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 When treating a vasospasm brought on by a malfunctioning coronary artery system (CAS), 
the goal is to enhance the physiology of the CAS by synchronizing its dynamic behavior with 
that of a healthy CAS, according to the perspective of cardiac medicine. This treatment is 
supported by a sophisticated automated detection and visualization system for the identification 
of a diseased CAS. For the biomathematical model of a CAS, we provide, in this study, a novel 
fractional-powered-integral-type finite-time-convergent sliding mode (FFSM), which is 
composed of the fractional-powered and integral terms of state variables. To achieve almost 
finite-time synchronization between two CASs, an adaptive sliding mode (SM) control approach 
in terms of the stated FFSM is introduced. Upon the implementation of the devised control, a 
special form of stability is demonstrated. That is, because of a feature of the model for a CAS, 
the two error states are stabilized sequentially on the sliding surface, resulting in an almost 
finite-time stability. The nonlinear dynamical consequences of the synchronized error system 
can be countered by the adaptive FFSM control scheme, which consists of three online updated 
gains with the principles of adaptation. To demonstrate the validity of the current scheme, 
numerical experiments are carried out.

1. Introduction

 It is commonly known in cardiac physiology that the coronary artery system (CAS) transports 
vital materials to the heart, including blood, nutrients, and oxygen. Several clinical cases have 
led cardiologists to conclude that people with a high risk of sudden cardiac death have a 
disturbed physiological status and irregular heartbeats.(1) One example is vascular spasm, which 
is caused by the blood vessels operating incoherently. The complexity of heart action rises with a 
change in vessel diameter. The provoked coronary artery vasospasm occurs when the coronary 
artery vessels enter states of chaos.(2) Many works on chaos in a CAS have been reported 
because of its importance.(3–8) 
 The Melnikov approach has been used to build and examine two basic types of 
biomathematical models for muscle blood arteries, namely, N-type and S-type, in order to 
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explore the chaos of a CAS.(3) The dynamics of the variations in blood pressure and the coronary 
artery vessel inner radius in a CAS are described using mathematical models. In previous works, 
the N-type CAS’s complex behaviors were examined in relation to two different types of system 
parameter sets.(4,5) Hardware was also created by circuit implementation to mimic a CAS’s 
nonlinear dynamics. Additionally, the dynamics of fractional-order CASs were presented and 
introduced.(7,8) 

 For the detection of a diseased CAS, an automatic detection and visualization system that 
applies optical frequency domain images was built.(9) The developed system is associated with a 
deep learning network and can recognize the medical types of CAS and help to control the 
diseased CAS. From a medical perspective, the diseased CAS becomes capable of multiple 
periodic movements through medical therapy, which improves the pathological change of the 
diseased CAS and treats the vasospasm caused by a CAS in a chaotic state.(10) From the 
perspective of control systems, treatment for cardiovascular disorders is viewed as applying an 
appropriate control input to a diseased CAS in a chaotic status to force it to synchronize with a 
healthy CAS that is functioning in multi-periodic movements. Chaotic synchronization has been 
a hot research topic owing to its potential for use in science and technology, including MEMS, 
circuit systems, image encryption, secure communication, nervous systems, and nervous system 
imaging.(11–16) The primary objective of chaotic synchronization is to apply the appropriate 
control technique to achieve the same behavior across the driving and response systems.
 The SM control method for curbing the chaos of a CAS is based on the created 
biomathematical model and was reported in Ref. 4 to be the solution for solving it. Numerous 
previous studies regarding the chaotic synchronization of CASs have also been documented. In 
2013,(5) fuzzy logic control was used to achieve synchronization associated with the differential 
transformed technique. To prevent chattering phenomena, the high-order SM adaptive control 
approach was created in 2015.(17) In 2017, Wu et al. created the self-tuning terminal SMC(18) and 
Wu et al. employed the state feedback control system.(10)

