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 Improving the reliability of the transmission gear module in the gearbox of a nuclear power 
plant is of considerable and far-reaching significance to ensure energy security. As a key 
transmission part of this specific type of power plant, this gear module often runs with heavy 
load in complex environments and without shutting down for a long time. In such severe working 
conditions, the failure of this transmission gear module is primarily caused by the deterioration 
of lubricating oils and the aggravated wear of gears. Once the gear module is damaged owing to 
the poor lubrication or serious wear of the gear, it will not only cause huge power loss, but also 
nuclear power accidents, seriously threatening the life of the staff. It is essential that the 
transmission gear module used in a nuclear power plant is not arbitrarily shut down, which 
makes testing and monitoring difficult. Moreover, it is very important to monitor the lubricating 
state of oils in the gearbox in real time by measurements with various suitable high-tech sensors. 
However, there were few studies concerning this issue. To solve this problem, we first designed 
and built an experimental test platform to simulate the real working conditions of the 
transmission gear module in the gearbox of a nuclear power plant. Second, an innovative online 
oil monitoring method was proposed on the basis of the concept of marginal values of the normal 
distribution theory in statistics. Finally, a real-time prediction model based on the gray system 
theory was established to predict the variation of the dielectric constant of lubricating oils.

1. Introduction

 The transmission gear module (TGM) in the gearbox of a nuclear power plant usually works 
permanently with heavy load in dirty environments and cannot be arbitrarily shut down because 
of the specific mission of nuclear power generation. The failure of this specific TGM is mainly 
caused by the deterioration of lubricating oils inside the gearbox. However, thus far, few research 
studies on the fault diagnosis or even the health monitoring of lubricating oils inside the gearbox 
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of a nuclear power plant have been conducted. To ensure the safe and long-term operation of a 
TGM, a comprehensive method is required to monitor the working conditions of the lubricating 
oils surrounding this TGM.
 The commonly used monitoring methods for lubricating oils in a gearbox system include 
vibration monitoring, temperature monitoring, oil analysis (OA), ultrasonic detection, and 
acoustic emission monitoring.(1–3) Among them, the OA method that involves checking the oil 
level in the gearbox following comprehensive guidelines was successfully used to analyze the 
components of pollutants and the physical properties of lubricating oils. Thus, the performance 
degradation and running state of the lubricating oil in the gearbox can be detected by this 
method. However, the OA method adopted an offline way for data collection and sample 
analyses to determine the oil state.(3) This offline detection method had the disadvantages of 
message delay and weak timeliness, and was unable to detect real-time losses. Owing to the 
restriction that a nuclear power plant cannot be arbitrarily shut down once it starts running, the 
offline detection method is unsuitable for application to the problem of lubricating oil detection. 
In contrast, the online oil monitoring (OOM) method may avoid the aforementioned restriction. 
The OOM method adopts various sensors to instantly detect the changes in physical properties, 
the particle wear conditions, and the unexpected conditions of lubricating oils in the online way. 
Therefore, the timely diagnosis and active preventive maintenance of equipment can be 
conducted via the OOM method. The OOM method has received considerable attention in recent 
years in signal detection studies. This method was first reported in the early 1940s when an 
American company used an atomic emission spectrometer to successfully detect the cause of 
wear failure in a diesel engine.(4) After the 1970s, the United States Department of Defense 
began to apply the ferrography technology to study the wear state of gears.(5) Salameh et al.(6) 

developed a compact X-ray fluorescence spectrometer for the online real-time analysis of wear 
metals in lubricating oils. GasTOPS, a Canadian company, developed an inductive online metal 
abrasive detection sensor, called “MetalSCAN”, which was later widely used in the online 
detection of lubricating oils in large equipment such as wind turbines and Apache helicopters.(7) 

