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 In road traffic management, high-speed vehicle detection is often affected by factors such as 
vehicle speed, weather, camera angle, and image resolution, making vehicle detection on express 
roads very challenging, Therefore, we propose a Taguchi-based You Only Look Once (YOLOv7) 
model, called T-YOLOv7, for vehicle detection on high-speed roads. The Taguchi method is used 
to optimize the combination of hyperparameters of YOLOv7. Experimental results show the 
precision rate, recall rate, and F1-score of the proposed T-YOLOv7 to be 82.2, 86.3, and 84.2%, 
respectively. Compared with the original YOLOv7, T-YOLOv7 has improved precision, recall, 
and F1-score by 12.1, 17.9, and 15.0 percentage points, respectively. Compared with YOLOv4, 
the improvements in precision, recall, and F1-score using T-YOLOv7 are 4.0, 2.4, and 3.3 
percentage points, respectively. The experimental results also show that the proposed T-YOLOv7 
is effective in adjusting hyperparameters through the Taguchi method and can be applied to real-
time vehicle detection in real environments.

1. Introduction

 The rapid advancement of technology has greatly contributed to the development and 
improvement of intelligent transportation systems. To enhance the efficiency and safety of 
traffic management, vehicle detection technology is used for the real-time monitoring of road 
environments. Real-time vehicle detection on expressways is essential for improving road safety, 
especially during adverse weather conditions and at night when vehicles may be speeding. 
However, real-time vehicle detection remains a major challenge in any traffic monitoring system 
owing to factors such as varying vehicle speed, size, shape, and color, as well as the direction of 
surveillance cameras and weather conditions.(1)

 Machine learning technologies have been widely used in object recognition, face and facial 
expression recognition, and defect detection. Specifically, convolutional neural networks (CNNs) 
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have demonstrated excellent performance in object detection and recognition tasks, making 
them an integral part of deep learning and artificial intelligence.(2) Object detection methods 
based on CNNs can be broadly categorized into two-stage detection methods such as Fast 
Region-based CNN (R-CNN)(3,4) and Faster R-CNN(5,6) and single-stage detectors such as 
Single Shot MultiBox Detector (SSD), RetinaNet, and the You Only Look Once (YOLO) series. 
To train a YOLO model, machine learning techniques are used to train the hyperparameters of 
the model. While two-stage detectors often achieve higher precision, they require more 
parameters and have lower execution speed,(7) making them unsuitable for real-time vehicle 
detection on edge CPUs or embedded devices. On the other hand, single-stage detectors are 
easier to train, more computationally efficient, and better suited for edge computing. SSD(8) is an 
effective multitarget detection method, and RetinaNet(9) and the YOLO series(10–13) have also 
achieved impressive results in target detection algorithms. Among them, YOLOv7 stands out for 
its high precision and high processing speed.(14)

 Properly defining hyperparameters is crucial to avoiding unnecessary time consumption 
during model training, as training speed and final model performance can significantly vary 
depending on the hyperparameter adjustments. Therefore, various research efforts have been 
focused on hyperparameter optimization strategies. Grid search is the simplest and most basic 
method for hyperparameter tuning, where the performance of all parameter combinations is 
evaluated to select the best set of hyperparameters. Although this method is comprehensive and 
straightforward, as the number of parameters increases slightly, the search time grows 
exponentially, making it time-consuming.(15) Other simple search strategies include random 
search or more complex approaches such as Bayesian optimization.(16) Reparameterization is a 
commonly used technique in deep learning, where reparameterizing a model can improve its 
performance without increasing complexity.(17) It involves fine-tuning the existing model 
weights, adjusting hyperparameters, or changing the model structure to achieve better 
performance in new tasks or environments.(18) However, not all proposed reparameterization 
modules can be perfectly applied to different architectures.(19)

