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 With the ongoing integration of bionic technology and mechatronics, exoskeleton devices are 
finding applications in industry, healthcare, and logistics. This study is centered on enhancing 
the performance of heterogeneous sensor exoskeleton devices by presenting a six-degree-of-
freedom upper limb exoskeleton robot model based on the Denavit–Hartenberg (MDH) 
approach. The model’s accuracy is verified using MATLAB. We construct a multi-objective 
optimization model that prioritizes workspace expansion. To realize this model, we propose an 
improved Harris Hawks algorithm (SCA-HHO) based on the sine cosine algorithm. The 
algorithm’s effectiveness is compared with popular swarm intelligence methods (PSO, AOA, 
WOA) through cross-sectional simulations. SCA-HHO achieves average improvements of 6.30, 
1.48, and 0.88% in objective function values compared with the swarm intelligence algorithms, 
respectively. This indicates SCA-HHO’s superior suitability for solving the model proposed in 
this paper.

1. Introduction

 An exoskeleton device is a wearable electromechanical intelligent robot. Compared with 
military and medical rehabilitation fields, in industry, exoskeletons are still in the early stage of 
research, development, and commercialization. Heterogeneous sensor exoskeletons, with their 
sensors, power drivers, and rigid and flexible mechanical structures, can provide assistance 
during physical labor, increase the strength and endurance of the operator, and assist the wearer 
in completing specific operational actions, thus improving the productivity or operational 
efficiency of the user. Linnenberg and Weidner(1) studied four overhead exoskeletons to 
investigate the stresses that occur within the human-machine interface (HMI) of the arm during 
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overhead work and the effect of the HMI on the neurovascular supply to the upper extremity of 
the user. Antwi-Afari et al.(2) tested the effect of exoskeletal systems on the biomechanics and 
subjective response of the spine during repetitive lifting tasks performed by construction 
personnel to verify their utility and reliability. In recent years, with the continuous development 
of industrial automation, industrial exoskeleton devices have received widespread industry 
attention for their portability and their ability to effectively enhance the efficiency and capacity 
of operators.(3)

 To achieve effective assistance, the self-weight of each part of the exoskeleton system should 
be as small as possible while the power of the drive system should be sufficiently large. The 
choice of drive degrees of freedom and the range of joint degrees of freedom also affect the 
actual operational capability of the exoskeleton, so lightness, power-assisted capability, and 
effective operational space should be the main performance optimization directions for 
industrial exoskeleton devices.(4) Because of constraints such as the size, structure, and 
performance of industrial exoskeleton devices, such optimization problems can be called 
dynamic optimization problems.
 The exoskeleton workspace refers to the working area that can be reached by the end of the 
exoskeleton and is one of the criteria for judging its performance. At present, research on 
exoskeleton dynamics models has focused on optimizing the direction of driving joint kinematic 
parameters, control strategies, and trajectory planning.(5–8) For example, in Ref. 9, an adaptive-
interactive-torque-based assist-on-demand (AITAAN) control method for a lower limb 
rehabilitation exoskeleton was proposed to provide effective support for the gait rehabilitation of 
patients. As reported in Ref. 10, the control strategy of the knee plunger cylinder was optimized 
to solve the knee joint jitter that may occur during the squatting process of a weight-assisted 
exoskeleton system. However, most of the existing studies on workspace research are focused on 
the robotic arm, and there is less involvement in the analysis of the workspace of industrial 
exoskeleton devices. The three objective functions of trajectory minimization, power 
consumption reduction, and multicriteria optimization were used to optimize the work cycle of 
the anthropomorphic robotic arm in the workspace.(11) The robotic arm work area of a two-arm 
rescue robot has also been simulated to achieve trajectory planning and control of both arms.(12)

