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	 Machine vision with image sensors has been employed in smart manufacturing such as the 
popular automatic optical inspection (AOI) by deploying an image acquisition camera to 
optically scan the target device for quality defects. With the rapid progress of image sensor 
techniques, the RGB-D image sensor device that can capture operator assembly gesture actions 
to make intelligent interactions between a robot and an operator has been developed. In this 
study, we propose a smart assembly-line design for intelligent manufacturing or factory 
applications where a working mode of human–robot collaboration (HRC) will be incorporated. 
In the proposed HRC assembly line, the operator and manipulator (robotic arm) will co-work 
with each other where the appropriately deployed RGB-D image device (the well-known Intel 
RealSense camera in this work) is used to acquire assembly gesture data of the operator to 
further perform operator gesture recognition. The manipulator will then perform the 
corresponding feedback action according to the recognized operation gesture (e.g., grabbing the 
scissors and then moving to the operator if the gesture of winding the tape is recognized). For 
operator gesture recognition, we first construct three different sensing modalities of deep 
learning recognition channels, which are the RGB convolution neural network (CNN)-long 
short-term memory (LSTM) channel with RGB gesture image inputs, the depth CNN-LSTM 
channel with depth gesture image inputs, and the 3D-(x, y, z) LSTM raw channel with skeleton 
raw data inputs. A decision fusion scheme is then developed for hybridizations of recognition 
decision outputs of these three separated deep learning gesture recognition channels with 
different gesture sensing modalities. In this work, various weight combination strategies to 
achieve the decision fusion of three deep learning recognition channels are used to evaluate the 
effectiveness of operator gesture recognition. Experiments on classifications of ten categories of 
operator assembly gestures show that the half-quarter-quarter strategy with the setting of 
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(wRGB, wDepth, w3D) = (0.5, 0.25, 0.25) for weight allocations of channel decisions can achieve the 
highest recognition accuracy.