The rapid development of various high-tech sensors has considerably broadened the application 
scope of the OOM method into the field of equipment condition monitoring. Dempsey(8) 
combined the oil abrasive grain concentration analysis with the vibration analysis scheme to 
monitor the lubricating condition in a gear system. Loutas et al.(9) studied the combination of the 
OOM method with vibration schemes to monitor the running state of a machine equipment. Liu 
et al.(10) established the motion equation of wear particles statistically and, accordingly, designed 
an online optical monitoring sensor. Sheng(11) used the OOM method to study the detection 
problem of the gear system in a high-power fan. Liu et al.(12) used the neural network scheme to 
deal with the chromatographic data obtained online to improve the accuracy and availability of 
the gear module in an electromechanical system.
 In short, even if the OOM method has the disadvantage of wasting manpower and material 
resources, it was still the mainstream method used for oil-state detection in the gearbox of 
turbine machines.(13–23) On the basis of the aforementioned features of the OOM method, in our 
study, we intend to propose a novel online monitoring and analysis (OLMA) method that 
includes four phases: (1) developing an experimental gearbox system, (2) developing a sensor-
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based measurement system, (3) developing proper oil-state monitoring and predicting theorems, 
and (4) performing the experimental data analysis and management for monitoring. Through the 
manipulation of the proposed method, we detect the failure conditions of lubricating oils in the 
gearbox as early as possible and avoid huge economic losses and casualties caused by the failure 
of transmission gears. Details of the OLMA method are demonstrated in the following section.

2. OLMA Method 

2.1 Procedure

 The manipulation procedure of our proposed novel OLMA method includes six steps as 
follows. 
Step 1:  Designing and establishing an experimental test platform that includes a gearbox system 

and a bypass-sensor-based monitoring and measurement system.
Step 2:  Establishing an OOM model based on the marginal-value theorem of statistics.
Step 3:  Establishing an online oil prediction model based on the gray system theory (GST).
Step 4:  Exploring the software including the human–machine interface for monitoring and 

predicting the state of lubricating oils in the gearbox system. 
Step 5:  Executing online experiments and measurements via the experimental test platform 

based on various physical sensors. 
Step 6:  Analyzing the acquired experimental data and displaying the assessment results in real 

time through software calculations.
 Moreover, to execute the monitoring experiment of lubricating oils using the proposed 
OLMA method, we adopt the ISOAJD (the uppercase letter of the first word in six steps) 
procedure, as explained in the following and illustrated in Fig. 1.
Step 1:  Inputting the lubricating oil into the experimental test platform.
Step 2:  Starting and running the experimental test platform for a preset long period of time 

without stopping.
Step 3:  Online sampling and measuring the physical properties of oil using various physical 

sensors. The following two types of online measurements are performed: lubrication 
measurement for analyzing oil performance and wear measurement for analyzing 
abrasive grains.

Step 4:  Analyzing the obtained data with the proposed monitoring and prediction models in real 
time.

Step 5:  Judging the oil state and displaying judgement results. According to the analysis results 
in Step 4, the oil state can be divided into three situations: “Normal”, “Abnormal”, and 
“Shut down alert”. “Abnormal” situations can be further divided into “Attention signal” 
and “Warning signal”. All judgement results are displayed on screen. 

Step 6:  Decision options. We have two final decision options: “Repair” and “Maintenance”; 
these depend on whether the analysis results of the lubricating oil conditions are deemed 
acceptable or not.
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2.2	 Parameters	affecting	lubricating	oil	state

 From the above discussions, we know that there are strict requirements on the performance 
level of the lubricating oil during usage in the gearbox of a nuclear power plant. Generally, the 
main factors that affect the lubrication performance of oils in the gearbox are the physical 
quality of lubricating oils, the number of wear particles in oils, the wear condition of gear 
surfaces, the pollution degree of oils, and the effective oil amount during lubrication. Among 
them, we select the physical quality of lubricating oils and the pollution degree of oils as the 
investigation parameters that are commonly used as the physical indicators in oil state 
examinations. Moreover, it is found from our test results that the other factors do not change 
apparently during our experiments. Therefore, we only analyze three physical factors of 
lubricating oils in our test experiments: the dynamic viscosity, the dielectric constant of small 
particles, and the oil contamination degree.