 The Denavt–Hartenberg (DH) and modified Denavit–Hartenberg (MDH) methods are used 
conventionally in the kinematic analysis of models such as those of exoskeletons and robotic 
arms, i.e., the kinematic equations of a tandem robot composed of connecting rods are obtained 
by coordinate transformation. In addition, for the optimization or simulation analysis of 
exoskeleton models, software programs such as MATLAB and Adams(13) are widely used in 
dynamics and kinematics studies. The application of advanced swarm intelligence algorithms 
such as particle swarm algorithms,(14,15) genetic algorithms,(16,17) the whale optimization 
algorithm,(18) and nondominated ranking genetic algorithms (NSGA-II)(19) in industrial and 
intelligent manufacturing(20) has also become one of the popular research directions for domestic 
and foreign scholars.
 In summary, research on exoskeleton workspaces remains relatively rare in existing domestic 
and international studies. Moreover, the analysis and optimization of power-assisted workspaces 
for industrial exoskeletons are even more unexplored. The primary challenge of our task is to 
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establish a mathematical model for the exoskeleton device. Such a model must take into account 
various factors including mechanical structure and kinematic principles. It is also necessary to 
consider multiple factors in order to determine the optimization target and establish the 
optimization objectives. Simultaneously, the design of an efficient optimization algorithm is 
essential to solving the proposed model.
 To address the above issue, we use the MDH method to establish an exoskeleton tandem 
linkage model based on actual project business data following the positive kinematic principle. 
Furthermore, in reference to the actual structural characteristics and performance constraints of 
the industrial exoskeleton, the structural parameters of the exoskeleton are taken as the 
optimization variables, and the exoskeleton power-assisted optimization model is established on 
the basis of analytical and graphical methods. Meanwhile, for the problem that the traditional 
Harris Hawks algorithm tends to fall into iterative stagnation at a later stage, an improved Harris 
Hawks algorithm (SCA-HHO) based on the positive cosine algorithm is designed for simulation, 
so that an optimal structural parameter scheme of the industrial exoskeleton device can be 
obtained.

2. Analysis of Power-assisted Models for Industrial Exoskeleton Devices

2.1 Establishment and analysis of MDH models for industrial upper limb exoskeleton

 The model of the upper limb exoskeleton device is shown in Fig. 1. The device body is a 
6-axis tandem wearable robotic device with two powered degrees of freedom with servo motors 
and four underdriven degrees of freedom; all six degrees of freedom are rotational degrees of 
freedom.

Fig. 1. (Color online) Model of upper limb exoskeleton. (a) Back view and (b) side view.

(a) (b)
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 In this paper, the positive kinematics method is used for calculation. The MDH method is a 
modified version of the DH linkage coordinate system method proposed by Craig, which uses 
the front-end joint of the linkage as the fixation coordinate system. 
 Since the left and right arms of the exoskeleton device are symmetrical, only one side of the 
robotic arm needs to be analyzed. The MDH method is used to establish its linkage coordinate 
system, as shown in Fig. 2, in which the positions of each linkage coordinate system are marked, 
where the X1 positive direction points out-of-plane and Y2 and Y3 point in-plane. The 
corresponding DH parameters obtained are shown in Table 1.
 According to the chain rule of coordinate system transformation, the transformation matrix 
from the i-1st coordinate system to the i-th coordinate system (i = 1, 2, 3) can be written as 
follows.
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1 1

1 1
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 Then the homogeneous transformation matrix between adjacent coordinate systems of this 
exoskeleton device is 

Fig. 2. DH coordinate system of industrial upper limb exoskeleton.

Table 1
DH parameters of industrial upper limb exoskeleton.
i αi−1 ai−1 di θi
1 0 0 0 θ1
2 −π/2 L2 −H2 θ2
3 0 L3 0 θ3
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where si represents sinθi and ci represents cosθi (i = 1, 2, 3). Thus, the total homogeneous 
transformation matrix of the device is
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where P = (px, py, pz) is the position vector of the end of the upper limb exoskeleton device. The 
simultaneous solution leads to the following.
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 Robotics Toolbox for MATLAB 10.4 was used to establish a visual model of the upper 
extremity exoskeleton, in which the initial joint angle parameter θi was set as (0, 0, 0). As shown 
in Fig. 3, the upper extremity exoskeleton was in a forward flat lifting state, which was consistent 
with the established linkage coordinate system, verifying the correctness of the established 
model.