 In recent years, researchers have widely adopted the Taguchi method in the field of deep 
learning. The integration of the Taguchi method with deep learning provides researchers with a 
novel approach to optimizing the parameter settings of deep learning models more effectively, 
thus improving their performance and efficiency. Yu et al.(20) designed hyperparameter 
combinations to determine the optimal configuration of neural networks for radio network 
spectrum prediction. Demir et al. confirmed that the Taguchi method(21) not only reduces 
process time and cost but also provides valuable data optimization and improves model 
efficiency and robustness. Zhao et al.(22) developed an optimized deep learning model 
architecture using the Taguchi method. This architecture was applied to real traffic flow data 
collected from highways in Birmingham, UK. Because of the aforementioned advantages of the 
Taguchi method, in this study, we use it to design experiments and optimize the training 
hyperparameters of the YOLOv7 model. By applying the optimal parameter combinations 
determined through Taguchi experiments, the proposed Taguchi-based YOLOv7 (T-YOLOv7) 
model is intended to overcome the limitations and improve the detection precision of YOLOv7, 
thereby enhancing its performance and robustness. In the experiment, the Beijing Institute of 
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Technology (BIT)-vehicle public dataset was utilized for vehicle classification.(23) Additionally, a 
large amount of traffic video footage (as shown in Fig. 1) was collected from Taiwan’s Highway 
74 to create the T-74 vehicle dataset, enabling the application of T-YOLOv7 vehicle detection 
technology in real-world scenarios to address critical issues concerning highway traffic. 
Therefore, the main contributions of this study are as follows. 
(1)  The proposed T-YOLOv7 is a combination of YOLOv7 and the Taguchi method to cope with 

the problems of parameter selection and high precision.
(2)  The proposed T-YOLOv7 slightly outperforms YOLOv4 and considerably outperforms 

YOLOv7 in precision, recall, and F1-score measures. These results demonstrate that the 
proposed T-YOLOv7 model with Taguchi optimization showed performance superior to the 
original YOLOv7 and YOLOv4 in object detection tasks. 

 The rest of this paper is organized as follows. We present the research methodology in 
Sect. 2, including the experimental strategy and the overall framework for optimizing the 
YOLOv7 model based on the Taguchi method. In Sect. 3, we introduce the BIT-vehicle and T-74 
vehicle datasets and compare the performance of the T-YOLOv7 with the original YOLOv7 and 
YOLOv4 models. Finally, Sect. 4 is the conclusion.

2. Materials and Methods

 A network with strong representation ability can capture complex patterns, enabling the 
accurate recognition of objects in image recognition. However, such a network’s power comes 
from its deep structure, which can result in heavy parameterization, large memory usage, and 
slow execution.(24) In this study, we propose the use of T-YOLOv7 with Taguchi parameter 
optimization for vehicle detection on expressways to improve classification precision. Figure 2 
shows an overview of the execution strategy adopted in this study. We first utilize the Taguchi 
method for parameter design to obtain the optimal parameters for optimizing YOLOv7. Then, 
we conduct experiments using T-YOLOv7 with Taguchi parameter optimization on two traffic 
datasets: the BIT-vehicle dataset and T-74 vehicle dataset.

Fig. 1. (Color online) Video footage of T-74 vehicle dataset.
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2.1 YOLO

 YOLO is a target detection method in deep learning proposed by Redmon and Farhadi.(10) 
This method optimizes two-stage detection using a single network in an end-to-end manner. By 
predicting bounding boxes and class probabilities for the entire image, we can treat the problem 
of detecting target objects is treated as a regression problem of spatially separated bounding 
boxes and associated class probabilities,(25) which enhances object detection and recognition in 
augmented reality. The YOLOv3 network architecture has been updated to utilize multiscale 
prediction. It automatically extracts features through specific combinations such as 
Darknetconv2D + BatchNormalization + LeakyReLU activation function, upsampling, 
concatenation, and convolution, achieving a runtime of only 22 ms at a resolution of 320 × 
320.(13) The model can process images in real time at a very high speed. The YOLOv4 
architecture mainly consists of the backbone, neck, and head, as shown in Fig. 3. It does not use 
Feature Pyramid Networks (FPN), unlike YOLOv3. Instead, YOLOv4 combines new features 
such as Weighted Residual Connections (WRC), Cross Stage Partial (CSP) connections, Cross 
mini-Batch Normalization (CmBN), Self-adversarial Training (SAT), Mish activation, mosaic 
data augmentation, CmBN, DropBlock regularization, and Complete-Intersection over Union 
(CIoU) loss.(14) The Spatial Pyramid Pooling (SPP) module is used to increase the receptive field 
and extract the most important contextual features in SPDarknet53. The path Aggregation 
Network (PANet) is selected as the method for aggregating parameters from different detectors. 
This not only does not reduce the network’s runtime speed but also applies to large- and small-
scale datasets, addressing most of the issues in model detection.
 Gong et al.(26) proposed a lightweight version of YOLOv4, incorporating depthwise separable 
convolutions instead of the original backbone network, to reduce computational complexity and 
model size, thereby improving real-time traffic detection. Lin et al.(27) conducted research on 
YOLOv4 and improved it by clustering labels using the K-means method to enhance localization 

