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 Digital image applications have been extensively utilized in entertainment, education, 
research, medicine, and industry. Many images should be resized for better demonstration. In 
general, image resizing is performed by conventional image processing technology. However, 
the enlarged image usually includes unacceptable amounts of noise, blurring, and jagged effects. 
A high resolution (HR) is usually required for output images. Applying a learning-based method 
to enlarge the input image and reconstruct the output to the HR image has better results. 
However, substantial external training datasets are required.  In this study, we used the proposed 
randomly downscaled image and data augmentation (RDIDA) module to shrink images by the 
random scale and produce multiscale samples to reduce the dependence of preparation of 
significant datasets on the training stage. The image enlargement neural network (IENN) is 
proposed to apply deep learning neural network architecture based on an advanced convolutional 
autoencoder (CAE) to address the poor quality issues of output images. The proposed IENN 
with RDIDA can accept multiscale inputs and effectively enlarge images to specific sizes with 
high resolution. This learning-based approach with multiple residual networks is different from 
other methods. Applying the encoder of an advanced CAE structure captures features of the 
original image, and then the decoder with residual structure can create an enlarged image with 
HR quality. The CAE network used to enlarge an image can effectively denoise and reduce 
distortions that smooth out the traditional processing drawbacks. Our experimental results show 
that the peak signal-to-noise ratio (PSNR) of validation for our proposed model has been over 
29.55 dB at epoch 30 during the training stage. Furthermore, this model can achieve an average 
PSNR above 26 dB on all test samples to demonstrate robust performance.
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1. Introduction

 In many situations, images should change their shape, size, or orientation for better 
demonstration. It is sometimes necessary to shrink images to fit on the proper screen for mobile 
devices or Web pages.  To improve visual effects, images must be enlarged to adapt to the 
screen, such as in the home cinema system. Image rescaling was performed by conventional 
image processing technology in the past. An affine transformation method can be used to resize 
simple images with only lines and plain patterns and obtain good results.(1)  However, pictures 
with complicated colors and patterns, such as scenic images, are hard to rescale, significantly 
when enlarged. Enlarging images with complex scenes by prior image technologies generally 
has additional noises and blurred, jagged effects on the outcomes.
 Image enlargement is generally designed from a small-scale image to a large-scale image 
with a low resolution (LR). The resulting image requires some reconstruction to obtain a high-
resolution (HR) image and restore missing pixel values from LR. There are three types of mode, 
namely, the interpolation, reconstruction-based, and learning-based methods, which are applied 
to rescale images and reconstruct their image resolution. Popular image processing applications 
often use traditional interpolation approaches to resize images. Enlarging an image by the 
nearest neighbor method is rapid, but the result has an unacceptable mosaic effect and jagged 
edges. The bilinear, bi-cubic, or bi-quartic interpolation is smoother than the nearest neighbor 
method. However, the outcome also has a certain blurriness. All poor effects are shown in Fig. 1. 
These effects are inevitable because the interpolation approaches cannot predict enlarged image 
pixel values around the current pixel point. Many researchers have proposed some methods to 
overcome these issues. Han et al. proposed a novel interpolation framework to suppress blurring 
and jagging.(2) Karim proposed a rational bi-quartic spline with six parameters for surface 
interpolation applied in grayscale image enlargement and obtained a higher peak signal-to-noise 
ratio (PSNR).(3) The blurring and artifact effects still exist because the enlarged image’s pixel 
value cannot be produced from nothing. All pixel values are produced by estimation.

Fig. 1. (Color online) Image with poor effects after enlarging four times by interpolation method. (a) Original 
image. (b) Image enlarged by nearest neighbor method. (c) Image enlarged by bi-cubic method.

