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	 Thuja koraiensis Nakai (Cupressaceae) is an endangered conifer species that holds significant 
ecological importance as an endemic plant in Korea. To facilitate the adaptive management of 
ecosystems on the Korean peninsula in the face of climate change, the use of species distribution 
models (SDMs) can be instrumental in supporting climate-adaptive forest restoration programs. 
In this study, we collected occurrence and bioclimatic data from remote sensing to analyze the 
current and projected distribution of T. koraiensis. We employed four different SDMs, namely, 
the general additive model, generalized boosted model, general linear model, and random forest, 
to predict the potential distribution of T. koraiensis under both current and future climate 
scenarios. To assess the risk of extinction for this species, we utilized ensemble-averaged models 
to estimate the extent of area loss in currently suitable habitats for T. koraiensis, with a focus on 
stable true skill statistic (TSS) results exceeding 0.9. Encouragingly, our results indicate that T. 
koraiensis is likely to persist into the 2070s, specifically when considering the representative 
concentration pathway (RCP) 4.5 scenario for climate change on the Korean peninsula. These 
findings provide robust predictions regarding the future habitat occupancy probabilities of T. 
koraiensis populations across South Korea. Moreover, they contribute to the development of 
climate-adaptive forest restoration programs, taking into account long-term perspectives.

1.	 Introduction

	 Thuja koraiensis Nakai is a short and creeping evergreen shrub that reaches nearly 3 m in 
height and only grows in northeast China and the high mountains of Korea.(1) Climate change 
has progressed in recent years and natural populations of T. koraiensis have declined together 
with the competition with temperate species. Furthermore, the decline in the number of T. 
koraiensis might be related to inbreeding and inadequate environments for seed germination 
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within the natural habitats situated in restricted areas high atop mountains.(2) Currently, the 
studies of T. koraiensis are focused on the molecular mechanism of somatic embryogensis,(3) 
genetic variation,(4) habitat investigation and growth patterns(5) in terms of conservation efforts. 
The decrease in the habitats of T. koraiensis has emerged as a serious issue in terms of preserving 
the diverse species on the Korean peninsula.(6) Therefore, the endemic T. koraiensis has been 
designated as a rare and endangered tree species in Korea and a vulnerable species on the 
International Union for Conservation of Nature (IUCN) Red List of Threatened Species.(7)

	 Species distribution models (SDMs) are quantitative models of species–environment 
relationships typically developed using species location data and those environmental variables 
considered to affect the species distribution.(8) Commonly, SDMs are used to investigate the 
environmental suitability to estimate a species’ current or future distribution.(9) Furthermore, 
many studies of future climate change use an ensemble modelling approach in which simulations 
of future conditions are produced with multiple climate models, rather than just one.(10) As a 
single algorithm can easily result in the overfitting phenomenon, this problem is eliminated after 
the ensemble.(11) Hence, ensemble modelling can significantly improve the modelling accuracy 
and reduce uncertainty compared with modelling using only a single model.(12) However, there is 
no research on the ensemble modelling of T. koraiensis species in Baekdudaegan (South Korea), 
which should be predicted with an assessment of their uncertainty, in accordance with the 
potential impact of climate change.
	 Therefore, in this study, we use ensemble algorithm SDM methods to evaluate the impact of 
climate change scenarios under representative concentration pathway (RCP) 4.5 on the 
endangered native T. koraiensis populations across the South Korean peninsula. Our findings 
would provide long-term insights into forest conservation and restoration strategies in response 
to climate change.

2.	 Materials and Methods

2.1	 Location data for T. koraiensis in South Korea

	 To acquire data on T. koraiensis in South Korea, we employed databases serviced by 
Baekdudaegan National Arboretum, Korea Arboreta and Gardens Institute (Gonghwa, South 
Korea). Four additional field surveys were performed to confirm the current populations of T. 
koraiensis (Fig. 1). In total, 118 sites where T. koraiensis are present were identified, and maps 
with binary cell values of presence (1) and absence (0) were produced for each SDM using the 
threshold value of 0.5 (Fig. 2).