1.	 Introduction

	 As conventional factory operators perform repetitive tasks, the smart factory with automation 
is adapting to changing demands in real time. Within the smart factory, the robotic arm (also 
known as the manipulator), equipped with sensors and advanced algorithms, performs tasks that 
once relied heavily on human intervention. The automatic optical inspection (AOI) that uses 
specialized cameras (or image sensors) hybridized with image process algorithms to scan and 
analyze every intricate detail of the manufactured components to ensure flawless quality is a 
typical application and has been widely used in smart manufacturing. Human–robot 
collaboration (HRC) that belongs to an innovative mission completion mode is accelerating its 
introduction into the field of smart manufacturing. In the HRC with dynamic collaborations 
between the operator and the robot, the robot endowed with artificial intelligence deftly handles 
intricate tasks and assists the operator, while the human operator provides strategic oversight, 
creativity, and problem-solving expertise. To enhance the classical AOI, one of the authors has 
proposed in a previous work a human manipulator collaboration-based scheme for object 
inspection where hand pose sensing images of numeric symbols combined with non-numeric 
expressions made by the operator to indicate the type and quality of the inspected object are 
recognized, and the manipulator with the grabbed object will then move and release the object to 
the correct region according to hand pose recognition results.(1) Such an HRC scheme can be 
further extended and used in the assembly line of smart manufacturing to complete the assembly 
tasks of a specific device (e.g., to assemble a computer or a circuit board with electronic 
components) by the fine co-working of the operator and robot.
	 Hand gesture information from the operator usually reveals the practical intention of the 
operator, and therefore, such a sensing clue will play an important role in the design of HRC-
based assembly-line mission completion systems. With a clear understanding of various specific 
operator hand gestures, the robot will also be able to participate in the operator assembly process 
and make a corresponding appropriate reaction in a suitable time. An example of an interaction 
between a human and a robot in the HRC-based task is that when the system realizes that the 
operator has made a gesture of winding a tape, the manipulator will grab a pair of scissors and 
then move to the operator immediately. In the studies described in Refs. 2–6, the HRC strategy 
is incorporated into the assembly-line mission. In the work described in Ref. 2, the hidden 
Markov model (HMM) is used for hand gesture modeling and recognition to construct the 
human–robot interactive assembly. The study described in Ref. 3 provides an integrated 
framework for human–robot collaborative assembly. The assembly workstation task by HRC is 
shown in Ref. 4. In Refs. 5 and 6, the authors established a human–robot collaborative assembly 
with gesture recognition by capturing wearable device and depth-camera gesture data, 
respectively. Related applications that use gesture recognition to implement the HRC are also 
described in Refs. 7–12 (on-line programming of industrial robot manipulators in Ref. 7, plan 
recognition and trajectory prediction in Ref. 8, an assistive scenario with the robot in Ref. 9, 
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sensing of double-hand gestures by a Kinect device to control a robotic arm in Ref. 10, solutions 
of multi-user online recognition of technical gestures for HRC in manufacturing in Ref. 11, and 
providing support to the operator by AI-enhanced wearable devices in Ref. 12). All these studies 
of HRC with gesture recognition for assembly-line or other related application scenarios use 
only conceptually simple approaches or the data statistics strategy (such as HMM) for 
establishing the gesture recognition system. Owing to the lack of detailed learning of the 
captured operator gesture data, such a constructed gesture recognition system will clearly be 
less competitive in terms of gesture recognition accuracy. Gesture recognition with substandard 
performance will considerably increase the operational difficulty and decrease the market 
acceptability, which is undoubtedly a restriction for HRC assembly-line systems to be practically 
applied to the real world. To tackle this issue of unreliable gesture recognition results, we 
developed a deep learning approach for performing accurate classifications of the assembly 
gesture actions of the operator in the HRC assembly line where three different image sensing 
modalities of operator gesture data, namely, RGB images, depth images, and 3D skeleton raw 
data, are acquired simultaneously by the RGB-D image sensor and sent to three well-trained 
separated deep learning channels of the RGB convolution neural network (CNN)-long short-
term memory (LSTM), the depth CNN-LSTM, and the 3D-(x, y, z) raw LSTM, respectively, for 
gesture classifications. Aimed at the three modalities of decisions made from three 
corresponding deep learning recognition channels, we present various weight combination 
strategies to achieve channel decision fusion and then determine a much reliable recognition 
outcome. In fact, the use of deep learning techniques for building up gesture recognition systems 
has been explored in the authors’ previous related studies.(13–16) Those works employ only a 
single modality of gesture data (the wearable-device-derived or image-sensor-derived data) or 
the fused feature of different sensing modalities to construct a unique deep learning recognition 
channel for classifying the input gesture. In the following sections, we will describe in detail 
such HRC assembly-line design with operator gesture recognition by the decision fusion of three 
separated deep learning recognition channels, namely, RGB CNN-LSTM, depth CNN-LSTM, 
and 3D-(x, y, z) raw LSTM.

2.	 HRC-based Strategies with Operator Gesture Recognition for Advanced 
Assembly Lines of Smart Manufacturing

	 Figure 1 shows the practical application scenario of the presented HRC-based assembly line 
with operator gesture recognition. The presented HRC-based assembly-line scheme in this study 
can allow the operator and manipulator to cooperatively complete the task. In this work, a 
computer assembly task is set as the mission to be completed. The manipulator used in this work 
is “OpenMANIPULATOR-X,” which is made by the company Robotis. OpenMANIPULATOR-X 
is an open-source robotic arm based on a robot operating system (ROS) and has five active 
motors (5 DOF in total, 4 DOF + 1 DOF Gripper), each of which is the DYNAMIXEL XM-430 
model.(17) Table 1 shows all significant gesture actions performed by the operator (ten assembly 
actions in total defined in this study, including acquiring the object released from the 
manipulator, winding the tape, pulling the cable tie, and picking up desired items that are put in 

https://www.roscomponents.com/en/manufacturer/robotis
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seven different locations). Each operator gesture action will be reacted by an associated robot 
action. As shown in Fig. 1, an image sensor (the RGB-D sensor employed in this study) is 
utilized by “ceiling mount-like” deployment to finely capture the active gesture data of the 
operator. The captured gesture data of the operator, mainly containing three different sensing 
modalities of data, namely, the RGB image data, the depth image data, and the skeleton-(x, y, z) 
raw data, are then classified (ten significant gesture action categories in total listed in Table 1 as 

Table 1 
Interaction list between the operator and the manipulator robot in an HRC task.
Interaction case Human gesture action Robot feedback action

Case 1 Acquiring (the object from the robot) Opening the gripper and releasing the grabbed 
object to the hand of the operator