Fig. 2. (Color online) Overall architecture of the proposed vehicle detection system.
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precision while reducing the parameter count, making it suitable for the detection of small 
objects such as traffic signs.
 YOLOv7 not only addresses the replacement of reparameterized modules with original 
modules and the allocation strategy for dynamic label handling in different output layers but also 
reduces the number of parameters by 40% and the amount of computation by 50% through the 
use of extension and compound scaling methods. Its performance has made it the most advanced 
detector for real-time object detection.(4) The YOLOv7 network architecture is shown in Fig. 4.

2.2 Taguchi method

 The Taguchi method was used in this study to determine the optimal combination of 
hyperparameters for the optimized model. Figure 5 shows the Taguchi method process. The 
following optimization steps are involved in this method.
• Determine the control factors and levels.
• Design an orthogonal array.
• Conduct experiments.
• Analyze the experimental results.
• Validate the experimental results.
 In this experiment, effective influencing factors were selected for hyperparameter design in 
YOLOv7. The eight selected factors were the initial learning rate (lr0), momentum (mo), weight_
decay parameter (wt), warmup_epochs (w_epc), weights for the bounding box loss (box), weights 
for classification loss (cls), objectness loss (obj), and iou training threshold (iou_t). Two levels 
were set for each factor, as shown in Table 1. For the above numbers of factors and levels, each 
factor has its own characteristics. 
 The Taguchi method is used to design the hyperparameter tuning structure in order to reduce 
the uncertainty caused by certain assumptions and the time consumed by trial-and-error 
methods. With these selected number of factors and levels, conducting a full-factor experiment 

Fig. 3. (Color online) YOLOv4 network architecture.
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Fig. 4. (Color online) YOLOv7 network architecture.

Fig. 5. Taguchi method process.



Sensors and Materials, Vol. 36, No. 4 (2024) 1611

would require 256 trials (28) to find the optimal parameters. However, by applying the Taguchi 
method, results can be obtained with a smaller number of experiments. In our experiment, we 
used an L16 orthogonal array, which only required 16 trials.

2.3 Evaluation and validation metrics

 To evaluate the output results of the model, the following metrics were adopted: mean average 
precision (mAP), precision, recall, and F1-score. These evaluation metrics can be calculated as 
follows.
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Here, N represents the number of classes and APk represents the average precision (AP) for the 
kth class. The model is evaluated using precision (P) and recall (R) for each class. TP, FP, TN, 
and FN represent true positive, false positive, true negative, and false negative, respectively. AP 
represents the average precision across multiple classes, mAP represents the average value of 
APs, and F1-score is the harmonic mean of precision and recall. F1-score is a critical evaluation 
metric in object detection as it serves as a criterion to assess the performance of the model.

Table 1
Levels of influencing factors.
Factors Level 1 Level 2
lr0 0.005 0.02
mo 0.8 0.99
wt_ 0.0001 0.001
w_epc 2 4
box 0.01 0.1
cls 0.1 0.5
obj 0.5 0.9
iou_t 0.1 0.5
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3. Experimental Results

 We design several experiments to evaluate the effectiveness of the proposed T-YOLOv7 
model. Two datasets, the publicly available BIT-vehicle dataset and a custom T-74 vehicle 
dataset, are used. Then, the experimental setup of the T-YOLOv7 model is described. 
Experimental results show that the proposed T-YOLOv7 model outperforms the traditional 
YOLOv7 and is comparable to other similar models. 

3.1 Datasets

 Two datasets, the publicly available BIT-vehicle dataset and a custom T-74 vehicle dataset, 
were utilized. The BIT-vehicle dataset was curated by BIT and serves as a public dataset for 
vehicle detection. The dataset consists of 9850 vehicle images captured by two cameras at 
different times and locations on highways. It includes six vehicle types: sedan, SUV, bus, 
minibus, van, and truck. The distribution of vehicle types and quantities for each category are 
listed in Table 2. The dataset exhibits variations in lighting condition, scale, vehicle surface 
color, and viewpoint. It is a high-resolution image dataset. For this research, a total of 2400 
images from the BIT-vehicle dataset were used in the experiment. Two hundred randomly 
selected images from each category were used for training, 100 images for validation, and 100 
images for testing.
 The T-74 vehicle traffic dataset consists of images captured on the Taiwan Route 74 
expressway at different sections, times, locations, and angles. It takes into account various times, 
including morning, noon, afternoon, evening, and night; weather conditions including rainy 
weather; and lens flare. The dataset contains 149848 vehicle images categorized into five types: 
sedan, truck, scooter, bus, and Hlinkcar. The distribution of vehicle types and quantities for each 
category are listed and the numbers of images of each vehicle type used for training, validation, 
and testing are given in Table 3. These images were used to evaluate the performance and 
effectiveness of our T-YOLOv7 detection model.

