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 Falls are a leading cause of unintentional injury and death and pose a significant risk to 
individuals living alone, particularly older adults. The World Health Organization reports that 
approximately 684000 fatal falls occur annually, and that timely fall detection is essential to 
enable prompt treatment and mitigate harm. To address this challenge, we propose a novel in-
home fall detection system that uses the Kinect V2 sensor instead of a wearable device. The 
system can promptly alert a person’s caregivers or family members when it detects a fall, 
enabling timely assistance. The Kinect V2 sensor captures depth frames and performs skeleton 
tracking, and body parts in single-depth image pixels are identified using a random forest 
classifier. v-disparity images, the Hough transform, and the random sample consensus algorithm 
are used to identify the floor in depth images, and falls are predicted by analyzing the vertical 
accelerations of 10 joints in the human skeleton. The system can issue an alarm up to 0.5 s before 
a fall, enabling preventive measures to be taken. In experiments, the proposed system was 
effective in accurately predicting falls and hence, has potential to improve fall risk management 
in caregiving environments.

1. Introduction

 Falls represent a significant hazard, particularly for older adults living alone. A fall may be 
life-threatening; hence, rapid detection and immediate assistance are crucial. Present fall 
prediction or detection methods primarily use threshold-based or machine-learning approaches. 
In this research, we introduce a novel vision system and algorithm to predict falls from human 
joint acceleration and the relative distance between the joints and the floor. This innovation is 
aimed at expediting assistance by predicting and alerting appropriate individuals to falls as they 
occur.
 Our proposed system employs the Kinect V2 sensor to capture depth images. These images 
undergo a series of transformations, including image coordinate conversion into v-disparity 
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images, binarization, Hough transformation, conversion into v-disparity images, and application 
of the random sample consensus (RANSAC) algorithm. In this process, floor parameters are 
extracted and used with Kinect V2’s body recognition to determine joint acceleration and predict 
falls.
 The aim of this study is to develop a reliable fall prediction system that employs a low-cost 
depth camera. The system should significantly improve healthcare outcomes and reduce costs. 
Falls by older adults are increasingly prevalent, and the healthcare costs associated with fall-
related injuries are increasing. Hence, the economic burden of falls is substantial, and cost-
effective solutions such as our proposed system could significantly mitigate these expenses.
 The remainder of this study is organized as follows. First, in Sect. 2, the pertinent literature is 
reviewed, followed by a detailed explanation of our methodology and the system architecture in 
Sect. 3. In Sect. 4, the experiment is outlined and we present our findings. We discuss the 
conclusions derived from our research in the final section.