Fig. 3. (Color online) Visualization of exoskeleton model.
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2.2 Workspace analysis of exoskeleton device

 The workspace refers to the set of locations that the end of the exoskeleton can reach.  
According to the results of the above analysis, as shown in Fig. 2, the workspace of the 
exoskeleton device is mainly affected by three parameters: H2, L2, and L3. Therefore, the 
following modeling analysis of the workspace is carried out by simulation and a graphical 
method, and the above three variables are used as decision variables to establish a power-assisted 
optimization model in order to obtain the maximum effective workspace for the exoskeleton 
device.

2.2.1 Workspace analysis

 First, the workspace of the single arm of the industrial upper limb exoskeleton device is 
established by the Monte Carlo algorithm based on MATLAB. The Monte Carlo method is a 
method of solving mathematical problems by random sampling and yields a sample that well 
reflects the area accessible at the end of the device. The initial values of parameters H2, L2, and 
L3 are respectively set as 150, 200, and 250 mm. Since the range of the joint rotation angle is 
limited, let 1 [ 90 ,90 ]θ °∈ − ° , 2 [ 90 ,90 ]θ °∈ − ° , and 3 [0 ,180 ]θ °∈ ° . Take the random number sequence 
N = 20000 to obtain the workspace of the exoskeleton device and its projection on each 
coordinate plane, as shown in Fig. 4.

(a) (b)

Fig. 4. (Color online) (a) Main view of the workspace and (b) projection of the workspace on the XY plane.
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2.2.2 Optimization model of exoskeleton power assist

 Second, the graphic method is used to analyze the projection of the exoskeleton workspace on 
the XoY plane, as shown in Fig. 5. The projection area is divided into three parts, among which 
A3 is the overlapping part of the two arm workspaces. To optimize the workspace of the 
exoskeleton device, the optimal parameters of each rod length should be determined to maximize 
the range of the workspace boundary curve l2l3. Also, considering the nonessential working 
area, the overlapping part of the working space range of the two arms should be minimized, so 
the objective function of the effective working space of the exoskeleton power-assisted model 
can be defined as the following multi-objective optimization function.

 2 2 3 1 2 2 3 2 2 2 3max ( , , ) [ ( , , ), ( , , )]F H L L F f H L L f H L L=  (5)

 1 2 2 3 1 2( , , ) 2[ ( ) ( )]f H L L S A S A= +  (6)

 2 2 2 3 3( , , ) ( )f H L L S A=  (7)

 This mathematical model is a multi-objective optimization model, where S is the distance 
between the two shoulders of the upper limb exoskeleton, thus

 2 2
2 2 3( ) ,R H L L= + +  (8)

 2 2
2 2 ,r H L= +  (9)

Fig. 5. Analysis of workspace projection surface.
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 All the parameters in the equation can be seen in Fig. 5. As it is difficult to directly calculate 
the area of some figures in the working space, necessary simplification can be performed for 
some figures so as to have
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 To simplify the calculation, Eq. (5) is transformed from a multi-objective optimization 
function to a single-objective optimization through a linear weighting method by introducing the 
weight values ω1 and ω2 (ω1 + ω2 = 1) so that the total objective function of the optimization 
model is

 1 1 2 2 3max 2 [ ( ) ( )]  ( ).Z S A S A S Aω ω= + −  (15)

2.2.3 Analysis of constraints

2.2.3.1 Rod length limit

 Considering the actual structure and length ratio of each joint of the human body, the length 
of each link of the exoskeleton should be limited, to a certain extent, so that

	 0	≤	H2	≤	200	(mm),	 (16)

	 0	≤	L2	≤	400	(mm),	 (17)

	 0	≤	L3	≤	400	(mm).	 (18)
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2.2.3.2 Joint angle limitation

 Because of the limited rotation angle of the human upper limb joint, the arms of the 
exoskeleton naturally droop. Therefore, when analyzing the exoskeleton workspace, the joint 
angle is limited to

 1 2[ 90 ,90 ], [ 90 ,90 ].θ θ° ° °− ∈ °∈ −  (19)

2.2.3.3 Exoskeleton weight constraint

 Considering the power assist role of the industrial exoskeleton, the dead weight of each part 
of the system should be as small as possible to achieve effective power assist; thus, the total 
length of each connecting rod should be limited to a certain extent.

