work and rest periods.
No. Time period Time range
p1 Rest period [21:00, 06:00)
p2 Commute time (work) [06:00, 10:00)
p3 Working hours [10:00, 17:00)
p4 Commute time (get off) [17:00, 21:00]
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 21 .
1 / 1 /

F
Precision Recall

=
+

 (7)

 Within these metrics, Precision signifies the fraction of samples accurately predicted as the 
target category out of all the samples predicted as such, whereas Recall denotes the portion of 
correctly predicted samples among those belonging to the target category. These two metrics 
offer distinct viewpoints on the classification model’s performance. A higher Precision implies 
that the classification model seldom misclassifies nontarget samples as the target category, 
whereas a higher Recall suggests that the classification model rarely misclassifies the target 
category as nontarget. The F1 score serves as a combined metric that considers both Precision 
and Recall.
TGH classification model algorithm selection:
 Various machine learning classification algorithms are used to train models on the TGH 
training set. On the basis of the performance metrics mentioned earlier, we have opted for a 
random forest classifier to classify the feature datasets generated by the TGH algorithm (refer to 
the experimental section for a comparison of performance indicators of various classification 
algorithms).
 Random forest is a classifier composed of decision trees. Each decision tree judges a new 
sample to be classified. The most frequent classification category in the result is taken as the 
final classification of the sample on the basis of the classification results of each decision tree. 
This process is called “Votes”.
 Random forest performs better in classifying many datasets because multiple decision trees 
vote. It can process data with many features and does not select features. The disadvantage is 
that building a forest takes up more memory, and overfitting will occur on some datasets that 
include diverse categories of features.
 Random forest performs the best among many classification algorithms to classify feature 
datasets extracted by the TGH algorithm. This is probably related to its suitability for multi-
dimensional feature data and applying multiple decision trees for comprehensive voting.
UTPS classification model algorithm selection:
 Classification models are trained by different machine learning classification algorithms on 
the UTPS training set. On the basis of the above performance indicators, Naive Bayes is selected 
to classify feature datasets extracted by the UTPS algorithm (refer to the experimental section 
for a comparison of performance indicators of various classification algorithms).
 On the basis of the Bayes theorem, the Naive Bayes algorithm learns a joint probability model 
for classification prediction via prior and conditional probabilities. Owing to the conditional 
independence assumption, or in other words, when the category is determined, all features used 
for classification are conditionally independent, the amount of calculation is significantly 
reduced. However, such an assumption may not hold in real life, so the classification accuracy of 
Naive Bayes probably declines.
 Naive Bayes is equipped with high training velocity and easiness of generating a classification 
model, but its classification accuracy is low under scenes related to classification features. Naive 
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Bayes performs the best among the many classification algorithms to classify feature datasets 
extracted by the UTPS algorithm. This could be attributed to the limited correlation among the 
features in the UTPS dataset.

4.5.2 Bagging ensemble

 As a fundamental ensemble learning technique, Bagging is a commonly employed method to 
enhance the performance of classification models when dealing with imbalanced data. The 
Bagging algorithm has the following steps.
(1)  Train a multitude of foundational classifiers. Adopt the bootstrap sampling method and 

samples from the original dataset to obtain a new dataset; obtain a base classifier by training 
with a new dataset. Repeat many times to obtain multiple base classifiers.

(2)  Integrate multiple base classifiers. Use multiple base classifiers to classify and predict the 
same samples; adopt a voting mechanism to determine the category most frequently predicted 
as the final category.

Bagging ensemble of TGH classification model:
 As previously discussed, we have chosen to employ random forest for classifying the feature 
dataset generated by the TGH algorithm. Random forest operates by constructing multiple 
decision trees, which aligns with the Bagging concept. Consequently, in this study, we do not 
employ Bagging for ensembling the TGH classification model any further.
Bagging ensemble of UTPS classification model:
 The stability of a classifier plays a crucial role in affecting the effectiveness of the Bagging 
algorithm. Classifier instability implies that perturbations in the dataset can lead to significant 
fluctuations in classification outcomes. When the base classifier within an ensemble is unstable, 
Bagging can substantially improve performance.(13) Conversely, the impact is limited if the base 
classifier is already stable. Fortunately, the Naive Bayes algorithm has been demonstrated to 
exhibit stability.(25) Therefore, it becomes necessary to induce instability in Naive Bayes to 
enable Bagging with this base classifier. In this study, we leverage a Bagging Naive Bayes 
classification approach from the existing literature;(25) it creates diverse training subsets to 
introduce instability into Naive Bayes and build an ensemble base classifier.
 When forming training subsets for each base classifier, the process involves a random 
selection between two categories, followed by a random sampling of 30% of the samples within 
the chosen category. Simultaneously, 70% of the samples are drawn randomly from the other 
category to create a distinct training subset. Consequently, these training subsets exhibit 
substantial diversity and differ in distribution from the original dataset.