2. Literature Review 

 In this section, we provide a comprehensive review of existing literature on fall detection 
systems. Various techniques and technologies have been leveraged to develop these systems, 
broadly classified as vision-based, non-vision-based, and hybrid systems incorporating a neural 
network.
 Non-vision-based fall detection systems typically use wearable devices to capture human 
movement data. These devices often incorporate gyroscopes or accelerometers to identify 
human posture. For instance, in one study,(1) falls were differentiated from other human 
movements by analyzing the body’s vertical and horizontal velocities and using a threshold 
algorithm to detect falls. In another study,(2) a gyroscope was employed to record angular 
momentum and developed a threshold algorithm to detect a fall. Additionally, accelerometers 
have been employed to measure human acceleration for fall detection.(3) Integrated gyroscope 
and accelerometer data have also been integrated to recognize postures and identify falls(4) more 
accurately. These non-vision-based systems reveal that diverse methods can be employed for fall 
detection and highlight the potential for effective fall detection through an innovative 
combination of technology with data analysis.
 Wearable devices can be inconvenient for users; hence, vision-based fall detection systems, 
which are less intrusive than systems using wearable devices, have also been developed. Before 
depth cameras became widely available and affordable, several groups analyzed RGB camera 
images to detect falls.(5–7) However, using a single camera has numerous limitations, such as 
blind spots and a restricted angle; multicamera systems were thus proposed to improve fall 
detection.(8,9) Microsoft’s introduction of Kinect marked a significant shift in the field. Kinect 
contains an affordable RGB-depth (RGB-D) camera, which has been applied in Kinect-based 
fall detection systems.(10–12) One key benefit of depth image analysis is that a user’s identity and 
privacy can be protected because the captured images do not reveal facial details but provide 
rich data for scene and body analysis. Furthermore, unlike conventional cameras, the lighting 
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conditions do not affect the depth of camera images. Studies on methods for human body 
segmentation within a scene to identify various features, such as velocity, height, and weight, 
which could be applied for fall detection, have been reported.(10,11) Obstacles in a scene may 
reduce detection performance. To overcome this challenge, Mundher and Zhong proposed 
equipping a mobile robot with the Kinect system(12) to increase the system’s flexibility and range 
in complex environments. To improve the accuracy and performance of fall detection methods, a 
hybrid approach combining wearable devices with Kinect has been presented in an embedded 
platform.(13–15) Kinect and the wearable device captured depth and motion data, respectively, 
and the machine-learning method, support vector machine (SVM), was used for data analysis 
and fall detection.
 Machine learning has enabled further improvement of the predictive capabilities and 
performance of fall detection systems. The fall detection performance of deep-learning 
techniques, such as the recurrent neural network, and machine-learning methods, such as SVM 
and naive Bayes, were compared for data captured by wearable devices.(16) The results 
highlighted the potential of machine learning for improving fall detection systems. A model 
combining three-dimensional (3D) convolutional neural networks (CNNs) with long short-term 
memory was proposed for the detection of falls in kinematic video data; these advanced 
machine-learning techniques could effectively process complex types of data to predict and 
detect falls accurately.(17) Predicting falls before they occur could significantly increase the 
timeliness of emergency response. One fall prediction method(18) comprises a combination of a 
CNN with class activation mapping (CAM). The system could highlight the class-specific 
features relevant to fall prediction as a heat map; CAM thus revealed the mechanism of fall 
prediction. The study showed that machine learning could detect and predict falls, and such a 
forecast can increase the timeliness and effectiveness of subsequent medical intervention. 

3. System Architecture and Methodology

 In this study, we use an algorithmic approach to develop a home fall detection system. The 
system includes depth frames and skeleton tracking features. The system can predict falls and 
provide a timely warning by analyzing factors such as acceleration and the distance between a 
person and the floor. Figure 1 depicts the system’s architecture, generated using integrated 
computer-aided manufacturing definition for function modeling, called IDEF0. IDEF0 is a 
modeling language commonly employed in software engineering(19–21) and is based on the 
functional modeling language, structured analysis, and design technique.(22) Three key 
techniques were used to predict falls: v-disparity-based floor detection shown in Fig. 2, body 
part recognition, and fall prediction based on acceleration and distance. The floor detection 
module uses v-disparity images to analyze depths and identify the floor region. This information 
is vital for accurately assessing a person’s position relative to the floor. The body part recognition 
component recognizes and tracks specific body parts using the skeleton-tracking features 
provided by the Kinect V2 sensor. Finally, the fall prediction module uses the collected data, 
including acceleration and distance measurements, to make informed predictions regarding fall 
events.
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 These components are combined to create an effective and reliable fall detection system. By 
leveraging advanced sensing technologies and algorithmic analysis, the system can improve 
safety and reduce the risk of falls in various settings.
 Stereo images can be used for reliable obstacle detection.(23) We use depth images captured 
by the Kinect V2 sensor—which comprises an infrared (IR) camera and IR projector, forming a 
stereo pair—for floor detection. Disparity d, a measure of the differences between pixels in 
stereo images, is calculated using Eq. (1), where b is the horizontal distance between the cameras 
in meters, f is the focal length in pixels, and z is depth in meters. The values of b and f are set to 
5 and 367.0094, respectively. A v-disparity image is composed of straight lines and oblique lines. 
The conversion method is to calculate the number of same disparities on the axis of the original 
disparity image and accumulate them, as shown in Fig. 3. For a given row in the original 
disparity image, the count of a disparity value in that row is listed in the corresponding row and 
column of the v-disparity image. For example, the disparity value 1 occurs twice in the first row 
of the original image in Fig. 3; hence, the second column (disparity value 1) of the first row of the 
v-disparity image contains the value 2. Through this process, the disparity image is converted 

Fig. 1. (Color online) Architecture of the proposed system.

