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 Unmanned aerial vehicle (UAV) systems are widely used in many forest-related fields owing 
to their cost-intensive and precise surveying technology. In this study, we classified erosion 
susceptibility (ES) in a timber harvesting area using machine learning (ML) and statistical 
approaches. In dataset generation for the training and testing processes, the digital surface 
model (DSM) of difference (DoD) for July and June 2022 was used as a dependent variable, and 
six terrain maps of the DSM for June were used as independent variables. The ES threshold was 
set at 5 cm for the binary classification of ES pixels while processing using ML [e.g., random 
forest and extra gradient boost (XGB)] and statistical (e.g., logistic regression) algorithms for 
model development. The overall accuracy (OA), receiver operating characteristics, and area 
under the curve (AUC) were calculated for model accuracy and validation. Although the AUC of 
all the models did not appear acceptable (AUC > 0.7), the XGB model showed the highest 
performance in terms of time duration, OA, and AUC of 2 h, 64%, and 0.63, respectively. 
Despite the low AUC and accuracy of the XGB model, the wheel tracks and edges of the 
operation road were determined to be erosion-susceptible areas in the ES map of the XGB 
model.

1. Introduction

 Unmanned aerial vehicle (UAV) surveys have demonstrated the efficiency and precision of 
data acquisition in many forest-related fields.(1–4) However, only a few researchers have 
conducted UAV surveys for the environmental analysis of forest soil.(5–7) In these studies, soil 
surface deformation (SSD) was detected and monitored in timber harvesting areas. Despite the 
application of UAV sensors in forestry, developing a prediction model for micro-SSDs has not 
been attempted in forest environmental fields, unlike in biomass prediction studies.(8–10) Like 
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macro-SSD studies, predicting macro-SSDs such as landslides remains challenging in many 
recent landslide susceptibility studies.(11–13)

 A recent study revealed that the UAV system has the capability of detecting SSD in a timber 
harvesting area.(7) The UAV photogrammetric approach was utilized to acquire point cloud data 
(PCD). 2D images were collected monthly by UAV surveys and processed in structure from 
motion (SfM). The airborne PCD were georeferenced to align all acquired PCD by correcting 
the coordinate data of stump installed ground control points (GCPs). Hence, to determine the 
PCD alignment, the elevation difference per pixel was calculated by subtracting the digital 
surface models (DSMs) acquired monthly. The height difference indicated the SSD acquired in 
the timber harvesting area, and 3D SSDs were validated precisely with ground truths to monitor 
the seasonal effects of timber harvesting.
 Factors such as soil texture, precipitation, vegetation, topography, and surface cover are 
related to displacement generation, as revealed by the revised universal soil loss equation 
utilized in previous studies.(14,15) Despite the well-known factors of SSD occurrence, modeling 
studies have focused on predicting landslides at the meter-class digital elevation model (DEM) 
resolution, which is inappropriate for detecting and analyzing micro-SSDs in 3D images.(11,16–18) 
In landslide studies, for decades, the landslide susceptibility model has been analyzed using the 
data derived from remote sensing platforms such as satellites and aircraft.(19–21) These previous 
landslide studies sampled landslides from 3D images derived from remote sensing technology, 
which were used for independent variables such as terrain, vegetation, and land use maps to 
classify landslide-susceptible areas from meter-class resolution images. Terrain variables consist 
of slopes, aspects, topographic wetness index (TWI), terrain roughness index (TRI), and 
curvatures related to the physical rainfall energy resulting in landslides.(22–24) Vegetation 
covering the soil surface is also related to landslide occurrence by mitigating rainfall energy and 
was used as the normalized difference vegetation index (NDVI) in landslide susceptibility 
models.(24,25) Moreover, classification maps such as soil texture and land use maps were utilized 
as nominal variables to assess erosion vulnerability caused by human activity, which may 
accelerate landslides. 
 Most preceding gully erosion and landslide susceptibility modeling studies selected 
algorithms such as machine learning (ML) and statistical algorithms for classification 
processes.(22,24,26–30) Landslide modeling studies have utilized landslide samples for supervised 
learning techniques, such as random forest (RF),(27,31) extra gradient boost (XGB),(32) logistic 
regression (LR),(30) support vector machine,(26) and artificial neural network (ANN).(22,24,28) 
During the classification process, the sampled landslide cells were trained and tested as target 
data, also known as independent variables, and the variables from the terrain, vegetation, and 
cover maps were prepared and tested as dependent variables. Moreover, to overcome the 
overfitting issues of the micro-target data, cross-validation methods were utilized in the training 
and testing processes to enhance the classification performance. Subsequently, hyperparameters 
were tuned to develop a model suitable for the dataset. The overall accuracy (OA) was derived 
from the classification results of the confusion matrix, while model performance was verified by 
using F1 and the receiver operating characteristic area under the curve (ROC-AUC) 
scores.(21,27,31) Related studies mapped the classification results to a GIS environment in the final 
stages. 
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 Despite the challenging tasks of detecting micro-SSDs from UAV-derived data,(7) we 
performed additional steps to classify the erosion susceptibility (ES) pixels from the UAV 
photogrammetric DSM. In this study, we investigated the feasibility of classifying micro-SSDs 
from 3D soil surface data by developing a classification model with an ES threshold of 5 cm. 
Moreover, the processes of training and testing millions of 3D data were optimized by tuning the 
dataset quantities and splitting the datasets in the stratified cross-validation (SCV) process. 
Finally, the performance characteristics of the developed models were compared and 
subsequently mapped to the highest-performing model.