Case 2 Winding (the tape) Grabbing the object in position A 
and moving to the operator side (scissors)

Case 3 Pulling (the cable tie) Grabbing the object in position A 
and moving to the operator side (pincers)

Case 4 Picking up the item in position 1 Grabbing the object in position A 
and moving to the operator side

Case 5 Picking up the item in position 2 Grabbing the object in position B 
and moving to the operator side

Case 6 Picking up the item in position 3 Grabbing the object in position B 
and moving to the operator side

Case 7 Picking up the item in position 4 Grabbing the object in position B 
and moving to the operator side

Case 8 Picking up the item in position 5 Grabbing the object in position B 
and moving to the operator side

Case 9 Picking up the item in position 6 Grabbing the object in position C 
and moving to the operator side

Case 10 Picking up the item in position 7 Grabbing the object in position C 
and moving to the operator side

Fig. 1.	 (Color online) Practical application scenario of the presented HRC-based assembly line where the RGB-D 
image sensor is deployed to capture operator gestures for further recognition.
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mentioned) using the developed gesture recognition scheme. The gesture recognition presented 
in this study will be designed as the manner of decision fusion of three data modalities of deep 
learning recognition channels, which will be described in detail in Sect. 3. Depending on the 
recognized operator gesture categorization, the manipulator will then perform the feedback 
action (i.e., the corresponding reaction). In the task completion by the proposed HRC-based 
assembly line, the manipulator will be viewed as a “professional assistant with the machine 
vision,” which can discriminate the operator’s significant actions and then provide the immediate 
service to the operator (e.g., delivering the required tool to the operator instantly). In Case 3 in 
Table 1, wherein the operator makes the gesture action of ‘pulling’ (pulling the cable tie), the 
manipulator will grab the object in position A (the tool of pincers) and then move to the operator 
side. In Case 1 wherein the manipulator finishes moving the grabbed object to the side of the 
operator, the operator will make the gesture action of ‘acquiring.’ After the constructed gesture 
recognition system correctly classifies such an action of acquiring the object from the robot, the 
corresponding feedback action of the manipulator is then to open the gripper to release the 
grabbed object, and the object will finally fall on the hand of the operator. The presented HRC-
based assembly line with a cooperator of the smart manipulator assistant that can understand the 
assembly action of the operator and then immediately provide assistance during assembly tasks 
will further promote the automation of current factories or manufacturing fields.

3.	 Operator Gesture Recognition by Decision Fusion of Deep Learning 
Recognition Channels of Three Different Sensing Modalities of Gesture Data

	 Figure 2 shows the recognition calculation flowchart of gestures performed by the operator. 
Note that a detection scheme of the waking-up gesture of the operator is also designed in this 
system to be able to finely “wake up” the gesture recognition system to start to acquire the 
significant gesture action (one of the ten operation gesture cases, Case 1, Case 2, …, and Case 
10, defined in the system, as mentioned previously) from the operator. As shown in Fig. 2, when 
the recognition scheme is triggered by the detection scheme, three different modalities of 
continuous-time sensing data, namely, 3D-(x, y, z) raw data, RGB images, and depth images, will 
be sent to three corresponding separated deep learning recognition computation channels, “3D-
(x, y, z) raw LSTM,” “RGB CNN-LSTM,” and “depth CNN-LSTM,” respectively. The decision 

Fig. 2.	 Decision fusion of three separated deep learning recognition channels, each of which has a different 
sensing data modality.
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fusion is finally designed to combine all determination outputs of three separated deep learning 
recognition channels. The CNN used in this work belongs to the type of VGGNet (mainly the 
configuration of 16 layers, the VGG-16 structure), and such a category of the CNN model is 
sometimes also called VGG16-CNN.(18) The LSTM in all constructed deep learning recognition 
channels is a standard recurrent neural network (RNN) and is composed of a series of LSTM 
units, each of which has a cell, an input gate, an output gate, and a forget gate.(19)

