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 Robotic arms have been widely used in industrial fields. However, researchers have seldom 
considered the factors affecting the actual factory environment. For example, when objects are 
conveyed in a factory, conveyor belts are often used to dynamically plan the overall production 
line. In addition, each object requires multiple checkpoints for repeated audits and inspections to 
ensure its quality. In this study, a vision-based robotic arm system equipped with multiple 
functionalities was developed. The development process consisted of three steps: detecting 
multiple dynamic objects, determining the size of each object, and identifying object defects. In 
the first step, You Only Look Once was used to detect multiple dynamic objects on a conveyor 
belt in real time. In the second step, the original image of the object was converted into a 
grayscale image, and the edge contour of the object was drawn using a Canny edge detection 
algorithm. Objects in the image were then rotated for vertical and horizontal projections, and 
then an artificial neural network (ANN) was used to calculate the size of each object. In the third 
step, a convolutional fuzzy neural network (CFNN) was used to identify object defects. This 
network was divided into an input layer, a convolution pooling layer, a feature fusion layer, a 
fuzzy layer, a regular layer, and a defuzzification layer. According to the experimental results, 
the standard error of the mean between the object size obtained by the ANN and the actual size 
was 0.009. In addition, the accuracy, recall, precision, and F1-score obtained by the CFNN in 
object defect detection were 0.9580, 0.9535, 0.9535, and 0.9535, respectively. Compared with 
other deep neural network models, such as AlexNet and LeNet, the proposed CFNN has fewer 
parameters and higher performance.
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1. Introduction

 With advancements in technology, robotic arms have gradually replaced workers in repetitive 
tasks. Robotic arms enhance the stability and quality of production in factories, increase overall 
efficiency, reduce the likelihood of occupational accidents, and reduce operating costs. They 
also reduce the hidden damage caused by a person constantly repeating the same action.(1–3) 
However, some problems remain to be addressed in robotic arms, such as the need to 
continuously rebuild the robotic arm module in certain production environments and the 
difficulty of integrating robotic arms into stable production lines.(4) Despite the considerable 
benefits of robotic arms, the industry has remained hesitant regarding their widespread adoption 
and implementation. However, the manufacturing industry exhibits a strong inclination toward 
introducing AI technology. By harnessing the computational power of AI, companies can 
optimize their production lines and enhance personnel efficiency and capabilities. AI can also be 
integrated into robots to increase their flexibility and safety.(5)