2. Materials and Methods

2.1 Study area

 The timber harvesting site, situated in the research forest of Kangwon National University, 
Republic of Korea (37°46′34.4′′ N, 127°49′41.1′′ E; Fig. 1), was cleared before employing UAV 
photogrammetry to detect SDD in the canopy-opened site. In March 2022, timber was harvested 
on a 3-ha total area. The area has a temperate climate, with summer (June to August) being the 
wettest season. During the study period, the monthly precipitation averaged 300 mm during the 
heavy rainy season, and according to the climate, the wettest months were June to August.(33,34) 
With elevations ranging from roughly 508 to 628 m above sea level, the site has an average slope 
of 47%. According to American soil taxonomy, the region’s soil is dark brown sandy loam and 
the soil type corresponds to the Mui series (coarse loamy, mixed, Typic Humudepts). Logging 
trails were formed at the center and on the right side of the study area. The area’s surface is 
covered by rocks, logging waste, forest soil, and slightly less flora from March through June. 
The steep slopes and abundant rainfall at the research site provide optimal conditions for runoff 
and SSD.

Fig. 1. (Color online) Location of timber harvesting area of experimental forest of Kangwon National University.
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2.2 2D image collection from UAV system on timber harvesting site

 Prior to conducting UAV surveys, GCPs must be installed in order to georeference the 3D 
data. Owing to the difficulty in finding undeforming objects in the forests, we prepared 40 × 40 
cm Fomex texture plates for GCPs to install at stumps. A total of 29 GCPs were installed at 
recognizable stumps; hence, the Trimble R12i global navigation satellite system (GNSS) 
collected the center coordinates of the installed GCPs. Parallel to the GCP installation, we also 
prepared ruler-attached polyvinyl chloride pipes for validation points (VPs). A total of 24 VPs 
were installed to validate the DSM of difference (DoD), which is used as a dependent variable in 
ML models.
 Aerial 2D images were collected using Matrice 300 (7 kg) of Da Jiang Industry for the 
platform and Zenmuse H20T (0.82 kg) for the sensor. To avoid risks of crashing with slopes 
during airborne 2D image collection without real-time kinematic, a GPS-based vertically 
parallel flight method was performed to acquire a high-resolution DSM of steep slopes.(7) The 
overlap, margin, and flight speed for automatic UAV flights were set at 90% for the side, 80% for 
the front, and 5 m/s, respectively. In particular, considering the slope degree of the study area, 
the flight height was set at 100 and 140 m. All of the UAV surveys were able to collect more than 
200 images per survey for the entire study site.