 Furthermore, there have been numerous previous papers on the hot topic of the chaotic 
synchronization of CASs with the time-delay phenomenon, including those on observer-based 
control schemes,(19,20) the synchronized control scheme with input saturation,(21) the adaptive 
fuzzy control scheme,(22)	 the	 H∞	 synchronization	 technique,(23) and the finite-time control 
considering input delay.(2) Recently, for a CAS, output feedback control created by bilinear 
matrix inequality (BMI) for synchronizing pathological differences and chaos suppression by 
second-order SM techniques have been described.(24,25) In this study, in order to synchronize the 
drive (healthy) and response (diseased) CASs in almost finite time, we devised a novel adaptive 
fractional-powered-integral-type finite-time-convergent sliding mode control (FFSMC) 
approach referring to the work in prior studies.(4,5,14,18) The features and innovations of our study 
are summarized as follows. 
(1) The research topic of cardiac pathologic therapy is transformed into a control design problem 

of nonlinear systems from the viewpoint of the control system using the biomathematical 
model of the CAS. 

(2) The chaos of CASs was primarily studied with two separate parameter sets incorporated in 
the system in previous research.(4,5) It is assumed that in the control problem of 



Sensors and Materials, Vol. 36, No. 4 (2024) 1647

synchronization between two chaotic CASs, the two chaotic CASs have the same parameter 
configuration.(4–6,10,17,18) The more realistic supposition that each of the drive (healthy) and 
response (diseased) CASs has an individual set of system characteristics is used in this work 
to explain synchronization.

(3) A novel FFSM is offered to address the chaotic synchronization control issue for two CASs. 
The fractional-powered and integral terms of state variables make up the described FFSM, 
which has a unique stable feature. That is, the stability of an error state in finite time first 
occurs on the sliding surface. The exponential stability of the other state is then brought 
about in the following way. A comprehensive piece of evidence of stability is supplied. 

(4) To achieve an almost finite-time synchronization, an adaptive FFSMC system is designed for 
two CASs. The equivalent control of the inserted SMC directly cancelled the nonlinear 
dynamics in previous investigations,(4,5,17) including cubic items and external excitation. In 
contrast to previous research, our adaptive FFSMC scheme can counteract the nonlinear 
dynamics of the synchronized error dynamical system. It consists of three updated feedback 
gains with the stated principles of adaptation.

 In Sect. 2 of this work, we present the challenge in controlling the synchronization of two 
CASs. The procedures involved in developing the adaptive FFSMC approach are presented in 
Sect. 3. The whole close-loop control system’s stability is also demonstrated. In Sect. 4, 
numerical experiments to validate the suggested control mechanism are described. Lastly, a few 
closing thoughts are expressed.

2. Formulation of Controlling Synchronization for Two CASs

 The following defines the biomathematical system of a CAS:(4,5) 

 
3

,

(1 ) (1 ) cos( ).

x Bx Cy

y B x C y x E tλ λ λ ω

= − −


= − + − + + +





 (1)

Here, t is the dimensionless time and the dimensionless state variables x, y stand for the 
differences in the inner radius of the vessel and blood pressure, respectively. The parameters B, 
C, and λ of the system primarily govern the dynamic behaviors of the CAS. Ecos(ωt) is the 
external excitation for the blood vessels.
 The chaos of a CAS versus the variation of E ∈ [0.1, 20] was examined in Ref. 5, where the 
system parameters were set to B = 0.15, C	=	−0.17,	and	λ	=	−0.65	with	ω = 1.0. We infer that 
when E ∈ [0.3, 0.6) and E ∈ [4.5, 5.9), the CAS generates chaotic motions. On the other hand, it 
exhibits multi-periodic movements. Figure 1 shows the phase picture of Eq. (1) for λ	=	−0.65,	E = 
0.5 in the absence of control input. It represents the breakdown of the CAS into anarchy and 
presents it as the main ill case thereafter. When the CAS has multi-periodic motion with λ = 
−0.5,	E = 0.6,(4) the driving system or healthy CAS is constructed. The phase portrait is displayed 
in Fig. 2.
 The control problem for synchronization between the diseased and healthy CASs is taken 
into consideration. Using the additional defined state variables xd, yd and the system 
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characteristics in Fig. 2, the healthy CAS is defined in Eq. (1) for synchronization. With the 
following additions, the primary diseased CAS shown in Fig. 1 serves as a model for the reaction

 3

,

(1 ) (1 )
cos(( ) ) ( , ) ( ) ( ).