	 0	≤	H2 + L2 + L3	≤	800	(mm)	 (20)

3. Improved Harris Hawks Algorithm Based on the Sine Cosine Algorithm

 For the exoskeleton power-assisted optimization model described, it is difficult to obtain an 
optimal solution within a feasible time by traditional convex optimization methods because of 
the existence of multiple variables and the complexity of the mathematical relationships between 
the variables. In contrast, metaheuristic algorithms represented by, for example, particle swarm 
algorithms(21) and simulated annealing algorithms(22) can better solve such problems and can 
give near-optimal feasible solutions in an acceptable time and space. Therefore, in this paper, we 
choose the more novel Harris Hawks algorithm for solving the problem, and optimize and 
improve it to lessen its shortcomings to further improve its convergence accuracy and efficiency. 

3.1 Principle and steps of Harris Hawks algorithm 

 The Harris Hawks optimization (HHO) algorithm is a new swarm intelligence optimization 
algorithm proposed by Heidari et al.(23) in 2019. The algorithm is based on the cooperative 
predation behavior of Harris eagles and has the following stages.

3.1.1 Exploration phase

 This phase is the global search phase. The Harris hawks fly in the air to detect and track the 
location of prey. In the exploration stage, the eagle group updates its position through random 
number q, as shown in Eq. (22).
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1 ( )
N

m i
i

X X t
N =

= ∑  (21)
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Here, the upper and lower limits of parameters ri and q are random numbers between 0 and 1, 
Xrand is a random individual in the population, and Xrabbit is the location of prey.

3.1.2 Transition phase

 This stage is the transition of the eagle group from the exploration stage to the development 
stage and is mainly determined by the prey escape factor E, whose iteration formula is 

 02 1 ,tE E
T

 = − 
 

 (23)

where E0 is the initial escape factor, t is the number of current iterations, and T is the maximum 
number of iterations. When the absolute value of E is less than 1, the population changes from 
the global search stage (exploration phase) to the local search stage (development phase).

3.1.3 Development stage

3.1.3.1 Hard encirclement attack

 When |E| < 0.5 and r	 ≥	 0.5,	 the	 population	 is	 updated	 by	 the	 following	 hard	 enveloping	
strategy.

 ( 1) ( ) ( ) ( )rabbit rabbitX t X t E X t X t+ = − × −  (24)

3.1.3.2 Soft encirclement attack

 When |E|	 ≥	 0.5	 and	 r	 ≥	 0.5,	 the	 population	 is	 updated	 by	 the	 following	 soft	 enveloping	
strategy.

 ( 1) [ ( ) ( )] 2 (1 ) ( ) ( )rabbit rabbitX t X t X t E rand X t X t+ = − − × × − × −  (25)

3.1.3.3 Fast dive hard encirclement

 When |E| < 0.5 and r < 0.5, the population is updated by the hard encircling strategy of a fast 
dive, as shown by

 ( ) 2 (1 ) ( ) ( ) ,rabbit rabbit mY X t E rand X t X t= − × × − × −  (26)
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 ( ) 2 (1 ) ( ) ( ) ( ),rabbit rabbit mZ X t E rand X t X t rand LF D= − × × − × − + ×  (27)

 
, ( ) ( ( ))

( 1)
, ( ) ( ( ))

Y F Y F X t
X t

X F Z F X t
<

+ =  <
 (28)

 1/( ) 0.01 ,ruLF x
rv β

σ×
= ×  (29)

 
( )

1

1

/

2

1 sin
2 .

1 2
2

β

β

ββ
σ

β β
−

 π Γ + ×  
  =

 + Γ × ×    

 (30)

3.1.3.4 Fast dive soft encirclement

 When |E|	≥	0.5	and	r < 0.5, the population is updated by a soft encircling strategy of a fast 
dive, as shown by

 [ ( ) ( )] 2 (1 ) ( ) ( ) ,rabbit rabbitY X t X t E rand X t X t= − − × × − × −  (31)

 [ ( ) ( )] 2 (1 ) ( ) ( ) ( ),rabbit rabbitZ X t X t E rand X t X t rand LF D= − − × × − × − + ×  (32)
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X t

X F Z F X t
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3.2 Improvement and optimization of Harris Hawks Optimizer