4.5.3 Comprehensive decision-making

 We combine two classification models to further improve the model’s accuracy and determine 
the final prediction result via a voting mechanism. The objective is to use this combination to 
categorize mobile device users associated with the same MAC address. In accordance with the 
definition, this constitutes a form of ensemble learning in a broader context.
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 In this study, a label of 1 denotes a person of interest, whereas a label of 0 signifies the 
general public. When two classification models yield concordant labels, the final prediction 
adopts their consensus. Conversely, if there is disagreement between the models, the final 
outcome defaults to 0, indicating the general public. One reason is that two classification models 
incorrectly predict much of the general public as persons of interest, while such people account 
for only a small proportion in real life.
 Prediction accuracy will be significantly enhanced when the TGH and UTPS are combined 
in accordance with the above rules. For more details, see the experimental process.

5. Experiment

5.1 Data processing

 Concerning MACs collected in a city, the general public accounts for the most significant 
proportion, and their behaviors differ. Naturally, it is unrealistic to perform statistical analysis on 
data of the general public. In addition, the number of individuals of the general public is 
markedly different from that of persons of interest, so the former is undersampled. In this study, 
a random undersampling technique was employed to select 10653 MAC addresses from a pool of 
8 million MAC addresses belonging to regular residents. MAC information of a total of 803 
suspects was obtained from relevant departments to constitute an experimental dataset.
 In terms of research on space-time trajectories, Gong(26) pointed out that people’s activities 
were mainly concentrated in seven days as one cycle. Consequently, in this study, we conducted 
classification research on data of one week in August 2017 at the beginning of exploration.
 In this study, we explored MAC addresses with seven-day data of the week, including 7,588 
general public and 593 persons of interest, as shown in Table 3.
 As shown in Fig. 2, the activities of different types of person will show different 
characteristics at different time periods, especially in the middle of the night, and the activity of 
persons of interest is much higher than that of the general public.
 The trajectory data of different categories show the characteristics of long tail distribution, as 
shown in Fig. 3.

5.2 Experimental environment

 The platform is a Dell server 64-bit system (16 core CPU, each with 2.6 GHz, four GPUs 
GTX 3090, 32 Gb of main memory). The algorithms and models described herein were 
implemented by Python 3.7.

Table 3
Initial data preparation.

Normal residents Suspects
Total number of collected records 7293153 625421
Total number of experimenters 10653 684
Number of people with data for 7 days 7588 593
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5.3 Feature dimensionality reduction

 Table 4 shows the original dataset and dataset dimensions generated by two algorithms.
 The TGH has 399 dimensions, including 96 time dimensions and 303 space dimensions. 
Specifically, the former is formed by the division of 24 h a day, with 15 min as a time slice. The 
granularity of 15 min is determined through experiments.
 Table 5 shows the experimental results obtained under the granularities of 1 h, 30 min, 15 
min, and 5 min. The data originate from records collected within one week of MAC addresses of 
593 general public and 593 persons of interest selected by the One-Sided Selection undersampling 
algorithm. The algorithm with default parameters adopts random forest to obtain performance 
indicators through 10-fold cross-validation.
 It is most suitable to select 15 min as the granularity of time slices.

Fig. 2. (Color online) Activities of different types of person at different time periods.

Fig. 3. (Color online) Regional activity distributions of different types of person.
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5.4	 Classification	algorithm	selection

 In subsequent tests, an oversampling method was found to cause overfitting. Therefore, it 
was abandoned, and only MAC address samples of the general public were undersampled. The 
training set obtained finally consisted of MAC addresses of 593 general public and 593 persons 
of interest.

5.4.1	 TGH	classification	model	algorithm	selection

 As shown in Table 6, random forest used to implement the TGH classification model has the 
best performance.

5.4.2	 UTPS	classification	model	algorithm	selection

 Ultimately, we opt for the Naive Bayes algorithm as the classification method for the UTPS 
classification model, because this method can achieve the optimal performance, as shown in 
Table 7. This choice supersedes more commonly employed classification algorithms, which 
could be attributed to the limited correlation observed among the features in the UTPS dataset.