2.3 Variable generation for ES model

 To analyze 3D data using a ML model, it is necessary to generate terrain variables from the 
3D DSM. In previous gully erosion and landslide susceptibility studies, terrain variables were 
generated from space- and airborne-derived DEMs, and the models developed from preceding 
studies were able to accurately classify macro-SSDs (e.g., gully erosion and landslides).(21,22,28,35,36)

 However, the classification modeling in this study should be performed with centimeter-class 
resolution to classify micro-SSDs. Thus, the UAV photogrammetric method was utilized to 
acquire centimeter-class resolution. In this process, all the images collected by the automatic 
flight method were aligned with the embedded coordinate data from the collected images in 
Agisoft Metashape Professional version 1.5.1 (Agisoft LLC., Petersburg, Russia). Hence, images 
generate the PCD through the Sf M algorithm. The Metashape software provides 
photogrammetric options that can be customized for each process (Table 1). 
 In photo alignment, feature points were used to calculate the correlation between images 
through SfM, and tie points and depth maps were generated. In dense cloud generation, PCD are 
generated from tie points.
 Each monthly acquired PCD must be aligned at the lowest possible spatial root mean square 
error (RMSE) for SSD calculation. In landslide-related UAV studies, GCPs have been used to 
georeference XYZ coordinates in PCD.(37–39) The coordinates collected from the centers of all 
29 GCPs using GNSS surveyed during fieldwork were imported into the PCD in shapefile 
format. These GCPs were used to apply the coordinate data and validate the spatial error 
throughout the process.
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 The height difference per pixel was calculated using ArcGIS Pro (ESRI Inc., Redlands, CA, 
USA) from spatially aligned DSMs. In ArcGIS Pro, the raster calculator tool was used to 
calculate Z (height). In this method, the pixels from the pre-DSM of June 10, 2022 were 
subtracted from those of the post-DSM of July 9, 2022, and the resolution was considered during 
the calculation.
 As DoD was calculated from the height difference per pixel, validation from DoD was 
required. To validate the precision of SSD in DoD, the height values at each installed VP were 
compared with the point values that appeared in the DoD file. The coordinate data acquired 
from VPs by GNSS were imported as points in shapefile format on the DoD map. The pixel 
values calculated using the DoD method were then compared with the ground truth data 
recorded from the field survey and calculated as the RMSE for their assessments. Moreover, the 
data conditions of slope degree, precipitation, and alignment error revealed that the most precise 
and understandable average erosion of the total monitoring was the average erosion height from 
DoD between October and September. According to the calculation of DoD from October to 
September, the average erosion height was revealed to be 5.13 cm. Thus, the threshold of the ES 
height for reclassification was set at 5 cm, which resulted from the average erosion level in DoD 
from October to September.(7)

 To predict ES from terrain 3D data, the DSM must be converted to its morphological features 
for analysis. This process was conducted using ArcGIS Pro, and the slope, aspect, TWI, profile 
curvature (PRC), plan curvature (PLC), and TRI were calculated using the DSM. However, 
unlike the other independent variables calculated using ArcGIS tools, TWI and TRI should be 
generated using semi-manual calculations. TWI indicates the water flow on upper slopes, which 
may contribute to erosion. Therefore, the equation for TWI is 

 ln ,
tan

TWI α
β

 
=  

 
 (1)

where α is the contributing upper slope pixel and β is the slope gradient of the neighboring pixels 
of the slope.

Table 1
Parameters used in each process to generate 3D data.
Process Parameter Setting

Align Photos

2D image input 140 m + 100 m
Accuracy Highest

Reference preselection On
Key point limit 40000
Tie point limit 4000

Build Dense Cloud Quality Ultrahigh
Depth filtering Aggressive

Build DSM
Projection WGS 84 (EPSG: 4326)

Source data Dense cloud
Point classes All
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 Moreover, TRI indicates the morphological effect of water flow. In ArcGIS, the maximum, 
mean, and minimum of each input pixel by neighboring pixels of the input pixels in the DSM 
were antecedently calculated using the “focal statistics tool.” Hence, the TRI equation is

 ,Mean Minimum

Maximum Minimum

FS FSTRI
FS FS

−
=

−
 (1)

where FSMean, FSMinimum, and FSMaximum are the mean, minimum, and maximum elevations of 
the focal statistics, respectively.
 All the terrain variables were masked and adjusted appropriately for exact pixel numbers and 
values at appropriate pixel locations. Subsequently, all maps were exported in the raster format 
to generate the data frame.
 Georeferencing was conducted using GCPs in the Metashape environment. Initially, the 
GCPs were manually registered in the PCD, and the program automatically selected the 
corresponding 2D images. The exact centers of the GCPs were manually selected from the 2D 
images. The center points were manually adjusted and deleted, where relevant, before calculating 
the GCP centers (distance in cm), which represented the GCP georeferenced errors from June, 
July, September, and October.