	 Figure 3 shows the image sensor, the Intel RealSense RGB-D image capture device, employed 
in this work. With fine releases of the 3D software development kit (SDK) from Intel, the 
3D-skeleon information of the operator can then be obtained. The captured 3D skeleton from the 
Intel sensing device is mainly composed of 15 kernel joints [see Fig. 4(a)], “Joint-1: head,” 
“Joint-2: neck,” “Joint-3: left shoulder,” “Joint-4: right shoulder,” “Joint-5: left elbow,” “Joint-6: 
right elbow,” “Joint-7: left hand,” “Joint-8: right hand,” “Joint-9: torso,” “Joint-10: left hip,” 
“Joint-11: right hip,” “Joint-12: left knee,” “Joint-13: right knee,” “Joint-14: left root,” and 
“Joint-15: right root.” Note that in the practical assembly-line operation scenario, space location 
values of nine joints, Joint-1 to Joint-9, are apparently variant when a specific operation gesture 
is made by the operator. Only these nine joints are considered to extract the (x, y, z)-coordinate 

(a) (b) (c)

Fig. 3.	 (Color online) Intel RealSense RGB-D image capture device employed in this work for gesture data 
acquisitions of 3D-(x, y, z) raw data, RGB images, and depth images.

Fig. 4.	 (Color online) Operator gesture data captured from the Intel RGB-D sensing device with three different 
sensing modalities: (a) 3D-(x, y, z) raw data, (b) RGB images, and (c) depth images.

https://en.wikipedia.org/wiki/Recurrent_neural_network
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values. In this work, the 3D-(x, y, z) raw data has 27 dimensions, including three spatial 
dimensions of the x-, y-, and z-axes, contained in each of these nine joints [see Fig. 4(b)]. Figure 
4(c) represents the gesture image with the depth type captured from IR transmitters and 
receivers of the RGB-D device.
	 Note that in the system wake-up scheme, the wake-up gesture of the operator is designed as 
the gesture of “both palms put together (or much close).” The detection of such a wake-up 
gesture is conceptually simple and computationally inexpensive, mainly concerning variations 
of (x, y, z)-coordinate values of two joints, Joint-7 and Joint-8. The term Diffpalm_ joint defined in 
Eq. (1) can finely describe such coordinate value variations:

	 ( ) ( ) ( )2 2 2
_ -7 -8 -7 -8 -7 -8 .palm joints Joint Joint Joint Joint Joint JointxD x y yi zff z− + − + −= 	 (1)

Note that the calculated Diffpalm_ joint is essentially the Euclidean distance between Joint-7 and 
Joint-8. When Diffpalm_ joint is extremely small or approaches 0, a wake-up gesture action will 
then be detected by the system. Figure 5 illustrates a series of gesture actions performed by the 
operator, beginning at a wake-up gesture (T0), followed by the gesture of picking up the item 
(T1 and T2), another wake-up gesture (T5), and the gesture of acquiring the object from the 
robot (T6). In Fig. 5, the time points T3 and T4 denote the robot feedback action, grabbing the 
object in a specific position and moving to the operator side; the time point T7 is the robot 
feedback action of the gesture action of Case 1, which is to open the robot gripper and then 
release the grabbed object to the hand of the operator.
	 In the design of operator assembly-line gesture action recognition (as mentioned previously, a 
total of ten defined gesture classes are categorized by the system), the recognition decisions 
finally obtained from each of these three separated recognition channels, “3D-(x, y, z) raw 
LSTM,” “RGB CNN-LSTM,” and “depth CNN-LSTM,” will be combined by weight 
combinations of soft-max outputs (see Figs. 6–8). 

Fig. 5.	 (Color online) Series of operator gesture actions with the wake-up gesture of triggering the recognition 
system followed by the corresponding robot feedback action.
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	 As mentioned above, in the presented HRC assembly-line system, a total of ten operator 
gesture categories should be recognized, and therefore, the recognition decision set derived from 
each of the three separated recognition channels will have ten calculated output scores. Each of 
the ten calculated output scores is related to the corresponding gesture category. As shown in 
Fig. 6, after the recognition system is triggered by the wake-up gesture of the operator, a 
continuous-time assembly operation gesture data with n RGB-type frames made by the operator 

Fig. 6.	 (Color online) Recognition channel to process operator gesture data with the RGB sensing modality (RGB 
CNN-LSTM channel).

Fig. 7.	 (Color online) Recognition channel to process operator gesture data with the depth sensing modality (depth 
CNN-LSTM channel).