Fig.	2.	 (Color	online)	v-disparity-based	floor	detection.
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into a v-disparity image. The v-disparity image represents the differences in the disparity 
between rows and therefore offers valuable insight into depth variation and can be used to detect 
the floor region. Calculating the v-disparity image from the depth information provided by the 
Kinect V2 sensor is critical for the subsequent steps of the fall detection method for real-time fall 
prediction.

 b fd
z
×

=  (1)

 Thresholding is an image segmentation method in which grayscale images are converted into 
binary images. Applying a threshold to the v-disparity image enables the separation of relevant 
features of interest from the background. Subsequent operations, such as the Hough transform, 
can achieve more accurate and robust detection of relevant features, such as lines or curves, on 
the simplified, binarized v-disparity image, ensuring that the identification and segmentation of 
the floor region are accurate. The Hough transform is an image-processing technique widely 
used for feature extraction and typically detects straight image lines. The algorithm uses a point-
slope formula to convert the image pixels from Cartesian into polar coordinates. A voting 
mechanism determines the parameters ρ and θ representing the detected lines. In Fig. 4, ρ 
represents the shortest distance between the origin and the line, and θ is the angle between this 
line and the x-axis. Each line in the image can be represented in the form shown in Eq. (2). 
Although an infinite number of such possible (ρ, θ) pairs passing through a given point can be 
defined in Fig. 5, in practice, they are restricted to ρ	>	0	and	0	≤	θ	<	2π	in	Eq.	(3).	When	two	
points intersect in ρ–θ or polar coordinates, as shown in Fig. 6, they belong to the same line. We 
can accurately identify and display lines in the image by converting these points back to 
Cartesian coordinates. In sum, the Hough transform detects lines by identifying points of 
intersection in the polar coordinate space. The resulting line detection and extraction are robust 
and used in the subsequent floor detection and fall prediction stages.

 cos  sinx yρ θ θ= +  (2)

	 ρ	>	0	and	0	≤	θ	<	2π	 (3)

Fig. 3. (Color online) Conversion from disparity image to v-disparity image.
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 Identifying in-depth floor images begins with converting the v-disparity image into a depth 
image. In this process, the v-disparity image, derived from the original depth image, is reversed 
to reacquire the depth image. This allows the floor pixels to be marked by projecting the 
segmented slanted lines, extracted through the Hough transform, back onto the depth image. 
This step transforms the identified two-dimensional floor pixels into 3D camera space. This 
transformation is facilitated by the Kinect for Windows Software Development Kit 2.0 method, 
which seamlessly converts 2D pixel coordinates into corresponding 3D points. The result is an 
accurate spatial representation of the floor within the 3D camera space, thus enabling the precise 
delineation of the floor region in the depth image.
 RANSAC is a robust regression algorithm for estimating the parameters of a model from a 
dataset that may contain outliers.(24) The RANSAC algorithm randomly samples subsets of size 
n from the dataset, where n is the minimum number of samples required to estimate the model 
parameters. It then distinguishes inliers from outliers for all points in the dataset, and the 
numbers of inliers for the current model and the best previous model are compared. The model 
parameters and the maximum number of inliers achieved are recorded. This process is continued 
until a termination criterion is satisfied. 
 The termination criterion for RANSAC is typically a minimum number of required samples. 
Let the proportion of inliers in the dataset be denoted as t in Eq. (3); the probability of selecting 

Fig. 4. (Color online) Hough transform. Fig. 5. (Color online) Corresponding line in the 
polar coordinate plane.