2.4	 Development	of	ES	model	using	a	classification	algorithm

 All dependent and independent variable maps were uploaded to the R environment for 
stacking. The stacked pixel data from the maps were extracted and transformed into the CSV 
format. Moreover, the datasets for ES analysis were tested by setting an ES threshold of 5 cm for 
each pixel of the data. The datasets generated from the stacking maps were transferred to the 
Python 3.10.6 environment for faster analysis using the Numpy package. In total, 34088223 
stacked pixel data points were imported from the total dataset (10% of the total data), scaled 
using the min-max method, and randomly sampled without replacement for training and testing. 
The sample data were trained and tested using the SCV in each of the three classification 
algorithms during the training and testing processes (Table 2). First, in the SCV process, three 
sets of trials (5, 10, and 100 splits) were trained and tested using the ML- and statistic-based 
models. Subsequently, classification models were developed, and the performance of each model 
was verified using precision and recall values. In the binary classification process, ML must 
include an algorithm for classification. To classify a large amount of 34-million-pixel DoD SSD 
data, which is convolutional and has small terrain features in contrast to landslides, strong and 
precise ML algorithms such as RF and XGB are required. In addition, to assess the applicability 
of ML models in ER analysis, a statistical algorithm, LR, was used to compare the performance 
characteristics of ML-based models.

2.5 Assessments of ES models

 To evaluate and compare model performance characteristics, universal indicators such as F1 
and ROC-AUC were used for the classification results.(40–42) The OA, recall, and precision were 
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calculated using the confusion matrix derived from the classification results (Table 3). OA was 
calculated as the sum of true negative (TN) and true positive (TP) divided by the sum of TN, TP, 
false negative (FN), and false positive (FP). Recall and precision were calculated as F1 scores 
from the harmonic means. ROC was calculated for each classification result and performance 
using line plots to confirm whether the results were fitted correctly. The TP rate (TPR) and FP 
rate (FPR) were used to plot ROC with a size of 1 × 1, and AUC was calculated to determine the 
success rate of the ES models. Finally, all the classification results were applied to the coordinate 
data and mapped using ArcGIS Pro for visualization.

3. Results

3.1 Dataset for training and testing

 From the UAV surveys conducted on June 10 and July 9, 235 and 233 2D images were 
collected, respectively. The PCD for June and July were generated from the UAV-derived 2D 
images via a photogrammetric process using SfM. These PCD were georeferenced using 29 
GCPs to align the June and July DSM and then filtered manually using the Agisoft software. 
The alignment of each PCD was processed from the GCP centers of the PCD with a spatial error 
of 11.1 cm. In the final data processing, DSMs of <2.7 cm resolution were generated from the 
preprocessed PCD for June and July (Fig. 2). From the validation of the DoD map, the precision 
of SSD was calculated for 24 VPs with an RMSE of 8.8 cm, which was the difference between 
the 3D data and ground truth measurements.
 The DoDs of July and June were first calculated as numerical data from the process. Hence, 
to classify ES in the algorithm, the maps were reclassified according to the threshold of 5 cm 
[Figs. 3 and 7(b)]. The ES model used the reclassified DoD as the dependent variable. Parallel to 
the independent variable generation, six terrain variables (slope, aspect, TWI, PRC, PLC, and 
TRI) were generated from the DSM of June and stacked for ES analysis (Fig. 4).

Table 2
Hyperparameters utilized in classification models.

XGB

Max depth 5
N estimators 1000
Learning rate 0.1

Min_child_weight 1
subsample 0.8

colsample_bytree 0.8
objective binary: logistic

RF

Max depth 100
Max_features 3

Min_samples_leaf 5
Min_samples_split 12

N estimators 500

LR

C 100
Max_iteration 500

Solver liblinear
Penalty l1
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Fig. 2. (Color online) DSM of June 10 and July 9 from UAV photogrammetry method. DSM derived from the UAV 
survey on (a) June 10 and (b) July 9.

Fig. 3. (Color online) DoD calculated from the subtraction of DSM acquired in July and June.

(a) (b)

Table 3
Confusion matrix of classification results analyzed with ES models.

