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 In this study, we explored a single-shot detector (SSD) backbone and its optimized algorithm 
hyperparameters for object detection, and proposed a systematic method for determining 
appropriate algorithm hyperparameter combinations for the SSD backbone. The VGG16 
backbone for SSD has been used for object detection. The Resnet backbone won first place in the 
2015 ImageNet Large Scale Visual Recognition Challenge (ILSVRC), while the VGG16 
backbone ranked second place in the 2014 ILSVRC. We selected the Resnet50 backbone for SSD 
for vehicle image detection research because the Resnet50 backbone has a high feature extraction 
capability. We proposed SSD with the Resnet50 backbone and its optimized algorithm 
hyperparameters, called the SSD-Resnet50 model, to replace SSD with the VGG16 backbone 
and its optimized algorithm hyperparameters, called the SSD-VGG16 model, to enhance the 
vehicle image detection feature extraction capability. The Taguchi method optimized the 
algorithm hyperparameters of the Resnet50 and VGG16 backbones, thus improving the detection 
accuracies of the SSD-Resnet50 and SSD-VGG16 models, respectively. Experimental results 
show that the SSD-Resnet50 model using 300 × 300 × 3 input images achieved a detection 
accuracy of an average average precision (AP) of 97.15% in three independent experiments, 
outperforming the SSD-VGG16 model using 300 × 300 × 3 input images with an average AP of 
86.83% on the test set of vehicle images. As a result, the SSD-Resnet50 model has a higher 
accuracy of vehicle detection in images from the Caltech cars 1999 and 2001 datasets.
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1. Introduction

 Object detection has been widely used in fault detection,(1,2) video monitoring,(3,4) medical 
treatment,(5) and cloud computation services.(6) Object detection techniques include object 
localization and image classification to locate objects of interest and determine the specific class 
of each object. A single-shot detector (SSD) based on deep learning proposed by Liu et al.(7) 
used VGG16 as a backbone to solve the problem of object detection accuracy and has high 
performance in both detection speed and accuracy.(8) SSD is made up of a couple of convolutional 
layers stacked together as a backbone model that functions as the feature extractor. A better 
feature extractor can improve the object detection performance. Therefore, Shen et al.(9) 
designed a variant of the deeply supervised DensenNets to replace the VGG16 backbone of SSD 
and contributed a set of design principles for designing deeply supervised objection detectors. 
Liu et al.(5) explored more feature extractors (e.g., Resnet50, VGG16, and InceptionV3) for object 
detection and showed that effective and efficient feature extractors can lead to improved detector 
performance. Zhai et al.(8) designed the feature extraction network DenseNet-S-32-1, in which 
the VGG16 backbone for SSD was replaced with DenseNet-S-32-1 to enhance the feature 
extraction capability. The above studies revealed that an effective strategy for improving object 
detection accuracy is to design a reasonable backbone. Furthermore, there are few studies on 
how backbone algorithm hyperparameters affect the object detection accuracy. The authors 
previously studied how optimizing the algorithm hyperparameters of backbones improves the 
image classification accuracy.(10–13) Therefore, this study is motivated by the lack of research on 
better feature extractor models with optimized algorithm hyperparameters of backbones to 
improve the object detection accuracy.
 We propose a systematic approach to determine better algorithm hyperparameter 
combinations of the backbone for SSD for object detection. Another aim of this study is to find a 
better feature extractor with optimized algorithm hyperparameters for detecting vehicles in 
images from the Caltech cars 1999 and 2001 datasets.(15) The SSD proposed by Liu et al.(7) used 
VGG16 as a backbone to solve the problem of object detection accuracy. The VGG16 proposed 
by Simonyan and Zisserman(14) achieved a Top-5 error rate of 7.32% and placed second in the 
2014 ImageNet Large Scale Visual Recognition Challenge (ILSVRC), while the Resnet proposed 
by He et al.(16) achieved a Top-5 error rate of 3.57% and was the winner of the 2015 ILSVRC. 
Therefore, VGG16 and Resnet50 were selected as backbones for detecting vehicles in images. In 
the VGG16 and Resnet50 backbones, the improved classification quality can be determined by 
setting algorithm hyperparameter combinations before the learning process begins. In this study, 
we used a robust and systematic Taguchi experimental approach to search for better algorithm 
hyperparameter combinations for the VGG16 and Resnet50 backbones. In experimental 
comparisons, the SSD-Resnet50 model, which was equipped with the Resnet50 backbone and its 
optimized algorithm hyperparameters for SSD, had higher object localization and image 
classification accuracies than the SSD-VGG16 model, which had the VGG16 backbone and its 
optimized algorithm hyperparameters for SSD.
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2. Problem Description