Fig. 6. (Color online) Several coordinate curves in the polar plane.
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at least one outlier among the sampled points is 1-tn. If the probability of convergence after 
iteration k is p in Eq. (4), the maximum number of iterations k can be expressed as Eq. (5).
 The RANSAC algorithm is used in the floor identification module to compute the plane 
equation (6) by sampling three 3D floor pixels. The algorithm calculates the distance from each 
floor point to the proposed plane and determines a suitable distance threshold. Points at distances 
below the threshold are considered inliers. The process is iterated to select the optimal plane 
representing the floor. By employing the RANSAC algorithm, our method robustly estimates the 
floor parameters, even in the presence of outliers. This ensures accurate detection and tracking 
of the floor, which is crucial for effective fall detection and prevention.
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 Body part recognition is vital for accurately tracking the human skeleton and detecting 
specific human joints within a depth image. In this study, we take advantage of the Microsoft 
offers in the Kinect V2 framework.(25) In this method, a deep random decision forest(25) classifier 
is used to categorize each pixel as belonging to a specific body part, enabling the recognition of 
human joints and tracking of human skeletons by using the Kinect V2 camera. This approach 
can robustly and effectively classify the body parts within a single depth image, enabling precise 
identification and tracking of specific joints. In particular, our system exploits the body part 
classification to detect and track hand movements accurately; this means that users can 
seamlessly interact with the design and intuitively control it through gestures, giving the system 
high overall performance and usability.
 The acceleration and distance-based fall prediction method makes effective use of the ability 
of the Kinect sensor to track the 25 skeleton joints shown in Fig. 7. One of the fall prediction 
indexes proposed in this study is the average index of acceleration and distance. This index is 
based on the nine joint points of the 25 skeleton joints. The nine joints critical for human 
movement are selected on the basis of the results of the experiments conducted(26) and are listed 
in Table 1. The vertical distance to joints from the floor and the acceleration of the joints can be 
calculated by monitoring these joints and their relationships with the extracted floor parameters. 
The vertical acceleration of these nine points and the distance from the ground are recorded and 
a threshold to judge whether there is any sign of a fall is set. The fall prediction algorithm 
determines if the average joint–floor distance ds is less than 0.7 meters using Eq. (7), and the 
average vertical acceleration as	is	less	than	−7	m/s2 (i.e., downward) using Eq. (8).
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 In our system, the algorithm predicts a fall if the vertical distance and acceleration surpass 
their respective thresholds. This prediction is crucial as it triggers an immediate alert, such as 
visual or auditory notifications or an automated message to a caregiver or medical service. The 
entity receiving the signal can then initiate appropriate actions to mitigate the risk, such as 
providing physical assistance, deploying safety measures such as fall-cushioning mats, or 
preparing for immediate medical attention. Our fall detection approach relies on acceleration 
and distance-based metrics assessed using a Kinect sensor. The sensor’s ability to identify 
critical joints improves the fall detection accuracy, thereby enhancing the response time. Giving 

Fig.	7.	 (Color	online)	Twenty-five	joints	tracked	by	Kinect	V2.

Table 1 
Joints selected in this study.

S1 S2 S3 S4 S5 S6 S7 S8 S9

Head Spine 
Shoulder

Shoulder 
Left

Shoulder 
Right

Spine 
Base

Hip 
Left

Hip 
Right

Knee 
Left

Knee 
Right
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caregivers or monitoring services a heads-up before the actual fall occurs gives them a window, 
albeit small, to act in a way that could potentially minimize injury or expedite aid in various 
environments.