 Image recognition is a crucial component of robotic arm control. In the past, robotic arm 
control relied on coordinate positioning, and objects had to be placed in the same position. 
However, in actual industrial environments, objects are scattered and constantly changing their 
position. Therefore, imaging equipment must be installed on robotic arms or in the environment 
to determine the actual position of an object before it can be accurately grabbed.(6) Many 
researchers have combined robotic arms with cameras to conduct in-depth research. They used 
various algorithms to determine the speed and time required for object detection and identify 
object defects. Object defect identification can provide production line alerts to ensure high 
production yields.(7) Therefore, both object and defect detections are essential components in 
imaging technology for robotic arms.
 Depending on the position of the camera, the integration of cameras and robotic arms can be 
classified as either internal or external. In internal integration, a camera is mounted on the 
robotic arm, and its field of view changes as the robotic arm moves. By contrast, in external 
integration, cameras are installed in the immediate environment of the robotic arm and often 
fixed at the same location. These external cameras have a wider field of view and are required to 
focus only on the error between the coordinates and the actual distance between them and the 
robotic arm.
 Shahzad et al.(8) used an external dual-lens camera to plan the path of a robotic arm. 
However, according to Mitzias and Mertzios,(6) regardless of the type of camera used, the 
ultimate goal is to clearly identify objects in the work area and guide the robotic arm to grab 
them. The majority of robotic arms use machine kinematics, prefixed point calibration, and 
coordinate positioning to correctly determine their own movement path and the position of the 
object. Fang et al.(9) used local Gaussian regression without pretraining to improve the 
parameters of a robotic arm equipped with a camera. They reported that this technique allowed 
the robotic arm to rely less on kinematics and camera calibration.
 Deep learning technology has been widely used in object detection to increase the accuracy 
of detection and shorten the time required for calculation. Because convolutional neural 
networks (CNNs) achieve high accuracy in object recognition,(10) multiple CNN-based 
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architectures, such as region-based CNN (R-CNN),(11) Faster R-CNN,(12) You Only Look Once 
version 4 (YOLOv4),(13) and single-shot detection (SSD),(14) have been developed for object 
detection. These architectures have been used by researchers to enhance detection efficiency 
through model improvements. For example, Ji et al.(15) integrated a soft-CIOU loss function into 
a YOLOv4-based model and added preenhancement and postenhancement features to a neck 
structure to accurately identify the characteristics of small objects. Li et al.(16) proposed a 
bidirectional attention network to improve spatial loss and information features in path set 
feature pyramid networks (FPNs) to achieve performance higher than that of YOLOv5 in 
detecting small and multitarget objects. Butić et al.(17) used YOLO to detect moving objects on a 
conveyor belt. To effectively detect objects with a small number of samples, Xia et al.(18) 
proposed an algorithm called Attentive DropBlock to mitigate the effect of certain judgment 
areas, increase the overall efficiency of the YOLO model, and increase the speed and accuracy 
of object detection. Varna and Abromavičius(19) developed a detection system for electronic 
source parts that use YOLOv4 for real-time detection and classification during the dynamic 
process of conveyor belt transportation, and they reported excellent detection results. In 
conclusion, object detection can be used in both static and dynamic environments, and accuracy 
can be increased by modifying the architecture of deep learning models.
 The emergence of Industry 4.0 has sparked increasing interest in zero-defect manufacturing, 
prompting the development of strategies aimed at achieving maximum zero-defect 
manufacturing through defect prevention and compensation.(20) Traditionally, defect detection is 
primarily conducted manually, which requires adequate professional knowledge and strong 
judgment ability. However, in industrial manufacturing environments, defect detection personnel 
are typically located in high-temperature or other dangerous environments, which increases the 
difficulty of judging defects.(21) Among the reasons underlying the difficulty of image defect 
detection are the lack of defect data, the presence of similar types of defect in industrial 
scenarios, and the difficulty of identifying defects.(22,23) In the case of an insufficient number of 
defect images, researchers use generative adversarial networks to generate defect map images 
and increase detection accuracy.(23,24) For example, to improve channel attention on YOLOv4, 
Li et al.(16) used multiple spatial pyramid pooling (SPP) to increase the efficiency of judging 
additive manufacturing defects. Mao et al.(24) used YOLOv3 and YOLOv4 to detect vehicle rim 
defects. Zhao et al.(25) used ResNet to enhance the feature extraction capability of Faster R-CNN 
to classify defects in vehicle parts. Chen et al.(26) developed a wafer defect detection network 
based on a CNN model to accurately identify wafer defects. Kim et al.(27) proposed a 
bidirectional convolutional recurrent reconstruction network to automatically detect welding 
defects with reference to time series effects. Yang et al.(28) detected defects in microparts. They 
used the size of parts and image lighting, adjusted the speed of the conveyor belt, used an SSD 
algorithm, and established a defect detection system to achieve an accuracy higher than that of 
YOLOv3. In conclusion, deep learning technology can achieve high accuracy in defect detection.
 In this study, we developed a vision-based robotic arm system to detect multiple dynamic 
objects, determine the size of each object, and identify object defects. The major contributions of 
this study are as follows:
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1)  YOLOv4-tiny can be used to detect multiple dynamic objects on a conveyor belt in real time.
2)  An artificial neural network (ANN) can be used to determine the size of an object. In this 

process, the original image of the object is converted into a grayscale image, and then image 
processing technologies such as Canny edge detection and vertical and horizontal projection 
are used. Finally, an ANN is used to calculate the size of the object. 

3)  A convolutional fuzzy neural network (CFNN) model can be used to identify object defects. 
In a CFNN, the fully connected network is replaced by a fuzzy neural network.