3.2.1 Population initialization based on Chebyshev chaotic mapping

 Harris Hawks Optimizer (HHO), like most swarm intelligence optimization algorithms, 
generates the initial population in a randomized manner. However, this approach tends to make 
the initial population unevenly distributed, which affects the optimization performance of the 
algorithm and leads to a slow convergence rate.
 This problem can be solved by using chaotic sequences to generate the initial population, 
which can generate states without repetition within a certain range, i.e., it is ergodic and can 
make the individuals in the population more uniformly distributed in the solution space. In 
existing literature, logistic mapping(24) and cubic mappings(25) are often used to initialize 
populations. In comparison, Chebyshev mapping(26) can have a larger distribution and better 
ergodicity. The Chebyshev chaos mapping formula is

 1 cos( arccos ),  [ 1,1].n n nx k x x+ = = −  (34)
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 When k	≥	2,	the	generated	sequences	are	all	uncorrelated,	so	k = 3 is taken in the simulation 
experiment of this study to generate the initial iterative population by this chaotic mapping. This 
can improve the population diversity and enhance the convergence ability of the algorithm.

3.2.2 Sine cosine search operator

 To address the shortcomings of HHO, such as weak global search ability in the late stage and 
ease of falling into iterative stagnation, we introduce the sine cosine algorithm to enhance its 
search ability in the late stage of algorithm iteration.
 The sine cosine algorithm (SCA) is a new natural-like optimization algorithm proposed by 
Seyedali Mirjalili, an Australian scholar, in 2016,(27) and has the advantages of few parameters 
and easy implementation. The sine cosine search operator is shown in Eq. (35). When the 
number of iterations of the algorithm t > T and the algorithm falls into stagnation, i.e., the 
optimal value remains unchanged for five consecutive generations, each individual in the 
population is perturbed and updated as

 1 2 3 4

1 2 3 4

( 1) sin( ) ( 1) , 0.5
( 1) cos( ) ( 1) , 0.5

X t r r r gbest X t r
X

X t r r r gbest X t r
 + + × × − + ≤′ =  + + × × − + >

 (35)

 1 ,ar a t
T

= −  (36)

where a is the algorithm constant, r2	is	a	random	number	within	[0,2π],	r3 is a random number 
within [0,2], r4 is a random number within [0,1], and gbest denotes the position of the globally 
optimal individual.

3.2.3 Merit retention

 After the sine cosine perturbation operation, to retain the optimal individuals and prevent the 
elite individuals from being destroyed during the updating process, we use a merit retention 
mechanism to determine whether to retain the updated individuals.
 The positions of the new individuals after the perturbation are compared with the positions 
before the perturbation, and the positions of the individuals of the new generation are retained 
depending on their objective function values, determined as 

 
, ( ) ( ( 1))

( 1)
( else1),

X fit X fit X t
X t

X t
′ ′ > +

+ =  +
 (37)

where ( 1)X t +  on the left side of the equation denotes the final retained new generation of 
individuals, and fit() denotes the fitness function. The above method enables individuals to 
update their positions within a certain range to find whether there is a more optimal solution, 
while retaining the superiority of the original solution. The method has a significant effect on 
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improving the later development capability of the HHO algorithm, and can effectively prevent 
the algorithm from falling into a local optimum.

3.2.4 Flow chart of improved Harris Hawks algorithm

 The algorithmic flowchart of SCA-HHO based on the sine cosine algorithm proposed in this 
paper is shown in Fig. 6.

4. Simulation Analysis

 In this study, MATLAB R2022a is used as the simulation experiment tool with Windows 11 
as the operating system with 16 GB of RAM on board, AMD Ryzen 7 5800U as the processor, 
and NVIDIA GeForce RTX 3050 as the graphics card.
 To verify the effectiveness and superiority of SCA-HHO designed in this study, the particle 
swarm algorithm (PSO), arithmetic optimization algorithm (AOA), whale optimization algorithm 
(WOA), and other cutting-edge population intelligence optimization algorithms are also selected 
to conduct cross-sectional simulation comparison experiments on the proposed model.
 AOA is a novel metaheuristic algorithm proposed by Abualigah et al. in 2021(28) and the 
algorithm is optimized by introducing combinations of the four arithmetic operations. Among 
them, multiplication (M) and division (D) are used to achieve global exploration to enhance the 
solution dispersion; addition (A) and subtraction (S) are used to complete local exploitation to 
improve the local density of the solution, in addition to determining the search pattern of the 
algorithm using an iteration parameter of AOA. Finally, the global optimization search process 
of AOA is completed.