 The vehicle images taken from the rear were collected from the Caltech cars 1999 and 2001 
datasets. The cars 1999 dataset was taken by Markus Weber in the California Institute of 
Technology parking lots. There are 126 car images taken from the rear, and the resolution of 
each image size is 896 × 592 pixels in jpeg format. The cars 2001 dataset was taken by Paul 
Updike and Brad Philip on the freeways of southern California. There are 526 car images taken 
from the rear, and the resolution of each image size is 360 × 240 pixels in jpeg format. Because 
there are many repeated images, we selected some representative vehicle images as training and 
test data. Additionally, we generated ground truth labels for training and test images to evaluate 
detection accuracy. Some representative vehicle images and their ground truth labels are shown 
in Fig. 1. The considered problem was how to efficiently and accurately detect vehicles in images 
for assisting and improving autonomous driving.

3. Methods

 We first collect and process vehicle images for object detection. Then, backbones and 
algorithm hyperparameters are selected and the Taguchi experimental method is used to design 
algorithm hyperparameter combinations for backbones. Next, detection experiments are 
conducted on vehicle images, and object detection performance characteristics of the SSD-
VGG16 and SSD-Resnet50 models are recorded. We infer the best algorithm hyperparameter 
combination and finally compare the detection accuracies of the SSD-VGG16 and SSD-Resnet50 
models. The details of the steps are as follows.

3.1 Collecting and processing vehicle images for object detection

 Vehicle images taken from the rear were collected from the Caltech cars 1999 and 2001 
datasets. We selected 295 vehicle images and labeled vehicles for object detection. Data 
augmentation was employed during training to increase model accuracy by randomly 
transforming the raw data. This helps to increase the diversity of the training data without 

Fig. 1. (Color online) Some representative vehicle images and their ground truth labels.
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requiring additional samples. Note that data augmentation techniques are not applied to the test 
data. The test data should ideally remain a representative of the original data and unmodified to 
ensure an unbiased evaluation of the model’s performance.

3.2 Selecting backbones and algorithm hyperparameters

 The VGG16 backbone for SSD proposed originally by Liu et al.(7) had been used for object 
detection. VGG16, proposed by Simonyan and Zisserman(14) of the Visual Geometry Group Lab 
of Oxford University, was second in image classification and won first place in object 
localization in the 2014 ILSVRC.(17) He et al.(16) proposed Resnet, which was the winner of the 
2015 ILSVRC for image classification, localization, and detection, and the winner of the 2015 
MS COCO for detection and segmentation. Therefore, we chose Resnet50 as the backbone for 
SSD in our vehicle image detection research because of its excellent feature extraction capability. 
To obtain high accuracy when detecting images, it is critical to select appropriate algorithm 
hyperparameter combinations for the VGG16 and Resnet50 backbones for SSD. Four algorithm 
hyperparameters (MiniBatchSize, Optimizer, LearnRateDropPeriod, and InitialLearnRate) 
were selected in this study for the VGG16 and Resnet50 backbones for SSD.