Fig. 8.	 (Color online) Recognition channel to process operator gesture data with the 3D-(x, y, z) skeleton sensing 
modality [3D-(x, y, z) raw LSTM channel].
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is sent to the recognition channel of RGB CNN-LSTM. When the channel finishes recognition 
calculations to this input RGB image set, ten decision output scores can then be estimated from 
the final classification computation of the soft-max, which are Softmax(0)RGB, Softmax(1)RGB, 
…, and Softmax(9)RGB. Accompanied by the RGB-type gesture data, the other two modalities of 
data, namely, the depth and 3D-(x, y, z) raw sensing data, will also be acquired from the RGB-D 
image capture device. As recognition decisions of the final output of the RGB CNN-LSTM 
channel, ten decision output scores of Softmax(0)Depth, Softmax(1)Depth, …, and Softmax(9)Depth, 
and another ten decision output scores of Softmax(0)3D-(x,y,z), Softmax(1)3D-(x,y,z), …, and 
Softmax(9)3D-(x,y,z) will also be obtained from the final soft-max classification computation of 
recognition channels of the depth CNN-LSTM and 3D-(x, y, z) raw LSTM, respectively (see 
Figs. 7 and 8). For the acquired input gesture data of the operator, the weight combination 
scheme to simultaneously take into account these three different sensing modalities of soft-max 
score output sets to finally make the recognition result is designed as follows [Eqs. (2–4)]:

	
( ) ( ) ( ) ( ) ( )3 3 - , ,

, 

0,1, , 9,
RGB Depth DMixed RGB Depth D x y z

Softmax i w Softmax i w Softmax i w Softmax i

i

+ +⋅

= …

⋅ ⋅=
	(2)

	 3 1,RGB Depth Dw w w+ + = 	 (3)

	 { }
( )
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j
Recognized Label Softmax j

∈ …
= 	 (4)

	 Note that in Eq. (3), there will be infinite conditions on the weight set {wRGB, wDepth, w3D}, 
which will be an annoying trial-and-test problem in the practical application scenario. In this 
study, we provide three different weight allocation strategies to determine such a weight set, 
which are “high-low-slight,” “half-quarter-quarter,” and “weighted-average.” In the high-low-
slight weight allocation strategy, one of the three different gesture sensing modalities will be 
given the highest weight (more than 0.5), denoting the relatively higher confidence in the 
recognition result of the specific sensing modality. In the half-quarter-quarter weight allocation 
strategy, a weight of 0.5 will be set to one specific sensing modality, and the remaining two 
modalities will be equally set the same weight of 0.25. As for the weighted-average weight 
allocation strategy, three sensing modalities will be treated completely the same, that is, they 
will be given similar weights. 

4.	 Experiments

	 Experiments of the proposed assembly-line design using HRCs with operator gesture 
recognition are conducted in a laboratory office environment. The operator gesture database that 
contains ten different categories of computer device assembly gestures is established by three 
male persons. As mentioned earlier, the image capture sensor is the Intel RealSense sensing 
device, belonging to the RGB-D type of image acquisition system. The top-to-down sensor 



738	 Sensors and Materials, Vol. 36, No. 2 (2024)

deployment is used to capture the gesture data of the operator. Each of the three male persons is 
requested to make 200 gesture actions, i.e., 20 actions collected for each of the ten different 
categories of assembly operation gestures. The time period of each gesture action acquired from 
the sensor device is set as 1 s. A computer device assembly mission is arranged in this work 
where these ten defined operator gesture types are (1) to receive the object released from the 
manipulator, (2) to wind the cable tie to bind the bus or wind the cupper line, (3) to pull up the 
assembled object to remove it from the device, (4) to pick up the item (computer fan) in 
location-1, (5) to pick up the item (superglue) in location-2, (6) to pick up the item (small screw) 
in location-3, (7) to pick up the item (large screw) in location-4, (8) to pick up the item (double-
sided tape) in location-5, (9) to pick up the item (seal tape) in location-6, and (10) to pick up the 
item (CPU fan) in location-7. The established operator gesture database containing a total of 600 
gesture actions (three different image sensing modalities, namely, the RGB image, the depth 
image, and the 3D skeleton raw data, included in each time of captured gesture actions, as shown 
in Table 2) is divided into two parts: the first half for the model training of various deep learning 
gesture recognition systems and the other half for performance evaluations of all constructed 
gesture recognition models. A personal computer (PC) with Windows 10, CPU of Intel Xeon 

Table 2
(Color online) Continuous-time RGB, depth, and 3D-(x, y, z) sensing data acquired simultaneously from the RGB-D 
device in each of ten different cases of operator assembly gesture actions.