Fig. 6. (Color online) Flow chart of improved Harris Hawk algorithm.
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 WOA is a new population intelligence optimization algorithm proposed by Mirjalili and 
Lewis in 2016(29) and mimics the bubble-net hunting behavior of humpback whales to complete 
the optimization search through three stages: prey seizure, bubble-net predation, and prey 
search. The global optimal solution is ultimately obtained. WOA has the advantages of few 
control parameters, easy implementation, and strong optimization-seeking ability.
 In the model parameters, the shoulder width S of the exoskeleton device is set to 500 mm. 
The parameters of each algorithm are set as follows: in SCA-HHO, the positive cosine parameter 
a = 2; in PSO, the maximum particle velocity vmax = 3, the minimum velocity vmin	=	−3,	the	
learning factor c1 = c2 = 1.5, the maximum value of inertia weight wmax = 0.8, and the minimum 
value wmin = 0.4; in AOA, the maximum value of the acceleration function MOP_Max = 1, the 
minimum value MOP_Min = 0.2, the control parameter μ = 0.499, and the sensitivity parameter 
α = 5.
 To ensure the fairness of the simulation experiments, the population size NP of each 
algorithm is set to 100 and the maximum number of iterations T is set to 300. Each algorithm is 
run independently 50 times in three groups with the weight ratios ω1:ω2 of 6:4, 5:5, and 4:6.
 The average iteration curves of each algorithm for 50 runs under the three sets of weights are 
given in Fig. 7, the optimal solutions and the corresponding objective function values of each 

(a) (b)

(c)

Fig. 7. (Color online) Iterative curves of four algorithms with weight ratios of (a) 4:6, (b) 5:5, and (c) 6:4.
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algorithm for a single run are given in Tables 2–4, and the operation indexes of each algorithm 
for a single run are given in Tables 5–7.

Table 2
Optimal solutions obtained from a single run of each algorithm (6:4).

Optimal solution H2 /(mm) L2 /(mm) L3 /(mm) Objective function 
value

SCA-HHO 200 400 400 8.3707 × 105

PSO 0.2111 398.9965 399.9882 8.1179 × 105

AOA 132.0746 393.9469 399.0402 8.2364 × 105

WOA 131 400 400 8.3259 × 105

Table 3
Optimal solutions obtained from a single run of each algorithm (5:5).

Optimal solution H2 /(mm) L2 /(mm) L3 /(mm) Objective function 
value

SCA-HHO 200 400 400 6.4146 × 105

PSO 0.1544 399.8365 399.9973 6.0757 × 105

AOA 187.7649 392.1069 399.0343 6.3274 × 105

WOA 200 400 400 6.4146 × 105

Table 4
Optimal solutions obtained from a single run of each algorithm (4:6).

Optimal solution H2 /(mm) L2 /(mm) L3 /(mm) Objective function 
value

SCA-HHO 200 400 400 4.4584 × 105

PSO 27.8262 372.0970 399.9862 4.0458 × 105

AOA 194.6146 386.4409 399.3021 4.3953 × 105

WOA 196 400 400 4.4534 × 105

Table 5
Operating metrics of each algorithm in a single run (6:4).

Optimal solution S(A1) /(mm2) S(A2) /(mm2) S(A3) /(mm2) Workspace area 
/(mm2)

SCA-HHO 6.9790 × 105 1.1187 × 105 3.3662 × 105 1.6195 × 106

PSO 6.8966 × 105 1.2566 × 105 4.1649 × 105 1.6306 × 106

AOA 6.8456 × 105 1.1849 × 105 3.5006 × 105 1.6061 × 106

WOA 6.9415 × 105 1.1931 × 105 3.5890 × 105 1.6269 × 106

Table 6
Operating metrics of each algorithm in a single run (5:5).