2.3	 Design	of	experimental	test	platform

 On the basis of the actual operation situation of the transmission gears in the gearbox system 
of a nuclear power plant, we accordingly design an experimental test platform for simulations 

Fig. 1. (Color online) Manipulation procedure of ISORJD.
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and measurements, as shown in Fig. 2. The designed experimental test platform contains four 
major parts: the scale model of a gearbox system (scale 1:5, No. 1), the bypass pipe system (No. 
2), the monitoring and measurement module (No. 3), and the electrical cabinet. One end of the 
bypass pipe system is connected to the oil outlet of the gearbox system and the other end is 
connected to the monitoring and measurement module. In the monitoring and measurement 
module, we install various high-tech sensors, the data acquisition and calculation module, and 
the display equipment.
 When the test platform starts running, some of the lubricating oils in the gearbox system (oil 
samples) flow through the bypass pipe system and then into the monitoring and measurement 
module. Next, the physical properties of these oil samples can be detected via the preset high-
tech sensors. Moreover, these properties can be analyzed with a specific software program 
developed in this study. Finally, the monitoring results including warning and related messages 
are presented in a terminal screen. After that, these oil samples flow out the online measurement 
module and back to the gearbox system through a return pipe. The designed test platform has the 
function of pressure self-adjustment to ensure the system’s safety and reliability during tests.

2.4	 Analysis	method

 Many methods of analyzing lubricating oils in a gearbox were proposed.(1–3) Among them, 
the physical analysis method was simple for determining the oil quality level, the spectral 
analysis method was frequently used to accurately obtain the concentrations of various elements 
in oil samples, and the ferrographic analysis method was appropriate for the detection of large 
abrasive particles. However, these analysis methods were all characterized by the defects of low 

Fig. 2. Configuration of designed sensor-based gearbox test platform.

 Monitoring and 
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detection speeds, tedious operation procedures, and high dependence on usage experiences. If 
we can develop an integral method that combines their merits, then both the detection accuracy 
as well as the usage convenience can be markedly improved. To overcome these defects, we now 
develop the bound-limit and gray system theories for dealing with the aforementioned three 
factors, namely, the dynamic viscosity, the contamination degree, and the dielectric constant of 
small particles in lubricant. The following is a brief introduction of the theories used in the 
monitoring and prediction of lubricating oils. 
 It is essential that, in the data collection stage, the dynamic viscosity of lubricating oils must 
be determined for an entire oil-change period because the measured physical oil properties 
usually fluctuate. In contrast, the dielectric constant should be determined randomly by 
eliminating the abnormal outlier technique. 

2.4.1	 Monitoring:	 Bound-limit	 theory	 for	 monitoring	 the	 dynamic	 viscosity	 and	
contamination	degree	of	lubricating	oils

 Using statistical methods to study the variations of oil properties to judge the state of 
lubricating oils in a gearbox was popular.(1) From the statistical viewpoint, the long-time 
collected data of oil properties should statistically conform to the normal distribution with a 
probability density function as
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where n is the sample number, X is the property of oil samples, μ means the overall average of X, 
and σ is the overall standard deviation of X. In this study, we propose a bound-limit theory as the 
monitoring scheme of lubricating oils based on the concept of the normal distribution of 
statistics. Details of the bound-limit theory are introduced as follows. 
 Since the measured sample data is finite, n will not become infinity. We assume that the 
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 Our bound-limit theory is based on the above two equations where the standard deviation S 
can be dynamically adjusted according to actual situations. To ensure calculation accuracy, the 
sampling space should be as large as possible. By examining the data distribution conditions of 
oil samples, together with the trial-and-error method, we may reasonably set the normal and 
warning bound limits as A ± 2S and A ± 3S, respectively, as shown in Table 1.
 During monitoring, when the collected real-time data of parameters of the lubricating oil 
were between A − 2S and A + 2S, the lubricating oil is considered to be in a normal state with 
good running conditions. When the data of parameters of the lubricating oil were between A + 
2S and A + 3S, the lubricating oil should be closely monitored and their sampling period should 
be shortened. Moreover, when the data of parameters of the lubricating oil were beyond A + 3S, 
the lubricating oil is viewed as in an abnormal state, and we should stop the operation of the 
gearbox system and check the lubricating oil immediately.