3.3 Using the Taguchi experimental method to design the algorithm hyperparameter 
combinations for backbones

 The Taguchi method(18–20) is an experimental statistical approach used to assess and enhance 
product and process improvements. It focuses on reducing variation rather than eliminating it 
completely, aiming to improve quality while minimizing the number of experiments required to 
study design variables. To efficiently analyze multiple factors at once, experiments are organized 
in an orthogonal array (OA). The signal-to-noise ratio (SNR) and OA help identify better factor-
level combinations for effective optimization. In this study, the algorithm hyperparameters for 
the VGG16 and ResNet50 backbones are Optimizer, MiniBatchSize, InitialLearnRate, and 
LearnRateDropPeriod. To efficiently explore nonlinear effects and minimize the number of 
experiments required, a three-level L9(34) OA was utilized. 

3.4 Conducting detection experiments on vehicle images and recording object detection 
performance between SSD-VGG16 and SSD-Resnet50 models

 Object detection results on the training and test sets include (1) the average precision (AP) for 
each experiment, (2) average AP over three independent experiments, (3) the standard deviation 
(SD) of AP over three independent experiments, and (4) SNR(η) over three independent 
experiments. 
 AP represents the area under the precision-recall curve. Precision is the positive predictive 
rate, while recall (sensitivity) is the true positive rate. A larger η value indicates higher 
performance. To quantify η in decibels (dB), Taguchi recommended taking the common 
logarithm of η multiplied by 10. In the study, the “the-smaller-the-better” characteristic was 
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employed, 210 log ( )y mη = − − , where 
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in each experiment) and m = 1 (i.e., the target’s AP is 100%).

3.5 Inferring the best algorithm hyperparameter combination

 We used the L9(34) OA response table and η values to find the best algorithm hyperparameter 
combination. The effect of different factors is Efl, which is the average of the sum of ηi for factor 
f at level l, where f is the name of the factor, l is the number of the level, and i is the number of the 
experiment. After nine experiments of the three-level L9(34) OA, we used the response table to 
investigate η at each factor level. The response table shows the average η for each factor level 
and the maximum average η for each factor. We used the response table to find the best factor 
level, which is the level with the highest Efl value in the experimental area.

3.6 Comparing detection accuracy between SSD-VGG16 and SSD-Resnet50 models

 Object detection performance in terms of AP was compared between the SSD-VGG16 and 
SSD-Resnet50 models.

4. Results

 We proposed a Resnet50 backbone for SSD and its optimized algorithm hyperparameters, 
called the SSD-Resnet50 model, to enhance the feature extraction capability for detecting 
vehicles in images. The experimental environment was a computer with the Turbo-RTX2080Ti-
11G GPU and Intel i7 CPU, and we used Matlab R2022a and its toolbox developed by 
MathWorks.

4.1 Image data preparation and algorithm hyperparameter selection

 The experimental data included training and test sets to test the performance of detecting 
vehicles in images. In the study, a total of 295 vehicle images were chosen and annotated for 
object detection. For each experiment, 236 images (80% of the dataset) were randomly assigned 
as the training set, while the remaining 59 images (20% of the dataset) were designated as the 
test set. Ground truth labels were generated for both the training and test sets to evaluate the 
accuracy of the object detection. To achieve effective object detection, each image was processed 
as a 300 × 300 × 3 image. Data augmentation methods involve various techniques such as the 
random scaling of images and their box labels, the random horizontal flipping of images and 
their box labels, and the application of dithering to image colors. An example of a vehicle image 
with data augmentation is illustrated in Fig. 2.
 For the training process, we selected the VGG16 and Resnet50 backbones for SSD, and 
attempted to set different algorithm hyperparameter combinations before the learning process 
started. We selected four algorithm hyperparameters for the VGG16 and Resnet50 backbones for 
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SSD: Optimizer, MiniBatchSize, InitialLearnRate, and LearnRateDropPeriod. Also, 
LearnRateDropFactor was configured at 0.8, MaxEpoch was set to 300, and LearnRateSchedule 
was designated as ‘piecewise’. The LearnRate was calculated by multiplying the learning rate of 
the previous period by the LearnRateDropPeriod value.