2.2	 Environmental parameters

	 Current climate data, including 19 bioclimatic variables in the World Climate data, were used 
to predict the change in the distribution of potential land suitable for T. koraiensis populations.(13) 
In particular, bioclimatic variables were considered suitable for investigating the species 
distributions under current or possible future conditions by applying the SDMs.(14,15) Four (max 
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Fig. 1.	 (Color online) Distribution of T. koraiensis on Korean peninsula (a) Chokdaebong, (b) Seoraksan National 
Park, (c) Donghae-si, (d) Odaesan National Park, (e) Pyeongchang and Jeongseon, (f) Undaebong (Taebaek).

(a) (b) (c)

(d) (e)

(f)

Fig. 2.	 (Color online) Results of presence and absence mapping of T. koraiensis (n = 59 presence, n = 500 
absence).
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temperature of warmest month: bio 5, temperature annual range: bio 7, mean temperature of the 
coldest quarter: bio 11, prediction of the coldest quarter: bio 19) of the 19 BioClim variables were 
considered when applying the SDMs (Table 1). For future climate data, we referred to the 
HadGEM2-AO climate model constructed by the National Institute of Meteorological Science 
for the publication of the Intergovernmental Panel on Climate Change (IPCC) Assessment 
Report 5 (AR5) for the 2050s (2041–2060) and 2070s (2061–2080) under the RCP 4.5 emission 
scenario (RCP 4.5). The HadGEM2-AO climate model is a general circulation model (GCM) 
with a spatial resolution of 135 km, and its bioclimatic variables were downscaled to a spatial 
resolution of 30 arcsec using version 1.4 of WorldClim for the actual analysis conducted for our 
detailed climate forecast in South Korea. 

2.3	 Species distribution ensemble modelling

	 BIOMOD2 provides an ensemble platform of ten SDM algorithms, and we initially used four 
of these as ensemble candidates. To model the potential land suitability for T. koraiensis in the 
future, the ensemble modelling was designed to consist of three different regression models 
[general additive model (GAM), generalized boosted model (GBM), and general linear model 
(GLM)] and a machine learning model [random forest (RF), provided by the BIOMOD2 package 
in R statistical language (Fig. 3).(16) We built individual models using default settings provided 
by BIOMOD2 version 3.4.1 and ensembled the outcomes of SDM simulations with true skill 
statistics (TSS) values over 0.8 to reduce the uncertainty of SDMs. This evaluation metric is an 

Table 1
Bioclimatic variables used for species distribution models to predict the potential future distribution of targeted 
species.
Factor Variables Meaning of Variables Resolution

Climate factor

Bio 5 Max Temperature of Warmest Month
30 arcsec

(1 km)
Bio 7 Temperature Annual Range  (Bio 5-Bio 6)
Bio 11 Mean Temperature of Coldest Quarter
Bio 19 Prediction of Coldest Quarter

Fig. 3.	 (Color online) Schematic representation of the ensemble species distribution modelling approach.
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indicator of discrimination capacity and quantifies how well the model distinguishes presence 
from absence (or presence from background samples, when absence is unavailable). As held-out 
subsets of the original dataset are used for model evaluation (cross-validation) for partitioning 
data into subsets. SDM results represent the possibility of each species’ occurrence in the form 
of a continuous distribution, implying the importance of the threshold in objectively determining 
the presence of a selected species for the integrity of the modelling results and their 
interpretation. In BIOMOD2, the cross-validation procedure was repeated two times for each of 
the 10 presence–absence groups.(17) The accuracy of a committee averaging (CV) ensemble 
methodology was evaluated using outer validation.