r r r

r r r r r r r

r r r

x Bx Cy

y B x C y x
E t x y D t t
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ω δ φ

= − −


= − + − + +
 + + + ∆ + +



  (2)

 The state variables are denoted by xr and yr. The system parameters λ, E applied to the 
healthy CAS in Eq. (1) are different from the system parameters λr, Er. Additionally, in contrast 
to earlier research,(4–6,10,17,18) an uncertainty δ also disturbs the radial frequency ω of the 
external stimulation, affecting the blood vessels. The unmodeled system dynamics are 
represented	 by	 Δ(xr, yr) and the additional external disturbance is represented by D(t). The 
dosage of medication used to treat cardiac problems is determined using the associated control 
input ϕ(t). To bring the state variables of the diseased CAS in Eq. (2) and the healthy one in Eq. 

Fig. 1. (Color online) Phase portrait of the primary diseased CAS (in chaos).

Fig. 2. (Color online) Phase portrait of the healthy CAS (in multi-periodic motion).
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y(
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(1) into synchrony, or lim ( ) ( ), lim ( ) ( )r d r dt t
x t x t y t y t

→∞ →∞
→ → , for any given set of beginning 

circumstances, the control problem is handled by adding the proper control scheme ϕ(t).

Assumption
 Both the extra external disturbance D(t) and the unmodeled system dynamics Δ(xr, yr) are 
bounded and unknown. It is presumed that 

	 0	<	|Δ(xr, yr)| < N1, 0 < |D(t)| < N2, (3)

where N1, N2 are uncertain constants. 
 The synchronized error state between the healthy and diseased CASs in Eqs. (1) and (2) for 
achieving control is 

 εx(t) = xr(t)	−	xd(t), εy(t) = yr(t)	−	yd(t). (4)

 The governing equation of error states is Eq. (5), which takes the derivative of Eq. (4) versus t.

 1 2( ( , ) 1 ) (1 ) ( ) ( , )

cos(( ) ) cos( ) ( , ) ( ) ( )

x x y

y r r d x r y r d d

r r r
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f x x B C f x y
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ε ε ε
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  (5)

 The healthy and diseased CASs exhibit chaotic or multi-period motional phase profiles, 
which resu lt s  in  the boundedness of  f unct ions 2 2

1( , )r d r r d df x x x x x x= + +  and 
2 2

1( , )r d r r d df x x x x x x= + + . f1(xr, xd) and f2(xr, xd) represent the variable gain of εx(t) and another 
additional disturbance, respectively, in the control development process. They are 

 ( ) ( )1 1 2 20 , , , ,r d d df x x M f x y M< < < <  (6)

where M1, M2 are uncertain constants. The problem at this stage is equal to the control ϕ(t) that is 
intended to stabilize the dynamic system in Eq. (5).

Definition 1
 Equations (1) and (2) achieve synchronization between the healthy and diseased CASs, which 
is equal to lim ( ) 0xt

tε
→∞

→  and lim ( ) 0yt
tε

→∞
→ .

 Achieving proper control ϕ(t) as defined in Definition 1 to stabilize the error states in Eq. (5) 
is crucial for synchronizing the healthy and diseased CASs.

3. Proceeding Adaptive Integral-type Sliding Mode Control

 For system Eq. (5), an adaptive SMC approach is developed to provide synchronization 
between two CASs in nearly finite time, on the basis of the newly introduced FFSM. Later, the 
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stability of FFSM is clarified. The stability of FFSM acts such that it first induces the 
stabilization of an error state in finite time. Next, on the sliding surface, the other error state’s 
exponential stability is brought about as follows. Prior to delving into the primary findings, the 
practical lemma concerning finite-time stability is discussed.

Lemma:(26) For the first-order dynamical system,

 [ ]( ) ( ) ( ) ( ) 0n mt t a t b tσ θ θ θ= + + = , (7)

where a, b are positive real parameters and m > 0, n > 0 are odd integers satisfying 0 < n/m < 1. 
It is guaranteed that σ(t) = 0 with the initial condition θ0 ≠ 0 will remain stable in finite time. 
Additionally, θ(t) is stabilized to the origin at the specified time calculated as

 ( )( )
0ln 1 0

( )
m n m

s
m aT

a m n b
θ − = + > −  

, (8)

and θ(t) = 0 holds after ∀t	≥	Ts > 0. 