4. Experimental Results

 The experimental environment of the program comprised a Kinect V2 RGB-D camera, 
which was used for data collection, and an alarm message was output to the Kinect’s 
communication software. Kinect V2 captures color and depth images at a resolution of 512 × 424 
pixels and a frame rate of 30 fps. The Kinect V2 camera’s body part recognition feature proved 
instrumental in our experiments. It successfully detected 25 joints in the human body, enabling 
precise tracking and analysis. Moreover, the camera’s ability to detect multiple individuals in a 
scene (up to six people) further enhances its usefulness in various real-world scenarios. The 
detection range of the Kinect V2 camera is 0.5–4.5 m, enabling effective monitoring and 
detection of human activity over a sufficient distance for the system to be effective in most 
indoor environments. The experimental results validated the effectiveness of our approach to 
providing real-time monitoring and timely alerts.
 The depth images used as input are captured by the Kinect V2 sensor. Figure 8 displays a 
captured depth image of the scene. As shown in Fig. 8, the original depth image is an image with 
a size of 512 × 424 pixels, which is converted into a disparity image using Eq. (1), and after the 
accumulation process, the obtained v-disparity image has a size of 256 × 424 pixels, as shown in 
Fig. 9. The dotted line in the figure indicates the portion of the ground in the original image. The 
slanted line, seen in Fig. 10, signifies the floor in the experimental scene after Hough transform. 
To accurately interpret the scene, it is necessary to extract this line. Upon applying the Hough 
transform, we segment the slanted line depicting the scene’s floor, as illustrated in Fig.10. Figure 
11 shows the marked floor in the depth image. Furthermore, pixels representing the floor 
transform and the RANSAC algorithm are employed to extract the floor parameters, thereby 
enabling us to secure the floor features.
 The experiments were conducted in an indoor environment under various light conditions. 
Two volunteers aged 24 years participated in the tests. They performed various daily activities, 
including walking, sitting, crouching, and simulating falls in different scenarios. Each fall 
scenario was repeated at least five times, and the system issued a fall alarm when it predicted a 
fall would occur. During 10 instances of walking, the system issued no fall alarms. In 20 cases of 
sitting, the system gave one fall alarm. Similarly, in 20 samples of crouching, the system issued 
two fall alarms. In 30 simulated falls, the system accurately detected and issued a fall alarm in 
24 cases, as listed in Table 2. On average, the fall alarms were given 0.3167 s before the fall event 
(i.e., the person impacting the floor); the earliest warning occurred 0.5 s before the simulated fall 
event. The system had high accuracy for distinguishing between walking and falls; however, 
activities involving downward motion, such as sitting and crouching, occasionally triggered 
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false fall alarms. Moreover, the system failed to predict some simulated falls. Nevertheless, the 
accuracy of the expected fall alarms was an impressive 80%. These results indicate the 
effectiveness of our system in detecting and predicting falls promptly. Moreover, its ability to 
accurately differentiate between walking and falls suggests that it would be reliable and valid in 
practical applications. However, the system’s detection capabilities during downward motion 
should be refined to minimize false alarms. Overall, our experimental results demonstrate that 
the system shows promising performance and the potential to improve safety and well-being in 
various environments where fall detection is crucial.

Fig. 8. Depth image. Fig. 9. (Color online) v-disparity image.

Fig. 10. Hough transform conversion of the slanted line image in Fig. 9.
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5. Conclusions

 We presented an innovative fall prediction system using the Kinect V2 sensor and image-
processing techniques to detect and anticipate falls in real time. The system successfully 
distinguishes between daily activities and falls and can issue fall alarms up to half a second 
before a person contacts the ground. The system’s primary potential lies in aiding caregivers to 
promptly assist and minimize fall-related injuries. While the current model achieves an 80% 
rate, our future goal is to refine the algorithm and harness advanced machine-learning 
techniques, including deep-learning models, to improve its precision and robustness. Conducting 
extensive experiments in diverse environments with larger sample sizes would enable a more 
comprehensive system evaluation, enriching the insight into its reliability and generalizability. 
This will further facilitate the fine-tuning and optimization of the system parameters.
 As part of future work, integrating our fall prediction system with communication software 
or alert mechanisms would ensure that caregivers or emergency services receive fall alerts 
promptly, facilitating timely intervention and assistance. Furthermore, augmenting the system 
with additional sensors, such as inertial sensors or wearable devices, may boost the accuracy and 
reliability of fall prediction by providing a holistic view of body movement.

Fig. 11. Floor marked in depth (white area).

Table 2
Experimental results.

No. of simulations No. of fall alarms No. of no alarms Accuracy (%)
Walk 10 0 10 100
Sit 20 1 19 95
Crouch 20 4 16 80
Fall 30 24 6 80
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 Gathering the results of user studies and feedback from individuals at risk of falls and from 
caregivers will be crucial to further system refinement. Evaluating the system’s usability, 
effectiveness, and user satisfaction within the target demographic will be integral to its 
improvement. In conclusion, our fall prediction system shows significant potential in mitigating 
fall-related injuries and ensuring prompt assistance after a fall. The direction of future work 
includes improving system accuracy, conducting expanded experiments, integrating 
communication mechanisms, exploring additional sensor modalities, and incorporating user 
feedback. These efforts are aimed at enhancing the system’s performance, usability, and overall 
effectiveness, thereby contributing to the safety and well-being of at-risk individuals.
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