3.	 Results 

3.1	 Evaluation of the performance of various BIOMOD2 algorithms

	 The SDM platform and R package BIOMOD2 were used to explore the potential land 
suitability for T. koraiensis in the future. Also, by evaluating the performance of models, the 
receiver operating characteristic (ROC) and TSS were confirmed. The distribution habitats of T. 
koraiensis for both current and future climates were obtained by ensemble forecasting in the 
BIOMOD2 package by parameterizing TSS > 0.9 for individual models (Table 2). By comparing 
the TSS values, GBM, GLM, and RF (0.985 ± 0.011 − 0.988 ± 0.011) were found to perform 
better than the statistical GAM method (0.911 ± 0.109). 

3.2	 Contribution of the four predictor variables used to construct SDMs for T. koraiensis

	 As shown in Table 3, the importance of variables (environmental parameters) for SDM is 
presented. Among the four predictor variables under GAM and GLM, bio 5 (0.809 ± 0.066 and 
0.997 ± 0.001, respectively) and bio 11 (0.977 ± 0.030 and 0.966 ± 0.054, respectively) contributed 

Table 2
Mean and standard deviation of ROC and TSS for the models.
Model ROC (0-1) TSS (0-1) ROC cutoff Sensitivity Specificity
GAM1 0.956 ± 0.055 0.911 ± 0.109 518.300 ± 200.352 93.333 ± 10.865 97.800 ± 27.800
GBM2 0.995 ± 0.006 0.985 ± 0.011 526.100 ± 174.66 100.000 ± 0.000 98.640 ± 1.117
GLM3 0.994 ± 0.007 0.985 ± 0.014 614.800 ± 213.223 100.000 ± 0.000 98.480 ± 1.432
RF4 0.995 ± 0.006 0.988 ± 0.011 329.600 ± 161.232 100.000 ± 0.000 98.760 ± 1.090

Table 3
Importance of variables (environmental parameters) for SDM.
Variable GAM1 GBM2 GLM3 RF4

Bio 5 0.809 ± 0.066 0.197 ± 0.048 0.997 ± 0.001 0.334 ± 0.026
Bio 7 0.539 ± 0.025 0.344 ± 0.027 0.733 ± 0.131 0.304 ± 0.030
Bio 11 0.977 ± 0.030 0.399 ± 0.039 0.966 ± 0.054 0.292 ± 0.014
Bio 19 0.310 ± 0.050 0.086 ± 0.019 0.277 ± 0.080 0.147 ± 0.015
Each value is expressed as mean ± SD.
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the most to the model predictions. In contrast, bio 19 contributed little to the predictive 
performance of the models among the four predictor variables under the four algorithms (0.086 ± 
0.019 − 0.310 ± 0.050). Under GLM, bio 5 (0.997 ± 0.001) and bio 11 (0.966 ± 0.054) contributed 
the most to the model predictions, followed by bio 7 (0.733 ± 0.131). In summary, the dominant 
bioclimatic variables shaping the potential distribution of T. koraiensis are bio 5 and bio 11.

3.3.	 Current and future potential distributions of T. koraiensis under RCP 4.5

	 The predicted distribution habitats of T. koraiensis for both current and future climates were 
revealed by the ensemble prediction (Fig. 4). The natural population of T. koraiensis currently 
spreads throughout Baekdu-degan including Gariwangsan, Gyebangsan, Jangsan, Taebaeksan, 
Hwahangsan, and Seoraksan. The predicted ensemble-averaged model showed the area loss of 
currently suitable habitats for T. koraiensis, yet the species is predicted to still exist in the future 
under RCP 4.5.
	 Under the RF models, the potential habitat distribution of T. koraiensis would be conserved 
under RCP 4.5 in the 2030s, 2050s, and 2070s. In particular, in the 2070s, an increase in the 
number of natural habitats of T. koraiensis is predicted. Similar to RF models, GLM models 
showed expanded natural populations of T. koraiensis throughout the Korean peninsula. 
Specifically, the areas near Mt. Halla on Jeju Island and Jirisan were identified as new potential 
habitats in the 2030s and 2050s. Yet, these predicted potential habitats of T. koraiensis were 
excluded in the 2070s owing to habitat loss across the Korean peninsula when considering the 
climatic conditions under RCP 4.5.