Remark 1
 The faster terminal sliding surface σ(t) = 0 that is defined and discussed in Ref. 26 is that of 
Eq. (7). The stabilized finite time is calculated using Eq. (8), where the origin is a terminal 
attractor. The details of the proof are not included here, but can be found in Ref. 26. 
 The planned procedure of the adaptive FFSMC scheme consists of two primary parts. The 
novel FFSM s(t) is first defined, including its stability. Second, despite both internal and external 
disturbances, an adaptive control system based on the stated FFSM with adaptation criteria is 
presented to obtain the error states that can reach and stay on the phase plane’s sliding surface 
s(t) = 0. 

Definition 2
 The innovative FFSM s(t) is composed of the integral and fractional-powered terms of the 
state variables:

 / /

0 0
( ) [ ( )] [ ( )] ( ) ( )

t tp q p q
y y x xs t t d t B d

τ τ
ε α ε τ τ β ε ε τ τ

= =

 = + + +  ∫ ∫ , (9)

where α, β > 0 and p > 0, q > 0 are odd integers with 1 < p/q < 2.
 The stability on the sliding surface s(t) = 0 is covered in more detail later. To ensure the 
finite-time stability of the innovative FFSM in Eq. (9), the following Theorem 1 is the given 
criterion. s(t) = 0 with variety sets α, β is depicted in Fig. 3.
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Theorem 1
 When s(t) = 0 and ṡ(t) = 0, the global finite-time stability of the synchronized error state εy(t) 
is ensured for the FFSM s(t) specified in Eq. (9). εy(t) first tends to the origin [εy(t) = 0] during 
the finite time interval specified by

 
( )/

0 0ln ( )) 1
( )

p q q
s y

pt t t
p q C

α ε
α β

− 
 = + +   −  

, (10)

where t = t0 > 0 is the moment at which the state trajectory of εy(t), εy(t) reaches s(t) = 0 in the 
phase plane. Then, for ∀t	 ≥	 ts > 0, εy(t) remains at the origin. Following that, the state εx(t) 
experiences exponential stabilization as follows. 

Proof
 ṡ(t) = 0 is satisfied when it reaches s(t) = 0 and remains there. The following equation 
governing the dynamical system of FFSM is obtained by substituting the first equation in Eq. (5) 
with ṡ(t) = 0:
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−  ⇒ + + = 

 

 (11)

Here,	0	<	2	−	p/q < 1 for 1 < p/q < 2. The initial condition of Eq. (11) is represented as εy(t0)	≠	0.	
t0 > 0 is the time spent to change εx(t), εy(t) from εx(t0), εy(t0) to s(t) = 0. 
 Applying the Lemma and setting up the necessary parameters for n/m	=	2	−	p/q, a = αq/p, and 
b	=	−Cβq/p result in the assurance that εy(t) is finite-time stable. Equation (10) yields the finite 
time ts, which should go from εy(t0)	≠	0	to	εy(ts) = 0 because of Eq. (8). Additionally, εy(t) = 0 and 
∀t	≥	ts > 0 continuously. Following that, it is evident that the exponential stability of εx(t) under 

y(
t)

Fig. 3. (Color online) Sliding surface s(t) = 0 for FFSM.
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εy(t) = 0, ∀t	≥	ts > 0, is unquestionably guaranteed for εy(ts)	≠	0.	Specifically,	

 ( ) ( ) 0 ( ) ( )exp( ), 0, 0x x x x s st B t t t Bt t t Bε ε ε ε+ = ⇒ = − ∀ ≥ > > . (12)

Thus, this proves Theorem 1.
 As Theorem 2, the adaptive FFSMC with the adaptation rules based on FFSM in Eq. (9) is 
introduced. It can guarantee that, when confronted with system uncertainty and an external 
disturbance, the state trajectory of Eq. (5) will reach and maintain itself on the sliding surface 
s(t) = 0 and ṡ(t) = 0.