2.4.2	 M(1,1)	model	for	oil	state	prediction

 According to the GST proposed by Deng (24) in 1982, the GM(1,1) model of GST is as follows.
 Firstly, we assume a non-negative sequence:

 (0) (0) (0) (0){ (1), (2), , ( )},X x x x n= 

 (8)

where x(0)(k) ≥ 0, k =1, 2, ..., n. Then, we define a new sequence X(1), called the first accumulating 
generation operator sequence of X(0), where
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Moreover, we define a mean sequence Z(1), called the mean generation of consecutive neighbors 
sequence of X(1), where
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Table 1
Bound-limit values for normal and warning states.

Normal limit Warning limit
Two-side limit A ± 2S A ± 3S
Upper bound A + 2S A + 3S
Lower bound A − 2S A − 3S
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Assuming that sequence Z(1)(k) follows the equations
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Then, Eq. (10) can be expressed simply as

 ˆ.Ny Bb=  (14)

Equation (10) is a first-order differential equation in which it is usually called a gray differential 
equation and denoted as GM(1,1). The white differential equation of Eq. (10) can be written as
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By solving Eq. (15), we obtain
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Eventually, (0)ˆ ( 1)X k +  is obtained through the operation of an accumulation subtraction from 
(1)ˆ ( 1)X k +  as

 (0) (1) (1)ˆ̂̂ ( 1) ( 1) ( ).X k X k X k+ = + −  (17)

2.4.3	 Data	calculation	and	display-software	development	

 To record, display, preserve, and analyze the measured data in a convenient manner, we 
developed an online-monitoring software set that contains the functions of data calculation for 
oil properties and the human–machine interface. Figure 3 shows a real-time measurement and 
analysis result at a certain moment by using our developed specific software program. This 
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software program has the function of monitoring the changes in oil properties, pollution degree, 
wear content, and some other properties of lubricating oils in real time. Moreover, it may also be 
used to exhibit the measured data in the form of curves or tables so as to provide users real-time 
messages about the state of the lubricating oil in the gearbox. At the same time, we may 
arbitrarily set the upper and lower bounds of the concerned properties of lubricating oils in this 
software program.

3.	 Results	and	Discussion

3.1	 Experimental	system

3.1.1	 Experimental	test	platform	and	sensor	arrangement

 As described in Sect. 2.3, according to the shape, material, and even dimensions of an actual 
gearbox system, we designed an experimental test platform that contains a gearbox model with 
the size reduced by 80%, connection pipes, and a bypass monitoring and measurement system 
with numerous and various sensors to simulate the actual work conditions and meanwhile 
perform the nonstop measurement and analysis of lubricating oils in real time during one oil-
change period.
 The accomplished experimental test platform is shown in Fig. 4, the major components of 
which include a power transmission device (1), a connection pipe (2), an oil pump (3), a check 
valve (4), a screw-type pump (5), a PT-100 thermometer (6), a bimetallic thermometer (7, 12), an 
electric control cabinet (8), a display screen (9), two pressure gauges with sensors (10, 11), a fan-
type cooler (13), a pressure regulator with sensor (14), and an oil filter (15).
 The temperature of the lubricating oil at the pump inlet can be directly measured using the 
bimetallic thermometer. Units (8) and (9) are used to control the working conditions of the air 