4.2 Designing algorithm hyperparameter combinations for VGG16 and Resnet50 
backbones for SSD using the Taguchi method

 The three-level OA with the smallest number of experiments for the four factors is L9(34). 
Table 1 shows the L9(34) OA and Table 2 shows the factors and their levels for the VGG16 and 
Resnet50 backbones for SSD. The three levels of Optimizer (factor A) are adaptive moment 
estimation (adam), stochastic gradient descent with momentum (sgdm), and adaptive moment 
estimation (adam). Owing to GPU memory constraints, MiniBatchSize (factor B) has three 
levels of 14, 16, and 18. InitialLearnRate (factor C) has three levels of 10−1, 10−3, and 10−4. 
LearnRateDropPeriod (factor D) has three levels of 30, 40, and 50. The L9(34) OA requires only 
nine experiments instead of 81(34) experiments. Table 3 shows the algorithm hyperparameter 
combinations of the values in Tables 1 and 2. The algorithm hyperparameter combinations were 
used in the VGG16 and Resnet50 backbones for SSD for detecting vehicles in images.

4.3 Conducting detection experiments on vehicle images and recording object detection 
performance of the SSD-VGG16 model

 We used the algorithm hyperparameter combinations presented in Table 3 for independent 
experiments on the training and test sets for the VGG16 backbone for SSD. The performance test 
results for detecting vehicles in images are given in Table 4, which shows AP in a single run, as 
well as average AP over three independent experiments, SD over three independent experiments, 
and η over three independent experiments.
 Table 5 shows the response for each factor of the VGG16 backbone for SSD. Table 5 shows 
that factor levels 1, 3, 3, and 2 were selected for factors A, B, C, and D, respectively. Therefore, 
the best factor-level combination for the VGG16 backbone for SSD was A1: adam, B3: 18, C3: 
10-4, and D2: 40.

➡

Fig. 2. (Color online) Example of vehicle image with data augmentation.
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Table 1
L9(34) OA.

Experiment No. Factors
A B C D

1 1 1 1 1
2 1 2 2 2
3 1 3 3 3
4 2 1 2 3
5 2 2 3 1
6 2 3 1 2
7 3 1 3 2
8 3 2 1 3
9 3 3 2 1

Table 2
Factors and levels for VGG16 and Resnet 50 backbones for SSD.

Factor
(Algorithm hyperparameter)

Levels
1 2 3

A: Optimizer adam sgdm adam
B: MiniBatchSize 14 16 18
C: InitialLearnRate 10−1 10−3 10−4

D: LearnRateDropPeriod 30 40 50

Table 3
Algorithm hyperparameter combinations for VGG16 and Resnet 50 backbones for SSD.

Experiment No.
Algorithm hyperparameters

Optimizer MiniBatchSize InitialLearnRate LearnRateDropPeriod
1 adam 14 10−1 30
2 adam 16 10−3 40
3 adam 18 10−4 50
4 sgdm 14 10−3 50
5 sgdm 16 10−4 30
6 sgdm 18 10−1 40
7 adam 14 10−4 40
8 adam 16 10−1 50
9 adam 18 10−3 30

Table 4 
AP, average AP, SD, and η values achieved by VGG16 backbone for SSD in detecting vehicles in images using 
algorithm hyperparameter combinations given in Table 3 in three independent experiments.
Experiments
1–9 Dataset AP-Experimental run no. Average