4)  The rest of this paper is organized as follows. Section 2 describes the proposed vision-based 
robotic arm system. Section 3 presents the experimental results of object size, multiple 
dynamic object detection, and object defect identification obtained using an ANN and the 
proposed CFNN model. Finally, Section 4 presents the conclusions of this study and 
recommendations for future research.

2. Materials and Methods

 The proposed vision-based robotic arm system is shown in Fig. 1. A six-axis Niryo Ned 
robotic arm equipped with a 2 MP camera and a flat-grab gripper was used to detect multiple 
dynamic objects, determine the size of each object, and identify object defects in a production 
line.

2.1 Object detection using YOLOv4-tiny 

 In this study, a vision-based robotic arm system was developed by simulating a factory 
scenario. With multiple objects placed on a conveyor belt, the robotic arm was required to detect 
these objects in real time and accurately pick them up. Therefore, YOLO,(13) which provides 

Fig. 1. (Color online) Proposed vision-based robotic arm system.
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high stability and performance, was used to assist the robotic arm during the object detection 
process.
 Overall, the applications of deep learning in detection can be categorized as either two-stage 
detection or single-stage detection. Although two-stage detection offers superior accuracy, it 
does not meet the requirements of the industry in terms of efficiency and computational power. 
Therefore, single-stage detectors have gained prominence in industrial defect detection.(16) 
YOLOv4 is a single-stage detector that is capable of target detection by extracting a single 
feature, which is faster than two-stage detection. Although YOLOv4 has slightly low accuracy, 
its residual structure allows it to effectively obtain additional feature information.
 As shown in Fig. 2, the architecture of YOLOv4 is divided into three parts: a backbone, a 
neck, and a head. The backbone utilizes CSPDarknet53, which aims to facilitate calculations, 
enhance the learning ability of the model, and maintain accuracy. The neck, which is used to 
fuse feature information of different sizes, uses spatial pyramid pooling and a path aggregation 
network (PAN). This PAN combines the top-down feature fusion characteristics of FPNs and 
increases the bottom-up direction. The head uses the previous version of YOLOv3.
 Although traditional YOLOv4 has excellent detection capabilities, its large number of 
network training parameters hinders its ability to effectively realize real-time detection in 
embedded systems. YOLOv4-tiny is a lightweight version of YOLOv4, which includes fewer 
YOLOv4 parameters and has a higher training speed and stronger detection capabilities, making 
it more suitable for use in embedded systems. In this study, we used YOLOv4-tiny to locate steel 
plates on a production line.

2.2 Object size measurement

 In this study, the original image of an object was initially converted into a grayscale image. 
The object’s edge outline was then drawn using a Canny edge detection algorithm. Subsequently, 

Fig. 2. (Color online) Architecture of YOLOv4-tiny. 
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morphology was used to clarify the image content, and the objects in the image were rotated for 
vertical and horizontal projections. Finally, an ANN was used to determine the actual size of the 
object in the image.

2.2.1 Color transformation

 To set the color of an object, each specific color should be initially determined from scattered 
objects. To reduce the number of calculations and conform to image judgment standards in 
subsequent operations, each image is converted into a grayscale image. The following is the 
equation for color transformation:

 [ ]   : 0.299 0.587 0.114 RGB A to Gray Y R G B← + + . (1)

2.2.2 Morphology

 To determine the actual shape of an object in an image, the content of the object must be 
presented clearly through morphology. Morphology includes erosion, expansion, opening 
operation, and closing operation. To determine the nature of the operation, two parameters are 
inputted, namely, the original image and the structuring element:

 ( ){ }c
zA B z B A= ∩ =∅ , (2)

 ( ){ }ˆ
z

A B z B A A ⊕ = ∩ ⊆  , (3)

 ( )A B A B B= ⊕  , (4)

 ( )A B A B B⋅ = ⊕  . (5)

2.2.3 Image binarization

 Image binarization refers to setting a threshold for a grayscale image. If the gray value of an 
image is greater than the threshold, the image is set to white; otherwise, it is set to black. The 
following is the formula for image binarization:

 ( ) ( )      if  ,
,  

0            otherwise
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2.2.4 Object rotation

 If the position of an object in an image is skewed, then the size of the object cannot be 
calculated. Therefore, all objects in the image must be rotated to ensure that they are either 
vertical or horizontal. The following is the formula for object rotation:

 
0 0

0 0

1 0 cos sin 0 1 0
0 1 sin cos 0 0 1

1 0 0 1 0 0 1 0 0 1 1

x x x x
y y y y

θ θ
θ θ

− −         
         = −         
                  



 . (7)

2.2.5 Edge detection

 Canny edge detection algorithms(29) extract useful information from different images. They 
reduce the number of calculations, have a low error rate, achieve accurate positioning, and have 
a high resolution in processing. Canny edge detection algorithms are multistage algorithms that 
determine actual edges through pixel changes. To extract object edges in an image, the image is 
processed in grayscale, and then Gaussian blur is added to remove noise in the image. The 
following is the formula for edge detection:

 ( )
2 2
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. (8)

 Subsequently, Sobel edge detection is used to calculate the edge gradient strength and image 
direction. This step allows for determining the maximum gradient direction and nonmaximum 
suppression. It also allows the pixels on the edge of the image to be retained. Finally, a weak 
edge is used to connect all edges. This step facilitates the process of edge detection by setting 
hysteresis thresholds, which involve an upper boundary and a lower boundary:

 2 2
x yG G G= + , (9)

 arctan y

x

G
G

θ
 

=  
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. (10)

2.2.5 Object projection

 To obtain the area of an object in an image, objects are projected both horizontally and 
vertically. Our object projection results are presented in Fig. 3. This process confirms the area of 
the object by calculating the projected black pixels.
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2.2.7 Object size measurement using an ANN
 
 ANNs are used to convert pixels obtained after horizontal and vertical projections into an 
actual object size. As shown in Fig. 4, an ANN is divided into three layers: an input layer, a 
hidden layer, and an output layer. The hidden layer utilizes an activation function to transform 
the input data into nonlinear features to obtain additional feature combinations. The output layer 
weighs the results of the hidden layer for output.

 ( ) ( ) ( )
1

sigmoid
n

i i ij j
i

y Z X Z W Z θ
=

 
= × − 

 
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 
∑  (12)

2.3 Defect detection using a CFNN

 In this study, a CFNN(30) was used to detect object defects (see Fig. 5). In a CFNN, the CNN 
and the pooling layer are retained, and a fuzzy neural network (FNN) is used to replace the fully 
connected network. FNNs simulate human logical thinking and effectively understand the 
correlation between input and output. An FNN is divided into an input layer, a fuzzy layer, a 
fuzzy rule layer, and a defuzzification layer. In the fuzzy layer, the Gaussian membership 
function is used to fuzzify the input data. In the rule layer, the excitation intensity of the relevant 
membership function of each fuzzy rule is subjected to a fuzzy AND operation. In this study, we 
adopted a product operation as the fuzzy AND operation. Lastly, in the defuzzification layer, a 
crisp value is obtained. Table 1 shows the architecture parameters of a CFNN.

(a) (b) (c)

Fig. 3. Our object projection results: (a) rotated image, (b) horizontal projection results, and (c) vertical projection 
results.
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Fig. 4. Architecture of an ANN.

Fig. 5. Architecture of a CFNN.(30)

Table 1
Architecture parameters of a CFNN.

Layer Kernel size Number of 
filters Stride Units

Input — — — —
Convolution_1 3 × 3 32 1,1 —
Max_pooling_1 2 × 2 — 2,2 —
Convolution_2 5 × 5 64 1,1 —
Max_pooling_2 2 × 2 — 2,2 —
Flatten — — — —
Fuzzy rule layer — 64 — —
Batch 
normalization — — — —

Dense — — — 6
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2.4 Model evaluation metrics
 
 To evaluate the performance of the proposed CFNN model in defect detection and 
classification, we used metrics as model evaluation criteria. Confusion matrices are often used 
as measurement indicators. In this study, we used precision, recall, predictive value, and F1-
score as evaluation criteria:

 ( )
TP TNAccuracy

TN TP FN FP
+

=
+ + + , (13)

 ( )
TPRecall

TP FN
=

+ , (14)

 ( )
TPPrecision

TP FP
=

+ , (15)

 
21 precision recallF score

precision recall
× ×

− =
+

, (16)

where TP, TN, FP, and FN represent true positive, false positive, true negative, and false 
negative, respectively.