Fig. 3. (Color online) Illustration of explored software program.
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cooler. A system pressure regulating circuit is installed near the pump outlet. The check valve (4) 
and pressure regulator (14) are used to ensure that the pressure of the lubricating oil is always 
safe and normal under any operation circumstances.
 The lubricating oils are first pumped through an oil filter (15), a differential pressure 
controller (14), and an air cooler (13). Then, they flow into two branches of the main pipeline. 
Every branch is equipped with a throttle valve, a pressure gauge sensor, a pressure transmitter 
(10, 11), a bimetallic thermometer (7, 12), and a Pt100 thermal resistor (6). The pressure 
transmitters are connected to a pressure control unit (8, 9) for pressure monitoring. In a similar 
manner, the Pt100 thermal resistor is connected to the temperature control unit (8, 9) for 
temperature monitoring. 

3.1.2	 Consistency	tests	of	experimental	platform

 To test the reliability as well as the consistency of our designed experimental test platform, 
we now carry out three test cases through this test platform as follows: Case 1: test run at a 
normal pumping speed, Case 2: test run at a super pumping speed (120% of normal pumping 
speed), and Case III: test run at the rated pumping speed without load, lasting for 48 h. The test 
conditions and associated test results for these three cases are discussed as follows.

Case I: test run at a normal pumping speed 
 In this case, the experimental test platform works at a preset normal pumping speed of 176 
rpm. The measurement results obtained with various sensors together with the required 

Fig. 4. (Color online) Configuration of experimental test platform.
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conditions are listed in Table 2. It is seen that all our measured physical parameters including 
speed, temperature, pressure, and flow rate match well with the required conditions. The test 
duration is 10 min.

Case II: test run at a super pumping speed (120% of normal pumping speed)
 In this case, the experimental test platform works at a super pumping speed of 211 rpm (120% 
of normal pumping speed). The measurement results obtained with various sensors together 
with the required conditions are listed in Table 3. Similar to the results in Case I, all our 
measured physical parameters including speed, temperature, pressure, and flow rate match well 
with the required conditions. The test duration is 10 min.

Case III: test of running at the 48 h rating speed without load 
 In this case, the experimental test platform works at the rated pumping speed of 745 rpm 
without load, lasting for 48 h. The obtained results of the measured parameters and their 
corresponding required qualities are shown in Table 4. It is evident that all the physical 
parameters of lubricating oils obtained by sensor measurement, including speed, temperature, 

Table 2
Test conditions and results of Case I (preset normal pumping speed).
Test parameter Required condition Measurement result
Pumping speed (rpm) 176 176
Inlet oil temperature (℃) 49 48
Tank temperature (℃) 49–56 51
Temperature of upper guiding bearing (℃) <70 60.4
Temperature of lower guiding bearing (℃) <70 30.3
Temperature of trust bearing (℃) <95 59.9
Working pressure (Mpa) ﹥0.2 0.2
Lift pressure (Mpa) 1–25 20
Leakage No No
Flow rate (L/min) ﹥330 348.5
Pressure difference in filter (Mpa) <0.1 0.02

Table 3
Test conditions and results of Case II.
Test parameter Required condition Measurement result
Pumping speed (rpm) 211 211
Inlet oil temperature (℃) 49 47
Tank temperature (℃) 49–56 48
Temperature of upper guiding bearing (℃) <70 51.5
Temperature of lower guiding bearing (℃) <70 30.6
Temperature of trust bearing (℃) <95 52.4
Working pressure (Mpa) ﹥0.2 0.216
Lift pressure (Mpa) 1–25 16.8
Leakage No No
Flow rate (L/min) ﹥330 378 
Pressure difference in filter (Mpa) <0.1 0.01
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pressure, and flow rate, are well within the required specifications. The test duration is 30 min.
 In short, the comparison of the required and measured conditions of the related oil parameters 
for the above three cases reveals that our designed experimental test platform is working well 
with a high degree of consistency with the actual gearbox system in a nuclear power plant and all 
the measured data are reliable. 