Predicted
X'1 (not erosion-susceptible) X'0 (erosion-susceptible)

Observed X'1 (no erosion occurred) TP FN
X'0 (erosion occurred) FP TN
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Fig. 4. (Color online) Terrain independent variables in maps for stacking processes and ES analysis: (a) TWI, (b) 
slope, (c) TRI, (d) PRC, (e) PLC, and (f) aspect.

(a) (b)

(c) (d)

(e) (f)
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(a) (b)

3.2 Model comparisons

 Classifications were performed with 10000 samples during training and testing attempts 
using 5-, 10-, and 100-split SCV sets. In the 5-split SCV set, the XGB model could not 
appropriately classify erosion-susceptible cells from the total target data. Moreover, because 
none of the erosion-susceptible cells accounted for most of the target data, overfitting issues 
occurred mainly in classifying erosion-susceptible cells as none. These issues constantly 
occurred in the 10-split SCV set, where the early classification performance from the AUC was 
lower than 0.6, and the performance was not enhanced at the end of the SCV process. 
Furthermore, the 100-split SCV set showed that the final model performance was slightly 
improved by 0.03 compared with the 5-split SCV set.
 The SCV results of XGB from 10% of the total dataset showed a significantly different 
performance from the 10000 samples, and the AUC scores increased by almost 0.1. Moreover, 
the AUC results from the 5-, 10-, and 100-split SCV sets showed no significant difference in 
model performance; thus, the SCV process was almost meaningless (Fig. 5).
 The 10% sample dataset of RF and LR also showed a significant difference in AUC compared 
with the 10000 samples. The AUCs from the 5, 10, and 100 splits of both models showed no 
significant differences in the training and testing of 10% of the sampled data (Fig. 6). However, 
the processing durations of RF and LR were significantly longer than that of the 10000-sample 
model at 14 and 21 h, respectively.
 The OAs of all models were more than 64% for classification accuracy; however, by 
confirming the F1 score, overfitting issues were found in the developed models. The confirmed 
F1 scores for the RF, XGB, and LR groups were 0.53, 0.54, and 0.49, respectively. On the basis of 

Fig. 5. (Color online) AUC of SCV results from the XGB model with 10% sample dataset of the total dataset: (a) 5- 
and (b) 10-split SCV sets.
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the confirmed issues with the confusion matrix, the erosion-susceptible values were classified as 
much lower than the non-ES values, revealing that all the models had difficulties in classifying 
erosion-occurring cells. Despite a classification accuracy of 64% for the LR model, it was 
confirmed that the LR model had a lower F1 score than the RF and XGB models. The SCV 
durations for each model were 14, 2, and 21 h for RF, XGB, and LR, respectively. As expected, 
XGB had the shortest duration for the total analysis, whereas LR had the longest duration. 
Moreover, the differences in AUC between XGB and RF and XGB and LR were 0.03 and 0.07, 
respectively [Figs. 5(a) and 6]. XGB was confirmed appropriate for ES analysis and mapping by 
comparing the three developed models.

3.3 ES mapping of study site

 On the basis of the model performance, mapping was conducted with the best ES model—
XGB. Because overfitting issues were focused on none of the erosion-susceptible cells, none of 
the erosion-susceptible areas were determined more from XGB than the reference map, which is 
DoD (Fig. 3). The lower slope of the site was determined by erosion-susceptible areas much 
smaller than that in the reference map. However, the XGB model could determine the erosion-
susceptible areas at the edges of the operational roads in the center and on the left side [Fig. 7(a)]. 
The left side of the map was also determined to show erosion-susceptible areas where the 
surfaces were covered by rocks [Fig. 7(a)]. The total erosion-susceptible area was calculated to 
be approximately 40 m2, which was different from the reference erosion area of approximately 
104 m2 (Fig. 7). Furthermore, in the ES analysis of the micro-SSD, XGB could determine the 
wheel tracks detected on the reference DoD (Fig. 8).

Fig. 6. (Color online) SCV results of LR and RF model in 5-split SCV set from 10% of the total dataset: (a) AUC-
LR and (b) AUC-RF from 5-split SCV set.