3. Experimental Results

 In this study, we simulated the scenario of a steel sheet production line. We used a robotic 
arm to determine the position of the steel sheet, calculate its size, and identify defects on it. 
Specifically, we first used YOLOv4 to determine the position of the steel sheet. Subsequently, 
we used image processing and an ANN to determine the size of the steel sheet. Finally, we used 
a CFNN to identify defects on the steel sheet. 

3.1 Object detection results

 We used a six-axis Niryo Ned robotic arm and YOLOv4 to conduct detection experiments on 
a steel sheet (Fig. 6). The experimental data contained a total of 1238 images. We applied a ratio 
of 8:2 for training and testing and set the learning rate to 0.001 and the number of iterations to 
8000. According to the training results, the multiobject detection function of YOLOv4-tiny 
accurately identified the position of the steel plate, which aided in subsequent machine arm 
gripping and related judgments.



Sensors and Materials, Vol. 36, No. 2 (2024) 665

3.2 Object measurement results

 We used image processing and an ANN to measure the length of the steel sheet. We then 
used the standard error of the mean (SEM) to determine the difference between the results 
obtained by the ANN and the actual length of the steel sheet. The following is the formula for 
the SEM:

 
sSEM
n

= , (17)

where s is the sample standard deviation and n is the total number of samples.

 ( )2

1

1
1

N

i
i

s x x
N =

= −
− ∑  (18)

Here, x1 is the sample data, x  is the sample average, and N is the total number of samples. Figure 
7 shows the image processing results of the steel sheet.
 We conducted 30 tests to measure the size of the steel sheet. Table 2 shows the results 
obtained by the ANN and the actual values of the steel sheet. According to the experimental 
results, the SEM was 0.009.

3.3 Object defect inspection results

 To validate the proposed model, we used the NEU-DET public data set and a self-created 
defect data set to compare defects on our production line.

Fig. 6. (Color online) Steel sheet detection results with YOLOv4-tiny.
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Fig. 7. Image processing results for the steel sheet: (a) original image, (b) Canny edge detection, and (c) image 
rotation.

(a) (b) (c)

Table 2 
Results obtained by the ANN and the actual values of the steel sheet.
Times Actual value ANN Error

Width Length Width Length Width Length
1 1.39 4.81 1.403 4.844 −0.013 −0.034
2 1.39 4.81 1.403 4.784 −0.0138 0.026
3 1.39 4.81 1.285 4.725 0.105 0.085
4 1.39 4.81 1.344 4.725 0.046 0.085
5 1.39 4.81 1.463 4.903 −0.073 −0.093
6 1.39 4.81 1.403 4.784 −0.013 0.026
7 1.39 4.81 1.463 4.784 −0.073 0.026
8 1.39 4.81 1.344 4.725 0.046 0.085
9 1.39 4.81 1.403 4.844 −0.013 −0.034

10 1.39 4.81 1.463 4.725 −0.073 0.085
11 1.39 7.05 1.344 4.725 0.046 −0.047
12 1.39 7.05 1.463 4.844 −0.073 0.19
13 1.39 7.05 1.344 4.725 0.046 0.13
14 1.39 7.05 1.403 7.097 −0.013 −0.047
15 1.39 7.05 1.463 6.86 −0.073 0.19
16 1.39 7.05 1.522 6.92 −0.132 0.071
17 1.39 7.05 1.285 7.097 0.105 0.071
18 1.39 7.05 1.403 6.86 −0.013 0.071
19 1.39 7.05 1.463 6.979 −0.073 0.012
20 1.39 7.05 1.463 6.979 −0.073 0.012
21 1.39 9.85 1.463 6.979 −0.073 0.012
22 1.39 9.85 1.522 7.038 −0.132 0.083
23 1.39 9.85 1.463 7.038 −0.073 0.024
24 1.39 9.85 1.403 9.767 −0.013 0.202
25 1.39 9.85 1.522 9.826 −0.132 0.024
26 1.39 9.85 1.344 9.648 0.046 0.083
27 1.39 9.85 1.403 9.826 −0.013 0.083
28 1.39 9.85 1.344 9.767 0.046 0.024
29 1.39 9.85 1.403 9.767 −0.013 0.083
30 1.39 9.85 1.344 9.826 0.046 0.024
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3.3.1 NEU-DET data set 