3.2	 Monitoring	and	prediction

3.2.1	 Analysis	of	kinematic	viscosity	

 During the one oil-change period, we measure the variation of the kinematic viscosity of the 
lubricating oil via a multifunction viscosity sensor in the experimental test platform. Moreover, 
we randomly choose 200 sets of kinematic viscosity v values detected at different times so as to 
carry out further statistical analyses. The obtained results are shown in Fig. 5. 
 On the basis of the sampled 200 sets of data and the calculations via Eqs. (4) and (5), we 
obtain the overall mean and standard deviation of the kinematic viscosity as 138.29 and 42.53 
m2/S, respectively. Then, a normality analysis is carried out for these data. Since the kinematic 
viscosity of lubricating oils is decreasing with increasing running time during one oil-change 
period, it is reasonable to hypothesize that the kinematic viscosity distribution has negative 
skewness. Moreover, from statistics, the skewness of the sampled data is calculated as 
βs = 0.2328. When the number of samples considered is small, the significance level α is 0.05, 
then the quantile p should be less than 0.28. Previous calculation results of skewness βs = 0.2328 
reveal that it satisfies the condition of p ≤ 0.28. Therefore, the previously assumed null 
hypothesis is not rejected and the bound limit of the kinematic viscosity can be set by using the 
normal distribution method. Accordingly, when we monitor the state of lubricating oils, the 
upper and lower bound limits of the kinematic viscosity are set as 85.07

85.07138.29+
−  m2/s for attention 

and 127.6
127.6138.29+
−  m2/s for warning, as shown in Fig. 6.

 Figure 6 shows that, as determined by sensor measurements, the obtained kinematic viscosity 
of lubricating oils does not exceed warning limits (upper and lower warning bound values, 
shown in red lines). In other words, the sensor-measured data of μ are all within the normal 
range. 

Table 4
Test conditions and results of Case III.  
Test parameter Required condition Measurement result
Pumping speed (rpm) 745 745
Inlet oil temperature (℃) 49 49
Tank temperature (℃) 49–56 52
Temperature of upper guiding bearing (℃) <70 53.3
Temperature of lower guiding bearing (℃) <70 31.7
Temperature of trust bearing (℃) <95 59.6
Working pressure (Mpa) ﹥0.2 0.209
Lift pressure (Mpa) 1–25 20
Leakage  No No
Flow rate (L/min) ﹥330 355
Pressure difference in filter (Mpa) <0.1 0.02
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Fig. 5. (Color online) Measured kinematic viscosity of lubricating oils.

Fig. 6. (Color online) Upper and lower bound limits of the kinematic viscosity of lubricating oils for attention and 
warning during operation.
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Table 5
Detected contamination index of collected oil samples.
Sample group 1 2 3 4 5 6 7 8 9 10
DL (μm) 1.4 1.8 1.6 1.9 2.4 2.2 1.7 2.1 1.8 2.3

Fig. 7. (Color online) Upper and lower bound limits of attention and warning of lubricating oil samples.

Attention

3.2.2	 Analysis	of	oil	contamination	level

 For clearly examining the oil quality, we adopt a significant physical parameter of the oil 
contamination index to express the oil contamination level in a gearbox, which is defined as the 
concentration of detected abrasive particles with diameters greater than 14 μm(22) in lubricating 
oils and denoted as DL (number per milliliter). From measurements via the metal abrasive sensor 
for ten lubricating oil samples, we obtain the oil contamination index distribution, as shown in 
Table 5. 
 Through calculations, we further obtain the overall mean and standard deviation of DL for the 
collected lubricating oil samples, which are 1.92 and 0.3225, respectively. Eventually, according 
to the normal distribution rule of statistics, the upper and lower bounds of attention and warning 
values of DL for the lubricating oil samples are set as 1.92 ± 0.65 and 1.92 ± 0.97, respectively, as 
shown in Fig. 7.