AP SD η1 2 3

1 Training set 0 0 0 0 0 0
Test set 0 0 0 0 0 0

2 Training set 0.6241 0.6334 0.7081 0.6552 0.04605 9.24865
Test set 0.482 0.5843 0.7813 0.6159 0.15213 8.31036

3 Training set 0.894 0.8756 0.8791 0.8829 0.00977 18.6289
Test set 0.911 0.8054 0.8632 0.8599 0.05288 17.0692

4 Training set 0.0001 0.1153 0 0.0385 0.06654 0.34071
Test set 0 0.2344 0 0.0781 0.13533 0.70664
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 In the validation experiments, the optimized algorithm hyperparameter combination (i.e., A1: 
adam, B3: 18, C3: 10−4, and D2: 40) was used to detect vehicles in images in three independent 
experiments using the SSD-VGG16 model. Table 6 shows the AP, average AP, SD, and η values 
achieved by the SSD-VGG16 model in three independent experiments on the training and test 
sets of vehicle images. The average AP and η values of the SSD-VGG16 model were 0.8683 and 
17.6061, respectively, which exceeded those in each experiment on the L9(34) OA (Table 4) 
performed in the test set. Figure 3 shows AP examples for the training and test sets of vehicle 
images using the SSD-VGG16 model. The optimized algorithm hyperparameter combination in 
the response table produced the best result, even though not all factor level combinations were 
tested. Therefore, the optimized algorithm hyperparameter combination obtained in validation 
experiments was used for the SSD-VGG16 model to detect vehicles in images.

Table 5 
Responses for each factor of VGG16 backbone for SSD.

Level
Factors

A B C D
1 8.4598 5.7186 0.0000 1.5865 
2 0.3025 2.8371 4.5252 8.2532 
3 7.0026 7.2092 11.2398 5.9253 
Effect 8.1573 4.3721 11.2398 6.6667 
Maximum 8.4598 7.2092 11.2398 8.2532 
Best level number 1 3 3 2
Best level value adam 18 10−4 40

5 Training set 0.0266 0.0481 0.0105 0.0284 0.01886 0.25025
Test set 0.029 0.0315 0.0081 0.0229 0.01285 0.20092

6 Training set 0 0 0 0 0 0
Test set 0 0 0 0 0 0

7 Training set 0.8849 0.8668 0.8829 0.8782 0.00992 18.2871
Test set 0.8843 0.8633 0.8009 0.8495 0.04338 16.4493

8 Training set 0 0 0 0 0 0
Test set 0 0 0 0 0 0

9 Training set 0.4617 0.5508 0.6486 0.5537 0.09348 7.00746
Test set 0.3708 0.2792 0.575 0.4083 0.15143 4.55846

Table 4 
(Continued) AP, average AP, SD, and η values achieved by VGG16 backbone for SSD in detecting vehicles in 
images using algorithm hyperparameter combinations given in Table 3 in three independent experiments.
Experiments
1–9 Dataset AP-Experimental run no. Average

AP SD η1 2 3
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4.4 Conducting detection experiments on vehicle images and recording object detection 
performance of the SSD-Resnet50 model

 We used the algorithm hyperparameter combinations presented in Table 3 for the independent 
experiments on the training and test sets with the Resnet50 backbone for SSD. In performance 
tests for detecting vehicles in images, Table 7 shows AP in a single run, as well as average AP 
over three independent experiments, SD over three independent experiments, and η over three 
independent experiments. Table 8 shows the responses for each factor of the Resnet50 backbone 
for SSD. Table 8 shows that factor levels 1, 3, 2, and 2 were selected for factors A, B, C, and D, 
respectively. Thus, the best factor-level combination for the Resnet50 backbone for SSD was A1: 
adam, B3: 18, C2: 10−3, and D2: 40.
 In the validation experiment, the optimized algorithm hyperparameter combination (i.e., A1: 
adam, B3: 18, C2: 10−3, and D2: 40) was used to detect vehicles in images in three independent 
experiments with the SSD-Resnet50 model. Table 9 shows the AP, average AP, SD, and η values 
achieved by the SSD-Resnet50 model in the three independent experiments on the training and 
test sets of vehicle images. The average AP and η values obtained by the SSD-Resnet50 model 
were 0.9715 and 30.8929, respectively, which exceeded those in each experiment on the L9(34) 
OA (Table 7) performed on the test set. Figure 4 shows examples of AP for the training and test 

Table 6 
AP, average AP, SD, and η values achieved by SSD-VGG16 model for detecting vehicles in images using optimized 
algorithm hyperparameter combination in three independent experiments.