Theorem 2
 If ϕ(τ) = ϕeq(τ) + ϕsw(τ) is taken as the control scheme, 
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 The state variables εx(t), εy(t) of system Eq. (5) will attain and persist on s(t) = 0 for dynamical 
system Eq. (5), where s(t) is FFSM in Eq. (9) and the sign(•) is the sign function. According to the 
following adaptation principles, Ki(t), i = 0, 1, 2 represent updated gains.
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εy(t)	→	0 in finite time and the exponential stabilization of εx(t) then occurs after that point. 
Finally, CAS systems Eqs. (1) and (2) have attained an almost finite-time synchronization.

Proof 
 The choice of the positive Lyapunov function is made by

 
2

2 2

0

1( ) ( ) ( ( ) ) 0
2 2 i i

ii

pL t s t K t g
qγ=

= + − ≥∑ , (15)

where gi > 0, i = 0, 1, 2 is satisfied. 
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The defined SM in Eq. (9), the adaptive FFSMC scheme in Eqs. (13) and (14), and the derivative 
of Eq. (15) vs t associated with the solutions of Eq. (5) yield the following.
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 The function L(t) is a decreasing function vs t and is positive definite, as determined by Eqs. 
(15) and (18). It results in the global asymptotic stability of the equilibriums (s = 0, Ki(t) = gi, i = 
0, 1, 2). Furthermore, the implementation of the adaptive FFSMC scheme described by Eqs. (13) 
and (14) leads to the asymptotic convergence of εx(t), εy(t) in system Eq. (5) on s(t) = 0 and 
ṡ(t) = 0.
 First, εy(t) is stabilized at a finite time ts on s(t) = 0, where ts is given by Eq. (10). Subsequently, 
εx(t) is then exponentially stabilized in the sequel, in accordance with Theorem 1. The so-called 
almost finite-time synchronization between the two CAS systems Eqs. (1) and (2) is achieved 
because εy(t) is stabilized in finite time, and the exponential stabilization of εx(t) occurs in 
sequence. Thus, this proves Theorem 2.

Remark 2
 In Eq. (13), it is shown that εx(t) in Eq. (5) is countered without nonlinear cancellation. This is 
significantly different from the earlier works.(4,5,17)

Remark 3
 In Eq. (13), the control input is discontinuous. tanh(s/σ) modifies the sign function in Eq. (13) 
to reduce the chattering control signal. The numerical experiments use the amply modest value 
of σ = 10−4, as described below.
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4. Numerical Experiments and Discussion

 In this section, the simulation program and execution for validating the proposed adaptive 
FFSMC system are described. The application is constructed and coded using the MATLAB-
SIMULINK package. The software’s built-in Runge–Kutta ode45 solver is used. Numerical 
integration is chosen with a tolerance of 10−8 and a variable step length. 
 The accompanying Table 1 provides an overview of the parameters used in the numerical 
experiments.
 Next, the simulating scenes are developed to carry out the numerical experiments. The drive 
and response CASs without control input are operated separately from the initial conditions at 
t = 0 prior to the implementation of control. At t = 15 in two scenarios, the control input of the 
response CAS is turned on to start synchronization. 
 Figure 4 shows the phase pictures of s(t) vs εx(t) and εy(t) for the first numerical experiment 
using α = 2.5, γ0 = 15, γ1 = 8,, and γ2 = 30. The following shows that εy(t) tends to the origin and 
that s(t) = 0 first converges to zero. In the sequel, εx(t) is stabilized with s(t) = 0 and εy(t)	→	0.	
The FFSM property mentioned in Theorem 1 is confirmed. The time histories of εx(t) and εy(t) 
are shown in Fig. 5. It is seen that εy(t) approaches zero faster than εx(t). However, the long-term 
convergence of εx(t)	→	0	is	unacceptable	for	controlled	synchronization.