3.2.3	 Prediction	of	dielectric	constant	using	GST

 For an oil lubrication system, the dielectric constant (τ) is a comprehensive parameter that can 
be used to describe the performance degradation, pollution state, and wear state of lubricating 
oils. Once the lubricating oil is polluted or aged, the number of abrasive particles in oils will 
markedly increase, and therefore, the dielectric constant of lubricating oils will also change 
accordingly.(23,24) We now measure, via a multifunction sensor, the variation of the dielectric 
constant of the lubricating oil in one oil-change period. The collected data of the dielectric 
constant for ten oil samples are shown in Table 6. It is seen that τ varies in the range from 1.9 to 
about 3. Note that the dielectric constant of vacuum is 1 and that of air is 1.00059. 
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 Using Eqs. (6)–(17) introduced in Sect. 2.4.2, we now establish a prediction model for the 
dielectric constant of the lubricating oil using the GM(1,1) model and the first five data listed in 
Table 6 as the formulation base:

 (1) 0.0684ˆ ( 1) 28.5082 26.6082.kX k e+ = −  (18)

 On the basis of Eq. (18), the sixth to tenth dielectric constants of the lubricating oil are 
calculated. The obtained predicted data together with the respectively measured data are shown 
in Table 7.
 It is seen that, for the sixth and seventh predicted τ values, the average residual and relative 
accuracies are 0.013 and 98.7%, respectively. Clearly, the prediction results are satisfactory. 
However, the relative residuals of eighth to tenth data are slightly large because the GST is 
unsuitable for long-term predictions owing to the increasing interference of data uncertainty. As 
for the overall (the sixth to tenth terms) predictions, it is seen from the data in the last two rows 
that the overall average residual and relative accuracies are 0.086 and 91.39%, respectively. As a 
consequence, we may dynamically add the real-time measured data of τ into the GM(1,1) model 
using only three terms for better prediction. 

4.	 Conclusion

 To appropriately diagnose the lubricating oil state in the gearbox used in a nuclear power 
plant, we first developed a novel OLMA method based on sensor measurements. Our proposed 
OLMA method mainly involves the analysis of possible failure modes of transmission gears, 
designing an experimental test platform, setting a bypass sensor measurement system, 
measuring and analyzing the parameters affecting the state of lubricating oils, and building the 
bound theory of attention and warning based on the normal distribution principle of statistics for 
monitoring the dynamic viscosity and oil contamination index. Moreover, we built a dynamic 
three-term GM (1,1) gray prediction model for monitoring the dielectric constant of lubricating 

Table 6
Measured dielectric constants of lubricating oil in one oil-change period. 
No. 1 2 3 4 5 6 7 8 9 10
τ 1.900 1.965 2.251 2.284 2.470 2.637 2.783 2.812 2.876 2.925

Table 7
Predicted dielectric constants of lubricating oils.
No. 6 7 8 9 10 Average
Measured τ 2.637 2.783 2.812 2.876 2.925
Predicted τ 2.6518 2.8394 3.0403 3.2554 3.4858
Residue 0.0148 0.0564 0.2283 0.3794 0.5608 0.086
Relative accuracy 99.44% 97.97% 99.97% 86.82% 80.83% 98.7%
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oils. Furthermore, on the basis of this method, we accomplished a decision-making strategy to 
monitor the state of lubricating oils in the gearbox of a nuclear power plant. The developed 
manipulation procedure of this strategy is called ISOAJD. The proposed innovative real-time 
OLMA method together with the ISOAJD strategy solves the severe problem that the oil state 
cannot be monitored in real time in the gearbox of a nuclear power plant where the lubricating 
oil usually works in heavy-load and complex environments and cannot be shut down arbitrarily 
for a long time.  
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