Table 2
Number of vehicles in the training and testing phases of the BIT-vehicle dataset.
Vehicle type SUV Sedan Microbus Minivan Truck Bus
Quantity 400 400 400 400 400 400
Train 200 200 200 200 200 200
Validation 100 100 100 100 100 100
Test 100 100 100 100 100 100

Table 3
Number of vehicles in the training and testing phases of the T-74 vehicle datasets.
Vehicle type Sedan Truck Scooter Bus Hlinkcar
Quantity 3400 1200 1200 1200 500
Train 200 200 200 200 200
Validation 200 200 200 200 200
Test 3000 800 800 400 100
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3.2 Experimental setup

 We implemented T-YOLOv7 on PyTorch 1.10.1 and trained and tested the model using 
NVIDIA GeForce RTX 3060. The model was trained for 300 epochs on datasets with an image 
size of 640 × 640. A batch size of 16 was used during testing. The experimental setup is shown 
in Table 4.

3.3 Impact of control factors on experimental results determined using Taguchi method

3.3.1 Determination of optimal parameters

 In this study, the Taguchi method was used to determine the impact of each control factor on 
the experimental results, as evaluated on the basis of the signal-to-noise ratio (S/N). The Taguchi 
method categorizes the quality characteristics of experimental results into three types: smaller-
the-better, larger-the-better, and nominal-the-best. In this study, the observed value was the 
precision of the deep CNN predictions, so the larger-the-better characteristic was chosen. To 
ensure the stability and improve the reliability of the experiments, three experimental runs were 
conducted for each parameter combination in the orthogonal array. The S/N was calculated on 
the basis of the three precision values obtained for each combination, as shown in Table 5. The 
formula for calculating S/N is as follows:
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where n is the number of experiments and yi represents the i-th experimental data.
 On the basis of the larger-the-better characteristic, S/N was obtained for each factor and level 
combination from the 16 experimental results. Table 6 shows the S/N ratio, significance ranking, 
optimal level, and optimal parameter combination for each factor. Figure 6 shows the mean main 
effects of the S/N ratio, where a larger difference in S/N indicates a greater influence of the 
corresponding factor. The significance ranking represents the ranking of the impact of each 
factor. A larger difference in S/N indicates a greater influence of a particular factor. The final 
optimal parameter combination is as follows:
lr0 = 0.005, mo = 0.8, wt = 0.0001, W_epc = 2, box = 0.01, cls = 0.1, obj = 0.5, iou_t = 0.1.

Table 4
Experimental setup.
Windows 11
PyTorch 1.10.0
CPU 12th Gen Intel(R) Core(TM) i7-12700F 2.10 GHz
GPU Nvidia GeForce RTX 3060
CUDA 11.4
cudnn 11.4
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Table 5
Precision and S/N for different factor and level combinations.

Run#
Factor Result

lr0 mo wt w_epc box cls obj iou_t Y1
(%)

Y2
(%)

Y3
(%)

Yave
(%) S/N (Y)

1 0.005 0.8 0.0001 2 0.01 0.1 0.5 0.1 89.0 89.6 88.6 89.1 −1.006
2 0.005 0.8 0.0001 4 0.01 0.5 0.9 0.5 88.0 87.6 88.0 87.9 −1.124
3 0.005 0.8 0.001 2 0.1 0.1 0.9 0.5 65.6 64.4 61.2 63.7 −3.924
4 0.005 0.8 0.001 4 0.1 0.5 0.5 0.1 81.2 80.4 81.0 80.9 −1.845
5 0.005 0.99 0.0001 2 0.1 0.5 0.5 0.5 68.2 64.0 65.6 65.9 −3.628
6 0.005 0.99 0.0001 4 0.1 0.1 0.9 0.1 68.8 72.6 72.6 71.3 −2.943
7 0.005 0.99 0.001 2 0.01 0.5 0.9 0.1 61.2 62.0 57.8 60.3 −4.401
8 0.005 0.99 0.001 4 0.01 0.1 0.5 0.5 87.4 88.6 88.2 88.1 −1.104
9 0.02 0.8 0.0001 2 0.1 0.5 0.9 0.1 69.8 67.4 67.2 68.1 −3.337