(a) (b) (c)
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 The construction-based methods use the prior knowledge of neighborhood processing to 
design kernel regression and reconstruct the upscale LR image.  Michaeli and Irani used a global 
type of blind super resolution (SR) that is an optimal blur kernel to construct an HR image.(4) 
Schreiter et al. applied an iterative Bayesian technique to produce a locally smoothed mixture 
regression to restore the HR image.(5) Li et al. used self-similarity prior technology to extract the 
directional group sparsity of image gradients and directional features, and apply the framework 
of templates for first-order conic solvers to obtain a high-quality HR image.(6) This method has 
the significant advantage of not requiring external datasets to train parameters of the kernel 
regression. However, the ground true HR image, which is converted to the degraded LR mode 
by blurring or downscaling, must be similar to the LR input. Another drawback is that the 
performance is degraded if the enlarged scale of the image is greater than common small-scale 
operations.
 The learning-based methods require many external datasets to train neural network 
parameters. Artificial neurons capture the sample features of training datasets and update 
network weight parameters. The designed neural network is adjusted to adapt the input for 
learning knowledge during iteration. After the training stage, the network can find the mapping 
relationship between the input and output HR images such that the learning knowledge is stored 
in the weight parameters. Owing to the rapid development of modern GPU computing 
technology, the deep learning model with convolutional neural network (CNN) has been 
extensively applied to reconstruct HR images and obtain better performance. Dong et al. 
proposed super-resolution CNN (SRCNN) that only used three convolutional layers to extract 
the LR image features and perform nonlinear mapping to reconstruct the HR image.(7) The 
performance of SRCNN is better and more stable than those of traditional methods. Jiang et al. 
used optimal subpixel CNN to improve the output HR image quality and PSNR.(8)   To improve 
the HR image reconstruction performance, the neural network increases its layer depth with 
residual connections in some works, which can prevent learning stagnation and vanishing 
gradients. Chen and Qi(9) and Shaoshuo et al.(10) used skip dense residual networks to increase 
the network layer depth. Basak et al. applied long and short skip connections to recover the HR 
image and obtain better results than other deep learning-based methods.(11)  All the approaches 
above deeply rely on external datasets to learn the mapping rules. However, diverse and 
multiscale images are collected and processed for training datasets that require external jobs and 
time. For the most part, the input and HR output image sizes in the designed methods must be a 
demanded scale. Liu et al. even proposed using an internal dataset to reconstruct HR images that 
require another neural network to find the patch mapping relationships before recovering each 
LR image.(12) 
 In this paper, we propose a deep-learning neural network to enlarge and produce HR images. 
The images in training datasets are automatically downscaled to randomly arbitrary sizes by the 
proposed randomly downscaled image and data augmentation (RDIDA) module. This RDIDA 
module produces training samples and performs data augmentation to increase diversity. These 
training samples as inputs of the proposed image enlargement neural network (IENN) created 
by the advanced convolutional autoencoder (CAE) structure are used to train the neural network. 
After completing the training stage, the IENN receives training samples with implicitly arbitrary 
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sizes and can obtain the mapping knowledge between random-size and enlarged HR images. In 
this paper, we also introduce a novel data sampling and augmentation approach, RDIDA, which 
can reduce the load to collect training datasets and augment limited samples. The trained neural 
network can enlarge an image of any size to the HR image with specified scales.

2. Devices and Proposed Methods
 
2.1 System framework

 In this study, the system framework is partitioned into two parts. First, the learning stage 
automatically applies the proposed RDIDA method to produce arbitrary-size samples, as shown 
in Fig. 2. The RDIDA module is designed using bi-cubic interpolation and transpose convolution 
neural network to perform data augmentation, randomly downscales images to any size, and 
produces the desired size outputs. The IENN module applies these output samples to train its 
neural network. The proposed IENN is based on the convolutional autoencoder with an 
asymmetric residual connection. After repeated iterations, the IENN completes mapping 
knowledge learning. Second, the inference stage uses the trained IENN combined with the 
RDIDA sampling module, which can accept arbitrary-size photos to be enlarged to a specific 
HR image. 

Fig. 2. (Color online) System framework.
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2.2 Devices

 In this study, we utilized a USB plug-and-play HD webcam, as shown in Fig. 3. The C615 
WEBCAM features a 78° diagonal field of view and an auto light correction mechanism called 
RightLight 2. Additionally, the webcam is equipped with a noise-canceling omnidirectional 
microphone. The video recordings captured by the webcam are available in Full HD 1080p 
resolution at 30 frames per second (fps) and HD 720p resolution at 30 fps. The specifications of 
the webcam are summarized in Table 1.

2.3 Proposed methods

2.3.1 Datasets

 Within the scope of this paper, the DIV2K dataset(13) is employed to conduct a comparative 
analysis of various model structures and conventional image processing techniques. This dataset 
has 1000 images with a large diversity of contents and 2K resolution. To ensure good balance in 
the dataset, the creators separate partitions of 800 train, 100 validation, and 100 test images by 
rigorous methods. Moreover, the dataset has been meticulously curated to ensure a diverse range 
of contents with minimal corruption. In this study, the DIV2K dataset was used for image 
enlargement neural network training.