Table 4
Dataset dimensions.
Original dataset TGH dataset UTPS dataset
>86400 399 15

Table 5
Results obtained with various time slice division granularities of TGH algorithm.
Granularity Dataset dimension ACC (%) Precision (%) Recall (%) F1 (%)
1 h 414 81 82 81 81
30 min 438 83 83 82 83
15 min 486 84 85 83 84
5 min 678 82 84 83 83

Table 6
Performance indicators of common classification algorithms for TGH classification model.
Classification algorithm ACC (%) Precision (%) Recall (%) F1 (%)
Random forest 84 83 86 84
Naive Bayes 75 74 79 77
Logistic 82 83 80 82
SVM 82 84 80 82
J48 75 78 71 75
RandomTree 78 78 77 78
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5.5 Bagging ensemble

 We leverage a Bagging Naive Bayes classification algorithm described in a prior 
publication.(25) This algorithm generates diverse training subsets, trains T base classifiers, and 
ultimately combines these T base classifiers using a voting mechanism.
 To determine the appropriate T value, we test on the training set, with results listed in Fig. 4.  
T = 1 means that the Bagging ensemble is not used; T values of other tests are odd numbers, 
facilitating voting.
 Figure 4 demonstrates that increasing the number of base classifiers does not necessarily 
yield better results. In the case of the UTPS training set, an optimal choice appears to be the use 
of seven base classifiers.

5.6 Comprehensive decision-making

 Tables 8 and 9 show results for the TGH classification model and the UTPS classification 
model, as well as prediction results and performance indicators after comprehensive decisions.
 According to the table, combining the TGH and UTPS classification models for 
comprehensive decision-making helps further boost prediction accuracy and F1.

5.7	 Practical	significance

 Lift in the data mining field is introduced to quantify the changes in ability caused by using 
or not using the model. Lift is calculated as 

 
( )

( ) ( )
/

.
/

TP TP FP
Lift

TP FN TP FN FP TN
+

=
+ + + +

 (8)

 For the TGH classification model presented in Table 8, the denominator in Eq. (8) corresponds 
to 0.026. This value signifies that, without employing the model, if an individual were randomly 
selected from a pool of 7588 general public and 593 persons of interest, the likelihood of being a 
person of interest would be 2.6%. In contrast, the numerator stands at 0.06, indicating that when 
utilizing the TGH classification model, if a person were randomly chosen from those predicted 

Table 7
Performance indicators of common classification algorithms for UTPS classification model.
Classification algorithm ACC (%) Precision (%) Recall (%) F1 (%)
Random forest 79 85 87 86
Naive Bayes 80 84 89 87
Logistic 77 83 87 85
SVM 78 85 84 85
J48 77 81 88 85
RandomTree 76 84 83 83
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by the model as persons of interest, the probability of actually being a person of interest would 
be 6.0%. The resulting lift value of 2.3 demonstrates that, with the TGH classification model in 
use, the likelihood of selecting a person of interest from those predicted is 2.3 times higher than 
in the original dataset. This lift value further increases to 3.4 when combining the TGH and 
UTPS classification models.
 Owing to the limited number of samples for persons of interest, the classification model’s 
accuracy currently falls below 80%. However, the lift value signifies that the probability of an 
actual person of interest among people predicted to be a person of interest has increased several 
times. This is conducive to better analyzing and classifying different groups of people.
 To recap, we introduce the TGH and UTPS algorithms for feature extraction. Coupled with 
the ongoing refinement of our classification model, we aspire to provide guidance for future 
research endeavors in this domain. The findings from this phase have already found practical 
applications within real-world systems.

Fig. 4. (Color online) Selection of number of base classifiers for Bagging ensemble of UTPS classification model.

Table 9
Performance metrics for the dataset in the classification model.
Classification algorithm ACC (%) Precision (%) Recall (%) F1 (%)
TGH 66 7 84 12
UTPS 68 6 83 12
Comprehensive decision 80 9 78 16

Table 8
Prediction results of classification model on dataset.
Classification 
algorithm

Predicted people
of interest

Actual people
of interest

Predicted general 
public Actual general public

TGH 2991 179 (6.0%) 5190 5154 (99.3%)
UTPS 2783 175 (6.3%) 5398 5360 (99.3%)
Comprehensive 
decision 1867 164 (8.8%) 6314 6263 (99.2%)
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6. Conclusions

 Using the vast spatiotemporal data from city sensors, we explore the classification prediction 
of a person of interest using spatiotemporal data in traditional machine learning methods. We 
shall provide ideas for similar research. Unfortunately, owing to uncertainties in machine 
learning, methods should be improved and expanded, including the combination of classification 
algorithms and the processing of unbalanced datasets. In this paper, we limit the number of 
persons of interest, which may hinder the improvement of the classification model performance. 
Therefore, we shall continue investigations in this field and constantly improve classification 
models after acquiring more samples of persons of interest.
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