Optimal solution S(A1) /(mm2) S(A2) /(mm2) S(A3) /(mm2) Workspace area 
/(mm2)

SCA-HHO 6.9790 × 105 1.1187 × 105 3.3662 × 105 1.6195 × 106

PSO 6.9074 × 105 1.2566 × 105 4.1766 × 105 1.6328 × 106

AOA 6.8528 × 105 1.1244 × 105 3.2997 × 105 1.5955 × 106

WOA 6.9790 × 105 1.1187 × 105 3.3662 × 105 1.6195 × 106
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 As seen from the average iteration curves in Fig. 7, SCA-HHO has a significantly higher 
convergence speed and better search ability than the other algorithms. The results in Tables 2–7 
show that SCA-HHO has the highest solution accuracy and the highest quality of feasible 
solutions among the simulation algorithms, and its solution performance maintains good stability 
in multiple runs. Under the ω1:ω2 = 6:4 condition, the objective function values improve by 3.11, 
1.63, and 0.53% in a single run compared with the PSO, AOA, and WOA, respectively; under the 
ω1:ω2 = 5:5 condition, they improve by 5.58, 1.38, and 0%, respectively; under the ω1:ω2 = 4:6 
condition, they improve by 10.20, 1.43, and 0.11%, respectively. The objective function values of 
SCA-HHO improved by 6.30, 1.48, and 0.88% on average under the three weight ratios.
 The simulation results show that the optimal solutions of the model for all three weight ratios 
ω1:ω2 are H2 = 200 mm, L2 = 400 mm, and L3 = 400 mm, when the area S(A1) = 6.9790 × 105 
mm2, S(A2) = 1.1187 × 105 mm2, and S(A3) = 3.3662 × 105 mm2, and the exoskeleton working 
space projection area is 1.6195 × 106 mm2.
 In summary, SCA-HHO proposed in this paper performs well in terms of search ability and 
convergence speed compared with other popular swarm intelligence algorithms. Its search 
stability is also significantly higher than those of other similar algorithms, thus verifying the 
feasibility and applicability of the algorithm.

5. Conclusions

 The application of power exoskeleton devices provides higher operational efficiency and 
more reliable operational safety than traditional operation methods, and can effectively 
compensate for the lack of human function in such situations as electrically charged, high-
altitude, and high-load operations, thus effectively assisting personnel to complete their tasks. In 
this paper, we proposed an optimization method for the upper limb exoskeleton workspace based 
on the industrial exoskeleton power-assisted model. By referring to an actual physical structure 
and constraints of an upper limb exoskeleton device, the linkage model was derived on the basis 
of the positive kinematic method, and the multi-objective optimization model of the workspace 
was further established. Finally, an improved Harris Hawks algorithm (SCA-HHO) based on the 
sine and cosine algorithm was designed to solve the optimal parameters of the model. Chebyshev 
chaos mapping, sine cosine search, and merit retention were introduced to improve the 
convergence and post-optimal search capability of the algorithm. The results showed that the 
SCA-HHO algorithm is comparable to PSO, AOA, and WOA.

Table 7
Operating metrics of each algorithm in a single run (4:6).

Optimal solution S(A1) /(mm2) S(A2) /(mm2) S(A3) /(mm2) Workspace area 
/(mm2)

SCA-HHO 6.9790 × 105 1.1187 × 105 3.3662 × 105 1.6195 × 106

PSO 6.5601 × 105 1.2532 × 105 3.6748 × 105 1.5627 × 106

AOA 6.7931 × 105 1.1151 × 105 3.2187 × 105 1.5816 × 106

WOA 6.9765 × 105 1.1235 × 105 3.3777 × 105 1.6200 × 106
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 The results showed that the objective function of SCA-HHO was improved by 6.30%, 1.48%, 
and 0.88% on average compared with PSO, AOA, and WOA, respectively. In addition, the 
optimal solution of SCA-HHO was [H2, L2, L3] = [200, 400, 400] mm for each condition, which 
shows that it has good solution performance and accuracy, thus verifying the effectiveness and 
robustness of the algorithm designed in this study. In future research work, more attention will 
be paid to the improvement of the intelligence and human–machine synergy of exoskeleton 
technology to realize more flexible and intelligent exoskeleton devices to adapt to different 
operating environments and operational tasks. Exoskeleton technology will also be combined 
with robotics, artificial intelligence, and other cutting-edge technologies to achieve more 
efficient and intelligent industrial production.
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