10 0.02 0.8 0.0001 4 0.1 0.1 0.5 0.5 70.0 71.0 65.6 68.9 −3.255
11 0.02 0.8 0.001 2 0.01 0.5 0.5 0.5 74.2 74.8 76.8 75.3 −2.471
12 0.02 0.8 0.001 4 0.01 0.1 0.9 0.1 84.0 86.4 86.4 85.6 −1.353
13 0.02 0.99 0.0001 2 0.01 0.1 0.9 0.5 80.6 83.2 80.6 81.5 −1.783
14 0.02 0.99 0.0001 4 0.01 0.5 0.5 0.1 60.0 60.0 60.6 60.2 −4.408
15 0.02 0.99 0.001 2 0.1 0.1 0.5 0.1 78.8 76.2 76.4 77.1 −2.258
16 0.02 0.99 0.001 4 0.1 0.5 0.9 0.5 8.8 12.4 7.6 9.6 −20.88

Table 6
Factor significance ranking and optimal parameters.
Factors lr0 mo wt W_epc box cls obj iou_t
Level 1 −2.4969 −2.2894 −2.6855 −2.851 −2.2063 −2.2033 −2.4969 −2.6939
Level 2 −4.9681 −5.1756 −4.7795 −4.614 −5.2588 −5.2618 −4.9681 −4.7711
Difference 2.4712 2.8862 2.0940 1.763 3.0525 3.0585 2.4712 2.0772
Rank 4 3 6 8 2 1 4 7
Best level 1 1 1 1 1 1 1 1
Optimal parameter 0.005 0.8 0.0001 2 0.01 0.1 0.5 0.1

Fig. 6. (Color online) Main effects of S/N on factor levels.
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3.3.2 Model training 

 In the experiments, the Taguchi method was utilized in the parameter design to determine the 
optimal parameter combination. The T-YOLOv7 model, optimized using the Taguchi method, 
and the original YOLOv7 were trained separately. As shown in Fig. 7, T-YOLOv7 began to 
converge after 100 epochs. Figures 8 and 9 depict the precision–recall (PR) curves for the 

Fig. 7. (Color online) Training progress of T-YOLOv7 model.

Fig. 8. (Color online) PR curves for training of original YOLOv7 model.



1616 Sensors and Materials, Vol. 36, No. 4 (2024)

original YOLOv7 and T-YOLOv7, respectively, demonstrating that T-YOLOv7, optimized with 
the Taguchi parameters, achieved a 12.3% improvement in precision compared with the original 
YOLOv7.

3.3.3 Results 

 The experimental results for the BIT-vehicle datasets are shown in Table 7. The overall 
precision, recall, F1-score, and mAP values are 96.7, 95.3, 96.0, and 98.3%, respectively. The 
experimental results for the T-74 vehicle datasets are shown in Table 8, with overall precision, 
recall, F1-score, and mAP values being 82.2, 86.3, 84.2, and 85.4%, respectively.

3.4 Comparison and analysis of experimental results

 We evaluated T-YOLOv7 on Nvidia GeForce RTX 3060 GPU and compared the results with 
those of the original YOLOv7 and YOLOv4.

3.4.1 BIT-vehicle dataset

 The experimental results are shown in Tables 9 and 10 and Figs. 10–12. As shown in Tables 9 
and 10, T-YOLOv7 slightly outperforms YOLOv4 and considerably outperforms YOLOv7 in all 
four measures. These results demonstrate that the proposed T-YOLOv7 model with Taguchi 
optimization shows superior performance compared with the original YOLOv7 and YOLOv4 in 
object detection tasks.

Fig. 9. (Color online) PR curves for training of T-YOLOv7 model.
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Table 7
Experimental results of T-YOLOv7 on BIT-vehicle datasets.