 The NEU-DET data set(31) has been cited by many studies investigating the performance of 
various classifiers. As shown in Table 3, this data set has 1800 photos divided into six categories 
of steel surface defects, namely, crazes, inclusions, patches, pitted surfaces, rolled-in scales, and 
scratches. All images in the data set are grayscale images with a size of 200 × 200 pixels (Fig. 8).
 In our experiments, we used a ratio of 8:2 for training and testing and set the number of 
iterations to 100. Our experimental results indicated that the accuracy, recall, precision, and F1-
score of the proposed CFNN were 0.9594, 0.9577, 0.9609, and 0.9549, respectively, thereby 
outperforming AlexNet and LeNet models. Table 4 shows the comparison results of various 
models in the NEU-DET data set.

Fig. 8. Images of defects from the NEU-DET data set: (a) crazes, (b) inclusions, (c) patches, (d) pitted surfaces, (e) 
rolled-in scales, and (f) scratches.

Table 3 
NEU-DET data set. 

Defect categories Crazes Inclusions Patches Pitted 
surfaces

Rolled-in 
scales Scratches

Training 240 240 240 240 240 240
Testing 60 60 60 60 60 60

(a) (b) (c)

(d) (e) (f)



668 Sensors and Materials, Vol. 36, No. 2 (2024)

3.3.2 Self-created defect data set

 To simulate an actual factory environment, we gathered data on steel sheet defects for 
subsequent classification. As shown in Table 5, we collected 2400 images and divided steel 
sheets into two categories: normal steel sheets and defective steel sheets (scratches). As shown in 
Fig. 9, all images in the data set were grayscale images with a size of 200 × 200 pixels. Table 6 
shows the defect detection results of the proposed CFNN and LeNet and AlexNet models. The 
results indicated that the accuracy, recall, precision, and F1-score of the proposed CFNN 
exceeded those of the AlexNet and LeNet models.

Table 5
Comparison of normal and defective steel sheets.
Categories Normal steel sheets Defective steel sheets
Training 960 960
Testing 240 240

Table 6 
Comparison of various models in our self-created defect data set.

Accuracy Recall Precision F1-score
AlexNet 0.9340 0.9293 0.9293 0.9293
LeNet 0.9440 0.9417 0.9417 0.9417
CFNN 0.9580 0.9535 0.9535 0.9535

Fig. 9. (a) Normal and (b) defective steel sheets.

(a) (b)

Table 4 
Comparison results of various models in the NEU-DET data set.

Accuracy Recall Precision F1-score
AlexNet 0.8299 0.8198 0.8230 0.8168
LeNet 0.7716 0.7527 0.7671 0.7413
CFNN 0.9594 0.9577 0.9609 0.9549
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4. Conclusions
 
 In this study, we developed a vision-based robotic arm system to detect multiple dynamic 
objects, determine the size of each object, and identify object defects. Specifically, we used 
YOLOv4-tiny to detect multiple dynamic objects on a conveyor belt in real time. We then used 
an ANN to determine the size of each object and a CFNN to identify object defects. According 
to the experimental results, the SEM between the size obtained by the ANN and the actual size 
was 0.009. In addition, the accuracy, recall, precision, and F1-score obtained by the CFNN in 
object defect detection were 0.9580, 0.9535, 0.9535, and 0.9535, respectively. Compared with 
other deep neural network models, such as AlexNet and LeNet, the proposed CFNN involved 
fewer parameters and had higher accuracy, recall, precision, and F1-score. 
 To obtain distinct experimental results, we set various parameters in the ANN, CFNN, and 
YOLOv4-tiny. In future studies, we intend to use certain parameter optimization methods, such 
as the Taguchi, uniform distribution, and Bayesian optimization hyperparameter methods, to 
address this problem.
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