Table 1
Parameters for coding. 
Name of parameter Given values
Initial conditions (xd, yd) = (1.0, 0), (xr, yr) = (0.2. 0.2)
CAS parameters (common) ω = 1.0, B = 0.15, C	=	−1.7
Healthy (drive) CAS parameters λ	=	−0.5,	E = 0.6
Diseased (response) CAS parameters λr	=	−0.65,	Er = 0.5, δ = 0.01
Unmodeled dynamics Δ(xr, yr)	=	1.0	‧	sin(xr)cos(yr)
Other external disturbance D(t)	=	0.25	‧	cos(2ωt)
Design parameters p = 13, q = 9, β = 2.5

s(
t)

s(
t)

Fig. 4. Phase portraits of s(t) versus εx(t) and εy(t).
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 The enhanced outcomes of the almost finite-time synchronization are achieved by 
appropriately choosing the design parameters α, β, as demonstrated by Theorem 1. For β = 2.5, 
Fig. 6 shows the phase portraits of εx(t) and εy(t) with three distinct values of α, using identical 
simulation parameters for coding as applied in the previous experiment. When the phase portrait 
starts to stay on s(t) = 0, it indicates that εy(t) converges to zero more quickly for greater values of 
α. Subsequently, εx(t) approaches zero. When an appropriate smaller value of α is selected, εx(t) 
and εy(t) converge almost uniformly.
 Figures 7 to 9 show the results of the second numerical experiment in which α = 0.85, γ0 = 1.5, 
γ1 = 0.9,, and γ2 = 3.0. Figures 7 and 8 depict the time responses of εx(t), εy(t), and s(t). They show 
that upon the activation of the adaptive FFSMC at t = 15, the finite-time stability of εy(t) is 
induced. At t = 15.9141, where t0 = 0.9141, the phase portrait arrives at s(t) = 0, where εy(t) is 
maximum. The experiment indicates the predicted time of εy(t) to be stabilized at 
t = ts + t0 = 16.6667. This means that ts of 6.5319 is the expected finite time needed to stabilize 
εy(t). The theoretical value of the finite time calculated using Eq. (10) is ts = 6.2973. This is 
essentially consistent with the expected finite time. Additionally, εx(t) is stabilized as εy(t)	→	0,	
as follows.
 The chatter-free continuous control signals of the suggested adaptive FFSMC method are 
shown in Fig. 8. For α = 0.85, β = 2.5, the time responses of three gains, K1(t), K2(t), K3(t), are 
shown in Fig. 9. The outcomes indicate that all three gains eventually become constant, in line 
with the adaptation principles given by Eq. (14), which implies that the states εx(t), εy(t), and s(t) = 
0 all tend to zero. 
 The phase portrait of the second numerical experiment from t = 0 to t = 50 is shown in Fig. 
10. εx(t) and εy(t) reach s(t) = 0 approximately at t = 15.91 after the adaptive FFSMC was turned 
on at t = 15, and they subsequently remain there. Finally, the almost uniform convergence of εx(t)
and εy(t) is demonstrated. Figure 11 shows the time responses of the states for both the diseased 
and healthy CASs. In Eqs. (1) and (2), the states of the two CASs deviate from one another when 
distinct initial conditions are selected. Both states start to synchronize when the adaptive 
FFSMC is activated at t = 15. In contrast to previous studies,(4–6,10,17,18) the chaotic 
synchronizations were examined using the same system parameters for both CASs. The results 

y(
t)

x(
t)

Fig. 5. Time histories of εx(t) and εy(t) for α = 2.5.
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Fig. 7. Time histories of εx(t) and εy(t) for α = 0.85.

Fig. 8. Time histories of s(t) and ϕ(t) for α = 0.85.

y(
t)

Fig.	6.	 (Color	online)	Phase	portraits	with	different	values	of	α.
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Fig. 9. Time histories of Ki(t), i = 0, 1, 2 for α = 0.85.
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Fig. 10. Phase portrait of the second numerical experiment from t = 0 to t = 50.

Fig. 11. Time histories of the state variables for healthy and diseased CASs.
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of the current work show that even when the two CASs have distinct system parameters, 
synchronization can also be achieved by applying the proposed scheme. 

5. Conclusions

 The challenge of almost finite-time synchronization control for two CASs was overcome by 
adopting the proposed adaptive FFSMC. The special form of stability for the defined FFSM was 
described and proven. In other words, the state εx(t) was exponentially stabilized once the state 
εy(t) was first stabilized in finite time on s(t) = 0. The closed-loop control system was shown to 
be stable. Simply changing the control parameter α in the control scheme led to good 
performance, even when the error states were sequentially stabilized by the adaptive FFSMC 
approach. The validity of the existing scheme was confirmed by several numerical experiments.
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