Model Dataset AP-Experimental run no. Average
AP SD η1 2 3

SSD-VGG16 Training set 0.8736 0.8876 0.8678 0.8763 0.0102 18.1549 
Test set 0.8697 0.8397 0.8954 0.8683 0.0279 17.6061 

(a) (b)

Fig. 3. (Color online) AP examples for training and test sets of vehicle images using SSD-VGG16 model. (a) AP for 
training set and (b) AP for test set.
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Table 8 
Responses for each factor of Resnet50 backbone for SSD.

Level
Factors

A B C D
1 19.3176 9.9166 6.8229 9.2696 
2 6.8858 10.1681 19.3024 24.9334 
3 18.0707 24.1894 18.1488 10.0710 
Effect 12.4318 14.2728 12.4795 15.6638 
Maximum 19.3176 24.1894 19.3024 24.9334 
Best level number 1 3 2 2
Best level value adam 18 10−3 40

Table 9 
AP, average AP, SD, and η values achieved by SSD-Resnet50 model for detecting vehicles in images using  
optimized algorithm hyperparameter combination in three independent experiments.

Model Dataset AP-Experimental run no. Average
AP SD η 1 2 3

SSD-Resnet50 Training set 0.9915 0.9928 0.9935 0.9926 0.0010 42.6154 
Test set 0.9899 0.9538 0.9707 0.9715 0.0181 30.8929 

Table 7 
AP, average AP, SD, and η values achieved by Resnet50 backbone for SSD in detecting vehicles in images using 
algorithm hyperparameter combinations given in Table 3 in three independent experiments.
Experiments
1–9 Dataset AP-Experimental run no. Average

AP SD η 1 2 3

1 Training set 0.199 0.0155 0.1281 0.1142 0.0925 1.0533 
Test set 0.1622 0.0084 0.1718 0.1141 0.0917 1.0526 

2 Training set 0.9908 0.9887 0.9895 0.9897 0.0011 39.7152 
Test set 0.9884 0.9701 0.9404 0.9663 0.0242 29.4474 

3 Training set 0.9948 0.9888 0.9889 0.9908 0.0034 40.7558 
Test set 0.936 0.9428 0.994 0.9576 0.0317 27.4527 

4 Training set 0.108 0.2567 0.2082 0.1910 0.0758 1.8407 
Test set 0.1245 0.2639 0.2015 0.1966 0.0698 1.9017 

5 Training set 0.0095 0.021 0.0212 0.0172 0.0067 0.1510 
Test set 0.0065 0.0326 0.0286 0.0226 0.0141 0.1983 

6 Training set 0.9355 0.8976 0.942 0.9250 0.0240 22.5026 
Test set 0.9046 0.8511 0.8901 0.8819 0.0277 18.5575 

7 Training set 0.987 0.984 0.987 0.9860 0.0017 37.0774 
Test set 0.9669 0.9376 0.9583 0.9543 0.0151 26.7953 

8 Training set 0.0465 0.1261 0.1601 0.1109 0.0583 1.0210 
Test set 0.0401 0.0805 0.1618 0.0941 0.0620 0.8587 

9 Training set 0.9957 0.9944 0.9927 0.9943 0.0015 44.8319 
Test set 0.9255 0.9815 0.952 0.9530 0.0280 26.5580 
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sets of vehicle images using the SSD-Resnet50 model. The optimized algorithm hyperparameter 
combination in the response table produced the best result even though not all factor level 
combinations were tested. Therefore, the optimized algorithm hyperparameter combination 
determined from the validation experiments was used for the SSD-Resnet50 model to detect 
vehicles in images.