(a) (b)
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4. Discussion

4.1 Dataset for training and testing

 Herbaceous plants grew throughout the monitoring period. Despite the comparable alignment 
errors in the DSMs from July and June to the steep slope studies, the verifications of SSDs at 
each plot were only available in the DoD from July to June because of vegetation growth. 
Moreover, distortion occurred in the DSM on July 9, which was shown as a georeferencing error 
of 23 cm and revealed to be relatively high compared with the georeferencing error of 12 cm on 
June 10th.(7) These spatial issues may not be comparable to the landslide susceptibility studies 
because the sampling methods of those studies were not derived from DoD but from landslide 

Fig. 7. (Color online) Comparison of XGB and target data. (a) DoD by mapping of enhanced XGB model. (b) DoD 
map of ES threshold at 5 cm.
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cells.(24,43) Thus, this relatively high spatial error should have caused AUC to remain at 0.6, even 
in the 100-split SCV set tests with 10% of the total data. Moreover, we assume that DoD quality 
is essential for enhancing model performance.
 The use of independent variables in this study was based on a case study of landslide 
susceptibility. In the light detection and ranging (LiDAR) data-based landslide susceptibility 
case studies, variables were generated from a LiDAR-derived DEM.(22,44) The DEM generated 
six terrain-independent variables: slope, solar radiation, PRC, PLC, TWI, and upslope drainage 
area. It was difficult to compare the performance characteristics with validated scores (i.e., 
AUC), similar to the landslide susceptibility modeling studies, because the AUC from the ANN 
model was not shown in this study. However, this approach may be called the DEM and DSM 
generated from the PCD because the LiDAR and photogrammetric data have the same features, 
resulting in a DSM. Moreover, terrain-independent variables were also generated from the 3D 
model, comparable to the independent variables in this study.
 In contrast to this study, recent studies utilized more 3D maps of vegetation features (NDVI), 
land cover features (land use), classified features (precipitation), and distance maps (distance 
from water sources).(25,27,31,45–47) However, owing to the classification of the ES of the 2.5-ha 
area of the photogrammetric data, utilizing the vegetation, land cover, and distance features has 
limitations in generating features from 2D images. Moreover, it is impossible to generate 
precipitation features because the measurement from the station covers almost a kilometer, 
which is incomparably overscaled from our site area of 2.5 ha.

Fig. 8. (Color online) Identification of ES at wheel and logging tracks in the timber harvesting area from the XGB 
map.
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4.2 Performance characteristics of ES models

 The XGB models could not perform the classification well compared with the landslide 
susceptibility models categorized in the ML approach study.(42) The AUC performance from the 
recent landslide study was presented as AUC and OA of 0.86 and 78% for the k-nearest neighbor 
model, 0.87 and 79% for the ANN model, and 0.89 and 80% for the RF model, respectively, 
which are comparably higher than those of our XGB models. However, these preceding models 
consisted of 4–18 more variables than did the XGB model. Furthermore, the variables used in the 
previous study were mainly NDVI, land cover, lithology, distance maps from roads, and 
hydrology. However, the UAV photogrammetry process used in this study did not generate these 
variables. Thus, it is more appropriate to compare our attempts with the terrain variables derived 
from the LiDAR-DEM study.(22,44) The DEM-adopted studies attempted to investigate landslide 
susceptibility using slope, TWI, PRC, PLC, and solar radiation variables. The model performance 
is not shown for the variables derived from the LiDAR-DEM.
 Although the resolution of the original data used in the ML studies was meter-class, ML-
based spatial classification studies were not able to obtain excellent validation scores.(22,44,48) 
Thus, the resolution of the 3D data may not be the reason for the low model performance. 
However, according to Lidberg et al.,(48) who varied the resolution of the variables, the developed 
model showed a significant difference in terms of variable importance. In this study, we showed 
that the 24-m-resolution DEM-based TWI impacted the OA of the model by ~50%, whereas the 
48-m-resolution DEM-based TWI showed 30%, which is lower than that of the 24-m-resolution 
DEM-based TWI. From the comparison of our model with that of Lidberg et al.,(48) the results 
may indicate that the variables derived from the 3-cm-class DSM used in this study may have 
impacted the model performance. We suggest that further research should be conducted to 
confirm the applicability of micro-resolution DEM-derived variables in the training and testing 
of high-resolution ES models.
 Consequently, the research direction of the ES analysis in this study was appropriate because 
the terrain variable selections and generations were similar to those in previous studies. Despite 
utilizing the SCV method, the limitation of this study was that the variables used in the 
classification process were insufficient for analyzing ES (AUC of 0.63). Thus, the AUC of XGB 
did not correspond to the acceptable model standard, which required an AUC of 0.7 or higher. It 
may also be speculated that the number of target erosion-susceptible cells was too small to be 
trained and tested using the algorithm, even when a powerful algorithm was used in the model.
 The LR model, which is a statistical model, could not appropriately process binary 
classification from the trained target data. The average AUC from the LR model was 0.56, a poor 
model for ML studies.(42,46) This result may be attributed to the characteristics of the LR 
algorithm. Previous ML studies revealed that single-regulated training and testing in the LR 
algorithm may not be appropriate for verifying a large dataset. The RF models, which are ML 
models, could process binary classification better than the LR models because of the multi-
decision tree process in the RF algorithm. In most RF studies using GIS, the bagging process 
enhances model performance through training and testing several times by tuning the main 
hyperparameter and the number of trees.(49–51) However, a comparison of the LR and RF 
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performance characteristics from previous studies revealed that the RF results showed a higher 
performance than the LR results. The comparison showed that the RF results outperformed the 
LR results by a maximum OA of 15% and an AUC of 0.06.(51–53) From this and previous studies, 
it may be assumed that the LR algorithm processes the dataset only once by regulating the 
classification process in the sigmoid function. On the basis of this characteristic of the LR 
algorithm, we assumed that the LR model has a theoretical limitation in classifying a large 
spatial dataset compared with the RF model.
 The duration issues were probably due to the characteristics of the RF and LR algorithms. In 
the theoretical approach of each algorithm in RF studies, the algorithm processes a multi-
decision tree at each bagging process without a boosting process, unlike the XGB model. 
Moreover, previous studies have shown that XGB has a higher model performance than RF. 
Thus, in comparison with this study and related studies, we assumed that the boosting process in 
the XGB algorithm may have resulted in a higher performance in terms of the duration and AUC 
of the XGB model than the RF model in large spatial data processing.