Table 1
Specifications of C615 WEBCAM.
Overview C615 WEBCAM
Resolution FPS Full HD 1080p/30fps, HD 720p/30fps
Diagonal field of view 78°
Auto light correction RightLight 2
Noise-canceling mic (s) One omnidirectional mic
Connection USB - A plug-and-play

Fig. 3. (Color online) C615 WEBCAM.
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2.3.2 RDIDA module

 The proposed RDIDA module produces the training samples of the IENN. The RDIDA has 
three submodules, namely, data augmentation, randomly downscaled, and sampling modules, as 
shown in Fig. 4. 
 Image augmentation plays a crucial role in deep learning model training. It reduces the issue 
of overfitting and enhances model performance by providing additional data for neural network 
learning. In this study, we propose a simple data augmentation technique to augment the training 
data. Precisely, each image is cropped to the final output sizes that the IENN requires for correct 
tags, thereby preserving more details than traditional image processing approaches, such as the 
nearest neighbor or bi-cubic interpolation approach. The image crop schematic diagram is 
shown in Fig. 5.

Fig. 4. (Color online) RDIDA module.

Fig. 5. (Color online) Image crop schematic diagram.
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 Cropped images are downscaled by a random scale factor in the randomly downscaled 
submodule. This submodule design is based on the bi-cubic interpolation approach used to 
shrink images irregularly and meets the arbitrary input image size for IENN training. The bi-
cubic interpolation function(14) is shown in Eq. (1). 

 ( ) k
k

k

x xg x c u
h
− =  

 
∑  (1)

Here, h represents the sampling increment, xk’s are the interpolation nodes, u is the interpolation 
kernel, and g is the interpolation function. 
 The sampling submodule based on the transposed convolutional neural network combined 
with the bi-cubic interpolation method produces specific size outputs for IENN training samples. 
The RDIDA module implicitly creates random-size samples, making the training samples more 
diverse.
 Table 2 shows some sampling examples. The original image is downscaled to one-sixth size, 
and then the sampling module produces an up-sampled image to the specific extent as the input 
data of the IENN module in the first data row. The IENN can learn mapping knowledge of 
implicit six times scale from this sample. The second row can provide an implicit 4.5 times 
enlargement learning sample; the adjacent row is three times objects. The second and final row 
samples can have non-integer magnification. This shows that the RDIDA module can 
automatically produce random-size samples with integer or non-integer scales that provide 
diverse learning for the IENN module. This demonstrates that this system can accept any size 
input and magnify images to specific size outputs with HR quality for future implementation.

Table 2
(Color online) RDIDA output sampling examples and their implicit scale factors.
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2.3.3 IENN method

 While SR has been extensively explored in deep learning research, its application in different 
input sizes should be studied further. To address this problem, the IENN is proposed in this 
study. The IENN can accept many different input sizes to achieve the nonlinear enlarged 
magnification. Figure 6 shows a detailed process from the input image to produce an enlarged 
output using the IENN structure.
 In Fig. 6, the sampling submodule of the RDIDA module is introduced to meet the random 
input image size and convert inputs to the designated size of the IENN. By employing this 
technique, the IENN can eliminate the restriction that it can enlarge images only up to two 
times, and the IENN can modify its enlarged magnification with various input sizes. The IENN 
is based on the advanced CAE,(15) and the model structure is shown in Fig. 7. This advanced 
CAE structure is designed by the encoder-decoder framework with residual network structures. 
To smooth the output image, no activation function is trailed behind the last layer in the decoder. 
The asymmetric skip connections are applied to the IENN, which can enable the fusion of 
multiscale features and allow the network to capture global context and local details necessary to 
preserve more detailed features and stabilize the network to produce a more smoothly enlarged 
image.
 The definition of the IENN is shown in Eqs. (2) and (3). The computations of the encoder and 
decoder operations are derived from Eq. (4). The IENN employs the mean squared error (MSE) 

Fig. 6. (Color online) Image enlargement process for IENN structure.

Fig. 7. (Color online) IENN interior structure in this study.
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as the loss function during the backpropagation process. The MSE loss function is shown in Eq. 
(5). 

 ( ) 2
,ar n, g mi ψ ϕψ ϕ ϕ ψ= ′ −X X

 (2)

 : , :ψ ϕ→ → ′X F F X  (3)

Here, X is the input vector, F is the feature vector, X' is the target vector, ψ represents the shrunk 
images’ exact feature vector process, and φ shows that the feature vectors reconstruct the target 
image process.
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Here, W and W' are the encoder and decoder weights, b and b' are the encoder and decoder 
weighting biases, and σ and σ' are the encoder and decoder activation functions, respectively.