T-YOLOv7

Class Precision (%) Recall (%) F1-score (%) mAP@.5 (%)
All 96.7 95.3 96.0 98.3

SUV 94.9 95.0 95.0 97.6
Sedan 95.1 95.1 95.1 97.7

Microbus 98.9 91.7 95.2 98.3
Minivan 97.9 91.9 94.8 98.0

Truck 94.2 98.0 96.1 98.6
Bus 99.0 100.0 99.5 99.6

Table 8
Experimental results of T-YOLOv7 on T-74 vehicle datasets.

T-YOLOv7

Class Precision (%) Recall (%) F1-score (%) mAP (%)
All 82.2 86.3 84.2 85.4

sedan 91.7 74.6 82.3 88.7
truck 78.2 85.1 81.5 86.8

scooter 76.4 82.7 79.4 74.8
bus 86.8 93.3 89.9 92.7

Hlinkcar 78.1 95.9 86.1 83.9

Table 9
Experimental results for BIT-vehicle dataset with each model.
Model Precision (%) Recall (%) F1-score (%) mAP (%)
YOLOv4 94.7 93.5 94.1 97.9
YOLOv7 94.9 93.9 94.4 97.8
T-YOLOv7 96.7 95.3 96.0 98.3

Table 10
Results for various categories of BIT-vehicle dataset. 

YOLOv4

Class Precision (%) Recall (%) F1-score (%) mAP (%)
SUV 85.3 99.0 91.6 98.1
Sedan 99.0 92.8 95.8 98.9
Microbus 94.3 83.0 88.3 94.9
Minivan 92.8 93.0 92.9 97.3
Truck 96.9 94.3 95.6 98.7
Bus 100.0 98.8 99.4 99.5

YOLOv7

SUV 97.8 88.6 93.0 97.7
Sedan 93.2 98.0 95.5 98.9
Microbus 89.9 91.0 90.4 95.6
Minivan 91.9 93.0 92.4 97.4
Truck 97.9 93.0 95.4 97.9
Bus 98.9 100.0 99.4 99.6

T-YOLOv7

SUV 94.9 95.0 95.0 97.6
Sedan 95.1 95.1 95.1 97.7
Microbus 98.9 91.7 95.2 98.3
Minivan 97.9 91.9 94.8 98.0
Truck 94.2 98.0 96.1 98.6
Bus 99.0 100.0 99.5 99.6



1618 Sensors and Materials, Vol. 36, No. 4 (2024)

Fig. 10. (Color online) PR curves for YOLOv4 on BIT-vehicle dataset.

Fig. 11. (Color online) PR curves for original YOLOv7 on BIT-vehicle dataset.

3.4.2 T-74 vehicle dataset

 The experimental results are shown in Tables 11 and 12, and Figs. 13–15 (PR curves). In 
Table 11, the T-YOLOv7 achieved a precision of 82.2%, whereas the original YOLOv7 and 
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Fig. 12. (Color online) PR curves for T-YOLOv7 on BIT-vehicle dataset.

Table 11
Experimental results for T-74 vehicle dataset with each model.
Model Precision (%) Recall (%) F1-score (%) mAP (%)
YOLOv4 78.2 83.9 80.9 84.6
YOLOv7 70.1 68.4 69.2 74.9
T-YOLOv7 82.2 86.3 84.2 85.4

Table 12
Results for various categories of T-74 vehicle dataset.

YOLOv4

Class Precision (%) Recall (%) F1-score (%) mAP (%)
sedan 89.5 70.6 78.9 87.2
truck 74.2 81.8 77.8 85.3

scooter 64.0 81.1 71.5 65.1
bus 86.8 91.8 89.2 94.5

Hlinkcar 76.8 94.2 84.6 90.7

YOLOv7

sedan 81.7 46.2 59.0 70.8
truck 70.9 57.0 63.2 67.1

scooter 60.6 60.5 60.5 58.6
bus 71.4 84.1 77.2 85.9

Hlinkcar 65.8 94.2 77.5 91.9

T-YOLOv7

sedan 91.7 74.6 82.3 89.1
truck 78.2 85.1 81.5 86.8

scooter 76.4 82.7 79.4 74.7
bus 86.8 93.3 89.9 92.7

Hlinkcar 78.1 95.9 86.1 83.9
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Fig. 13. (Color online) PR curves for YOLOv4 on T-74 vehicle datasets.

Fig. 14. (Color online) PR curves for original YOLOv7 on T-74 vehicle datasets.