4.3	 Erosion-susceptible	areas	classified	by	XGB	model

 Here, we were able to perform the entire process of data acquisition by UAV photogrammetry 
for the prediction of ES using ML-based classification models. The threshold was based on the 
average erosion obtained in the precise DoD map for September to October.(7) In a previous 
study, the DoD map for September to October was acquired with the lowest alignment error of 3 
cm using 24 GCP centers. Moreover, the reliable average one-month erosion level was calculated 
as 5.13 cm on the total slope. Thus, a threshold of 5 cm was appropriately considered on the basis 
of the DoD for July to September.(7) The XGB model appropriately analyzes and detects high-ES 
regions related to topographic features similar to landslide models.(22,27,54) However, the AUC of 
our XGB model was lower than that of previous studies. We assumed that spatial distortion 
occurred during the data acquisition in July.
 Moreover, the training and testing samples were derived from the total area, which differed 
from the landslide samples. The sampling method used to classify landslide susceptibility was 
based on selecting areas where landslides occurred and did not occur, which differs from that 
used in this study. Thus, we hypothesize that the sampling method can be improved by selecting 
specific erosion-occurred cells for appropriate samples in future studies.

5. Conclusions

 In this study, we mainly investigated the feasibility of classifying ES, similar to the results 
from DoD. Although DoD was calculated from the high alignment error of the DSM to develop 
the ES model, ML models could be used to classify the ES from the terrain variables to the 
target data. The ML models, XGB and RF, performed better than the LR statistical model when 
comparing the AUC and time duration results. However, utilizing the SCV method for 
classifying the target data did not enhance the model at an acceptable performance level. 
Moreover, despite using 10% of the total data, the AUCs from XGB and RF were only more than 
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0.6, which is unsuitable for classification model performance and should be increased for 
necessary applications. We concluded that our method may not be practically used yet for 
immediate forest management or establishing efficient forest management practices. Regardless 
of the confirmed issues, XGB mapping sensitively classified the actual erosion-susceptible areas 
of the wheel tracks and the edges of the logging tracks at the study site. In future work, we 
assume that the model should be enhanced by adding vegetation maps from multispectral 
sensors and a lithology map from soil texture analysis. Moreover, the target data should be 
significantly improved by utilizing real-time kinematic to reduce alignment errors and 
distortions or enhanced sensors such as LiDAR.
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