RGB sensing data Depth sensing data 3D-(x, y, z) sensing data

1

2

3

4

5

6
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W-2235, RAM of 32 GB, and GPU of NVIDIA GeForce RTX3080ti is used in this work to 
perform all calculation tasks in both the test and training phases of deep learning gesture 
recognition. The PC is connected to OpenMANIPULATOR-X via the OpenCR embedded board 
for data communication.(20)

	 Figures 9–11 depict the performance curves (mainly the recognition accuracy and model loss 
rate curves) of deep learning models of RGB CNN-LSTM, depth CNN-LSTM, and 3D-(x, y, z) 
raw LSTM recognition channels, respectively, in the training phase. As shown in both the 
recognition accuracy and model loss rate curves, each of the three different sensor modalities of 
recognition channels can achieve a fine deep learning training calculation at the final iterative 
training procedure and satisfactory model performance with the recognition rate approaching 
100% and the loss rate approaching 0%.
	 In the testing phase of the HRC assembly-line design with operator gesture recognition, each 
type of separated deep learning channel is first evaluated in terms of recognition performance. 
Table 3 shows the operator gesture recognition accuracies obtained using the RGB CNN-LSTM 
channel alone, the depth CNN-LSTM channel alone, and the 3D-(x, y, z) raw LSTM channel 
alone. As shown in Table 3, in the recognition of ten different categories of operator assembly 
gestures, the RGB CNN-LSTM recognition channel apparently has the highest recognition rate 
of 95%, which is followed by 87.66% for the depth CNN-LSTM recognition channel, and the 
performance of the 3D-(x, y, z) raw LSTM recognition channel is extremely close to that of the 
depth CNN-LSTM channel, reaching the recognition rate of 87.33%. Table 4 shows the 
confusion matrix of gesture recognition by the RGB CNN-LSTM channel alone. Tables 5–7 
show the gesture recognition rates of weight combination schemes of high-low-slight, weighted-
average, and half-quarter-quarter, respectively, on the decision fusion of three different sensor 

Table 2 
(Color online) (Continued) Continuous-time RGB, depth, and 3D-(x, y, z) sensing data acquired simultaneously 
from the RGB-D device in each of ten different cases of operator assembly gesture actions.

7

8

9

10
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Fig. 9.	 (Color online) (a) Accuracy rate curve and (b) loss rate curve of the recognition channel of RGB CNN-
LSTM deep learning in the training phase of operator gesture recognition.

Fig. 10.	 (Color online) (a) Accuracy rate curve and (b) loss rate curve of the recognition channel of depth CNN-
LSTM deep learning in the training phase of operator gesture recognition.

Fig. 11.	 (Color online) (a) Accuracy rate curve and (b) loss rate curve of the recognition channel of 3D-(x, y, z) raw 
LSTM deep learning in the training phase of operator gesture recognition.

(a)

(a)

(a)

(b)

(b)

(b)
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Table 3
Operator assembly gesture recognition accuracies obtained using the separated deep learning recognition channels 
of RGB CNN-LSTM, depth CNN-LSTM, and 3D-(x, y, z) raw LSTM.
Recognition channel with only one modality Recognition accuracy (%)
RGB CNN-LSTM channel (RGB data only) 95
Depth RGB CNN-LSTM channel (depth data only) 87.66
3D-(x, y, z) raw LSTM channel (3D skeleton data only) 87.33

Table 4
Confusion matrix of operator assembly gesture recognition by the separated deep learning recognition channel of 
RGB CNN-LSTM.

1 2 3 4 5 6 7 8 9 10
1 30 0 0 0 0 0 0 0 0 0
2 0 30 0 0 0 0 0 0 0 0
3 0 0 30 0 0 0 0 0 0 0
4 0 0 0 29 1 0 0 0 0 0
5 0 0 0 0 30 0 0 0 0 0
6 0 0 0 0 0 25 5 0 0 0
7 0 0 0 0 0 4 23 3 0 0
8 0 0 0 0 0 0 0 29 1 0
9 0 0 0 0 0 0 0 0 29 1