4.5 Comparing the detection accuracies of SSD-VGG16 and SSD-Resnet50 models

 The optimized algorithm hyperparameter combination (i.e., A1: adam, B3: 18, C3: 10−4, and 
D2: 40) obtained by the Taguchi experimental method was used to detect vehicles in images in 
three independent experiments using the SSD-VGG16 model. The average AP and η values 
obtained by the SSD-VGG16 model performed on the test set were 0.8683 and 17.6061, 
respectively. Additionally, the optimized algorithm hyperparameter combination (i.e., A1: adam, 
B3: 18, C2: 10−3, and D2: 40) obtained by the Taguchi experimental method was used to detect 
vehicles in images in three independent experiments using the SSD-Resnet50 model. The 
average AP and η values of the SSD-Resnet50 model for the test set were 0.9715 and 30.8929, 
respectively.
 The results show that, in three independent experiments on the test set of vehicle images, the 
SSD-Resnet50 model used on 300 × 300 × 3 input images achieved a detection accuracy with an 
average AP of 0.9715 and an η value of 30.8929, outperforming the SSD-VGG16 model used on 
300 × 300 × 3 input images where an average AP of 0.8683 and an η value of 17.6061 were 
obtained. Therefore, the SSD-Resnet50 model had superior detection accuracy in detecting 
vehicles in images.

(a) (b)

Fig. 4. (Color online) Examples of AP for training and test sets of vehicle images using SSD-Resnet50 model. (a) 
AP for training set and (b) AP for test set.
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5. Discussion

 The results of this study showed that the appropriate algorithm hyperparameter combination 
for the SSD-VGG16 and SSD-Resnet50 models is essential for accurately detecting vehicles in 
images. Table 4 shows that the average AP values of experiments 1, 4, 5, 6, and 8 are below 0.1 
because of the poor algorithm hyperparameter combinations for the VGG16 backbone for SSD. 
Table 7 shows that the average AP values of experiments 1, 4, 5, and 8 are below 0.2 because of 
the poor algorithm hyperparameter combinations for the Resnet50 backbone for SSD. The 
results indicate that the poor algorithm hyperparameter combinations for the SSD-VGG16 and 
SSD-Resnet50 models prevented the accurate detection of vehicles in images. Therefore, in this 
study, we used the Taguchi method to determine the optimized algorithm hyperparameter 
combination for the feature extractor backbone for SSD for object detection.
 The SSD-Resnet50 model had superior detection accuracy in detecting vehicle images. 
Figure 5 shows that there is only one vehicle ground truth label on the test images, but the SSD-
Resnet50 model found two vehicle labels on the test images. This result shows that the SSD-
Resnet50 model can effectively find the features of a vehicle and accurately locate and classify 
the vehicle. In future applications, a good object detection model will be able to find new objects 
beyond the ground truth labels in the validation dataset and can then find new objects on 
unlabeled test images.

➡

➡

Fig. 5. (Color online) Two examples showing ground truth label of one vehicle in image (left picture) vs labels of 
two vehicles (right picture) obtained by SSD-Resnet50 model.
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6. Conclusions

 The proposed SSD-Resnet50 model can detect vehicles in images accurately and efficiently. 
The study has three contributions. The first contribution is the demonstration of the high 
detection accuracy obtained using the optimized algorithm hyperparameter combination of the 
SSD-Resnet50 and SSD-VGG16 models. The second contribution is the confirmation that the 
Taguchi experimental method can identify the optimal algorithm hyperparameter combination 
for SSD backbones. The third contribution is the finding that a good object detection model can 
identify new objects on the test set beyond the ground truth labels. Experimental results showed 
that the algorithm hyperparameters for the Resnet50 and VGG16 backbones were optimized by 
the Taguchi method, thereby improving the detection accuracies of the SSD-Resnet50 and SSD-
VGG16 models, respectively. Additionally, in three independent experiments on the test set of 
vehicle images, the SSD-Resnet50 model achieved an average AP of 0.9715 and an η value of 
30.8929 for 300 × 300 × 3 input images, outperforming the SSD-VGG16 model, which had an 
average AP of 0.8683 and an η value of 17.6061. Therefore, the SSD-Resnet50 model had 
superior detection accuracy in detecting vehicles in images obtained from the Caltech cars 1999 
and 2001 datasets.
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