YOLOv4 achieved accuracies of 70.1 and 78.2%, respectively. This indicates that T-YOLOv7 
outperformed the original YOLOv7 and YOLOv4 by 12.1 and 4.0 percentage points in terms of 
precision, respectively. Regarding the recall results, T-YOLOv7 achieved a recall of 86.3%, 
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Fig. 15. (Color online) PR curves for T-YOLOv7 on T-74 vehicle datasets.

outperforming the original YOLOv7 and YOLOv4 by 17.9 and 2.4 percentage points, 
respectively. The F1-scores for T-YOLOv7, original YOLOv7, and YOLOv4 were 84.2, 69.2, and 
80.9%, respectively, indicating that T-YOLOv7 had improvements of 15.0 and 3.3 percentage 
points over the original YOLOv7 and YOLOv4, respectively. In terms of mAP, T-YOLOv7 
achieved a score of 85.4%, whereas the original YOLOv7 and YOLOv4 achieved scores of 
74.9% and 84.6%, respectively. This indicates that T-YOLOv7 had improvements of 10.6 and 0.8 
percentage points over the original YOLOv7 and YOLOv4, respectively. These results in 
Tables 11 and 12 demonstrate that the proposed T-YOLOv7 model with Taguchi optimization 
showed superior performance compared with the original YOLOv7 and YOLOv4 in object 
detection tasks.
 The visualization of the detection results is shown in Fig. 16. Figure 16(a) shows the labeled 
ground truth. As seen in Fig. 16(c), the original YOLOv7 failed to correctly identify two frames 
of sedan and truck under shadow occlusion conditions, resulting in missing bounding boxes. In 
Fig. 16(d), YOLOv4 misclassified one frame of sedan as a truck under shadow occlusion and 
misidentified one frame of a small-pixel scooter as a truck in a nighttime road scene. Among all 
correctly recognized images, T-YOLOv7 consistently exhibited higher confidence scores for 
bounding boxes than did the original YOLOv7 and YOLOv4. As shown in Fig. 16(b), T-YOLOv7 
with Taguchi parameter optimization has almost no missed detection or misjudgment, 
successfully recognizing T-74 highway vehicle categories.
 Among the three sets of experimental results in the customized T-74 vehicle dataset, the 
performance for scooters was the worst in terms of vehicle recognition accuracy. This can be 
attributed to the cameras being positioned far away, resulting in a smaller field of view for 
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scooters. The low-resolution images of scooters provided fewer prominent features, thereby 
adversely affecting their recognition accuracy across all sets. However, the T-YOLOv7 model, 
which was developed with optimized Taguchi parameters, exhibited excellent small-pixel 
recognition capabilities. As shown in Table 12, the scooter prediction accuracy increased by 12.4 
and 15.8 percentage points compared with YOLOv4 and the original YOLOv7, respectively.
 The recall rate for sedans was the lowest in all experimental sets, as they were often 
misclassified as trucks, resulting in a high proportion of FN in the sedan category and a decline 
in recall. A similar situation occurred for the truck category, where a significant proportion of 
sedans were mistakenly classified as trucks, resulting in an increase in FP in the truck category 
and a decrease in the prediction accuracy for trucks.

Fig. 16. (Color online) Detection results on T-74 vehicle dataset: (a) labeled ground truth, (b) T-YOLOv7, 
(c) original YOLOv7, and (d) YOLOv4.

(a) (b)

(c) (d)
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4. Conclusions

 In this study, we developed a T-YOLOv7 model with Taguchi parameter optimization for 
vehicle detection on highways. Because of the time-consuming and challenging process of 
selecting parameters for the YOLOv7 network architecture, we applied the Taguchi method to 
optimize the hyperparameter combinations of YOLOv7. In the Taguchi method, a total of eight 
factors with two levels each were used. The experiments were mainly conducted on two datasets, 
the public BIT-vehicle dataset and our customized real-time traffic data T-74 vehicle dataset, to 
evaluate the performance of T-YOLOv7. The experimental results demonstrated that T-YOLOv7 
achieved improvements in precision, recall, and F1-score compared with the conventional 
YOLOv7, with increases of 12.1, 17.9, and 15.0 percentage points, respectively. Compared with 
YOLOv4, T-YOLOv7 showed improvements of 4.0, 2.7, and 3.3 percentage points in the 
respective metrics. This proves that our proposed T-YOLOv7 model, optimized through the use 
of the Taguchi method for hyperparameter tuning, can achieve efficient real-time vehicle 
detection and has the potential for broad application in practical environments.
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