3. Experimental Results and Discussion

 In this paper, we propose the IENN model combined with the RDIDA sampling module to 
achieve nonlinear image-enlarged magnification. In this section, the experimental results 
demonstrate the loss curves and PSNR metrics for the IENN and SRCNN models, respectively, 
which evaluate and compare the training performance characteristics between different 
approaches.

3.1 IENN and SRCNN loss graphs

 The IENN and SRCNN loss graphs are shown in Figs. 8 and 9, respectively. The total number 
of training epochs is set to 30. Figure 8 shows that the loss curve of the IENN model can 
converge to 0.0016 within five epochs. The loss value converges to 0.001421 at the end. Figure 9 
shows that the loss curve only converges to 0.001602 in the SRCNN model. The IENN model 
exhibits a more robust performance during the training stage.

3.2 IENN and SRCNN PSNR graphs

 The PSNR is a valuable metric for evaluating the output performance of image enlargement, 
which can reveal the realistic level of predicted results.  The PSNR calculation formula is shown 
in Eqs. (6) and (7). Figures 10 and 11 show comparisons of training and validation PSNR values 
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Fig. 8. (Color online) IENN loss graph in this study.

Fig. 9. (Color online) SRCNN loss graph in this study.

Fig. 10. (Color online) IENN PSNR graph in this study.
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for the SRCNN method and our model. The IENN model achieves a PSNR of 29.5534 dB, 
whereas the SRCNN model only shows a PSNR of 28.5451 dB. This demonstrates that the IENN 
model has better enlarging outputs.

 
2 2

10 10
1.0 1.0 10*log 20*logPSNR
MSE MSE

   
= =      

   
 (6)
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1
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i

MSE Y Y
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−= ∑  (7)

Here, Yi is the pixel value of the ground truth image and iY  is the pixel value of the predicted HR 
enlargement image. The maximum value of the PSNR formula has been reduced by a factor of 1 
owing to the normalization of training images.

3.3 Image enlargement results compared with other methods

 In this study, we compare image enlargement results with the IENN, SRCNN, and traditional 
bi-cubic approaches. The validation PSNR results of different methods that use the same datasets 
to train networks are shown in Table 3, which shows that the proposed IENN has the best 
performance and reaches the PSNR of 29.5534 dB. The predicted results of varied, complex 
images with the different enlargement approaches are shown in Fig. 12, demonstrating that the 
IENN method has better outputs. Figure 13 shows the results of multiscale enlargement for small 
cropped parts of a bigger photo, which reveals that different enlargement scales can obtain the 
same clear outputs with high resolution.

Fig. 11. (Color online) SRCNN PSNR graph in this study.
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Table 3
Validation PSNR results of different methods.
Method PSNR
Bi-cubic 25.648
SRCNN 28.5451
Proposed IENN 29.5534

Fig. 12. (Color online) The experimental results compare performance characteristics with different approaches. (a) 
Shrunk images. (b) Original images. (c) Images enlarged by bi-cubic method. (d) Images enlarged by SRCNN 
method. (e) Images enlarged by IENN method.

Fig. 13. (Color online) Multiscale enlargements for small cropped parts of image by IENN method. (a) Original 
images. (b) IENN output images corresponding to different regions.

(a) (b) (c) (d) (e)

(a) (b)
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3.4 Discussion
 
 Figure 12 shows how different complex images perform in other enlargement methods. In 
this study, the image enlargement approach is affected by the complexity of the pictures. There 
are some methods of solution to address this problem. First, we aim to use more datasets, such as 
ImageNet, to obtain more enlargement learning in the neural network and smooth predicted 
results. Second, a more powerful structure, such as the generative adversarial network (GAN), 
can add to the IENN module and improve network performance. However, the GAN structure 
implemented in image enlargement causes training time and network complications to increase, 
and the artifact effects of output images need extra work to remove. 

4. Conclusions

 The RDIDA module was proposed in this paper and applied to produce multiscale samples, 
which reduces the dependence on the requirement of great training datasets. This module can 
make the IENN accept samples with different implicit scales to train and acquire the ability to 
enlarge arbitrary input image sizes and high-resolution outputs. In this paper, we evaluated the 
performance of the IENN model by comparing it with those of the SRCNN model and bi-cubic 
interpolation using the PSNR metric. The experimental results showed that the IENN model has 
a better PSNR to achieve 29.5534 dB and outperform the other methods. The output images of 
multiscale enlargements performed by our model with higher resolution quality demonstrate 
better performance.
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