Fig. 4.	 (Color online) Potential habitat distribution of T. koraiensis in the 2070s, predicted using single models 
under RCP 4.5.
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	 The prediction results obtained with GAM showed a trend different from those obtained with 
RF and GLM. GAM predicted that the potential habitat for T. koraiensis will greatly expand in 
the 2030s owing to climate change. However, this expansion of natural habitats of T. koraiensis 
would decrease in the 2050s and 2070s. Similar to GLM, predicted potential habitats such as Mt. 
Halla on Jeju Island and Jirisan would be excluded in the 2070s.

4.	 Discussion 

	 Climate has been altering rapidly in South Korea. Specifically, it is predicted that by 2070, 
the average temperature will increase by 1.3 to 5.2 ℃, and the average temperature will increase 
by up to 29.6%.(18) Climate change is an important factor that regulates the growth and survival 
of trees.(19) SDMs are widely used to support the climate-adaptive program of threatened species 
as they suggest potential translocation sites.(9)

	 Global warming is altering the natural habitat environments, threatening the natural 
populations of T. koraiensis in South Korea. In this study, we used the multiple SDMs for the 
ensemble average method and predicted that T. Koraiensis is vulnerable to future climate 
change. Several algorithms in this study performed well with our data, showing that the results 
of using the four methods converged successfully with stable TSS results. TSS provides a 
threshold-dependent measure of accuracy and is readily applied for presence–absence 
predictions.(20) 
	 Climate projections using three different models (RF, GLM, and GAM) were used to assess 
the potential habitat of T. Koraiensis under RCP 4.5. On the basis of the results of the screening 
of the SDMs, RF is selected to construct a high-precision ensemble model as it showed the 
highest TSS (0.988 ± 0.011). The common finding obtained using the three models was that 
climate change in the Korean peninsula under RCP 4.5 has an impact on the natural habitat of T. 
koraiensis, as shown by the area loss of the potential population. Above all things, the species is 
predicted to still exist in the 2070s under RCP 4.5. These findings will provide meaningful 
insights for the forest conservation and restoration strategies in response to climate change.
	 The conservation of endangered species needs to take full consideration of the potential 
habitat of the species and plant saplings in the right locations.(21) By analyzing the potential 
habitat of T. koraiensis in ensemble models, we found that there is still a significant amount of 
land with good potential for restoration. In this study, only climate factors were considered in the 
analysis, but further research is needed to include topographic factors such as altitude and soil 
information, as well as the various environmental factors that are suitable for the growth 
environment characteristics of T. koraiensis. Additionally, in order to conserve the natural 
habitat of T. koraiensis on the Korean peninsula, it is necessary to establish spatial information 
data for regions with similar suitable environmental conditions for T. koraiensis as potential 
distribution areas. Using the established database, we must initiate efficient management 
strategies for the protection and nurturing of T. koraiensis in response to climate change.
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5.	 Conclusions

	 Climate change will affect ecologically sensitive areas, so it is crucial to manage its impact 
on various species. T. koraiensis is an endangered and ecologically important conifer endemic to 
South Korea. SDMs can support climate-adaptive forest restoration programs by predicting the 
effect of climate change on the future dispersal and distribution of targeted species. In this study, 
we used multiple SDMs in the ensemble average method for predicting the changes in the 
endangered native T. koraiensis populations in response to climate change. The predicted 
ensemble-averaged model showed the area loss of currently suitable habitats of T. koraiensis, yet 
the species was predicted to still exist in the 2070s under RCP 4.5. Furthermore, several 
algorithms in the BiOMOD2 ensemble performed well with our data, showing that the four 
methods converged successfully, presenting stable TSS results. Our study suggests that common 
results from different SDMs can be used as the basis for developing conservation strategies to 
protect the native rare T. koraiensis in South Korea. These findings would provide a long-term 
perspective for preparing protective strategies of vulnerable species against climate change.
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