10 0 0 0 0 0 0 0 0 0 30

Table 5
High-low-slight weight combination scheme used to achieve decision fusion among gesture recognition channels of 
RGB, depth, and 3D image sensing modalities.
Condition wRGB wDepth w3D Recognition accuracy (%)
1 0.6 0.3 0.1 95
2 0.6 0.1 0.3 95
3 0.3 0.6 0.1 89
4 0.1 0.6 0.3 88.66
5 0.3 0.1 0.6 91.33
6 0.1 0.3 0.6 92.00

Table 6
Weighted-average weight combination scheme used to achieve decision fusion among gesture recognition channels 
of RGB, depth, and 3D image sensing modalities.
Condition wRGB wDepth w3D Recognition accuracy (%)
1 0.34 0.33 0.33 93.66

Table 7
Half-quarter-quarter weight combination scheme used to achieve decision fusion among gesture recognition 
channels of RGB, depth, and 3D image sensing modalities.
Condition wRGB wDepth w3D Recognition accuracy (%)
1 0.5 0.25 0.25 96
2 0.25 0.5 0.25 89.66
3 0.25 0.25 0.5 93
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modalities of RGB, depth, and 3D image data. The recognition outcomes in Table 5 reveal that 
the highest recognition performance of the high-low-slight weight combination appears when 
(wRGB, wDepth, w3D) = (0.6, 0.3, 0.1) or (wRGB, wDepth, w3D) = (0.6, 0.1, 0.3). In each of these two 
best cases, the recognition performance remains the same as that of the RGB CNN-LSTM 
recognition channel alone; for the weight combination scheme of weighted-average, such 
combination with the same weight set to achieve the decision fusion of three recognition channel 
outputs is ineffective, even more unideal than the RGB CNN-LSTM recognition channel alone 
(see Table 6); in all weight combination schemes, the half-quarter-quarter approach has the most 
satisfactory performance. As shown in Table 7, the highest recognition rate appears in the case 
of (wRGB, wDepth, w3D) = (0.5, 0.25, 0.25), in which the operator gesture recognition rate can 
approach 96%, higher than 95% of the RGB CNN-LSTM channel alone. Table 8 shows the 
confusion matrix of recognition of ten operator assembly gesture classes by the half-quarter-
quarter weight combination with the setting of (wRGB, wDepth, w3D) = (0.5, 0.25, 0.25) on the 
decision fusion of RGB, depth, and 3D raw recognition channel outputs. Recognition experiment 
results demonstrate the effectiveness of the use of decision fusion in hybridizations of deep 
learning recognition channels of the three image sensing modalities of RGB, depth, and 3D raw 
data.

5.	 Conclusions

	 In this work, a smart assembly-line design by HRCs with the recognition of operator 
assembly gestures is proposed. In the HRC-based assembly task, the operator and manipulator 
will cooperate in an efficient manner where the manipulator will perform the feedback action 
according to the recognized operator gestures. A decision fusion design to hybridize all 
calculation outputs of deep learning recognition channels of three different image sensing 
modalities, namely, RGB, depth, and 3D-(x, y, z) raw, is presented in this study to increase the 
recognition accuracy of gesture recognition by only a separated deep learning recognition 
channel with the specific image sensing type. The developed system with incorporations of 
HRC and operator gesture recognition can further upgrade the assembly-line task in smart 

Table 8
Confusion matrix of operator assembly gesture recognition by decision fusion of the half-quarter-quarter weight 
combination with (wRGB, wDepth, w3D) = (0.5, 0.25, 0.25).

1 2 3 4 5 6 7 8 9 10
1 30 0 0 0 0 0 0 0 0 0
2 0 30 0 0 0 0 0 0 0 0
3 0 0 30 0 0 0 0 0 0 0
4 0 0 0 29 1 0 0 0 0 0
5 0 0 0 0 30 0 0 0 0 0
6 0 0 0 0 0 27 3 0 0 0
7 0 0 0 0 0 5 23 2 0 0
8 0 0 0 0 0 0 0 29 1 0
9 0 0 0 0 0 0 0 0 30 0

10 0 0 0 0 0 0 0 0 0 30
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manufacturing. On the basis of the system proposed in this study, a possible extension work can 
be further explored to improve the HRC mode, i.e., to promote the role of the manipulator robot, 
from being an assistant performing only tool delivery to the more collaborative co-worker that 
can complete parts of the assembly task independently with understanding of the task progress.
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