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 In this study, we addressed the problem of maximum output power in wave energy devices by 
analyzing the forces acting on the buoy and oscillators under the influence of ocean waves. The 
motion models for both floating devices and oscillators were developed, and algorithms were 
devised to determine the maximum output power of wave energy devices. When the buoy was 
only undergoing linear motion, a second-order ordinary differential equation could be 
established with displacement as the unknown variable. The main objective of this study was to 
maximize power, which was composed of the power generated by the damper, with the damping 
coefficient as the decision variable. Additionally, it was necessary to consider the following 
constraints in the motion equations: gravity, buoyancy, wave excitation force, added inertia 
force, wave damping force, static water restoring force, and the reactive forces from the damper 
and spring. By solving an unconstrained minimization problem related to the damping 
coefficient, the solution to achieve maximum power during linear motion could be found. When 
the rotation of the buoy was considered, we needed to modify the objective function to include 
the contribution of the rotational damper and introduce the rotational damping coefficient as a 
decision variable. Furthermore, we needed to add torque analysis as a constraint to account for 
the rotational motion of the buoy. Ultimately, the wave electric power generation system would 
provide the optimal power design solution that took into account both linear and rotational 
motions of the buoy.

1. Introduction

 The issue of insufficient energy in the 21st century has propelled the development of various 
new energy sources, aiming to reduce the dependence on traditional fossil fuels and mitigate 
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environmental impacts. Presently, the actively pursued types of new energy include solar power, 
wind power, hydropower, bioenergy, and geothermal energy. Entering the 2020s, economic 
development has been accelerating at an unprecedented pace, accompanied by significant 
challenges in the realms of energy and the environment. The focus of nations worldwide has now 
shifted towards the renewable energy industry, recognizing its pivotal role in sustainable 
development. Wave electric power, a relatively new renewable energy technology, harnesses the 
kinetic energy of ocean waves to generate electricity. Its significance is evident in several 
aspects.(1−3)

(a) Renewability: Waves are a continuous natural resource and are considered to be an infinite 
source of renewable energy, unlike finite fossil fuels, which are subject to depletion.

(b) Low environmental impact: The development and operation of wave electric power are 
environmentally friendly, with no greenhouse gas emissions, resulting in minimal 
environmental impact.

(c) Stability: Ocean waves are relatively stable, providing wave electric power systems with a 
reliable capacity for electricity generation. This stability contrasts with other renewable 
energy sources, such as wind power, which can be more variable depending on weather 
conditions.

(d) High energy density: Waves possess a considerable energy density, enabling effective capture 
and conversion of wave energy, which results in the production of substantial amounts of 
electricity.

 However, despite the manifold advantages of wave electric power, it faces persistent technical 
and economic challenges.(4) Ongoing research and development efforts are essential to optimize 
efficiency and reduce costs, thereby ensuring the sustained progress and competitiveness of this 
promising renewable energy technology. Wave energy, derived from the vast expanses of the 
oceans, holds tremendous potential for significantly contributing to the global energy mix. This 
study is specifically focused on optimizing a wave energy conversion system to maximize its 
power output. The research hones in on the power generation of a wave energy device, assuming 
the presence of a pre-existing wave energy conversion system. This system primarily comprises 
a floater and a pendulum.(5) Propelled by the motion of ocean waves, the floater’s movement 
induces corresponding motion in the pendulum. The design proposed in this project primarily 
involves a buoy and a pendulum. As influenced by ocean waves, the buoy undergoes motion, 
subsequently driving the pendulum’s movement.(6,7) The relative motion between these two 
components facilitates the operation of a damper to convert this motion into usable energy 
output. Azam et al. identified the optimal and suboptimal resonant buoys for power take-off 
(PTO) systems using external stiffness and damping parameters. In the optimal and suboptimal 
PTO modes for conventional waves, the energy conversion efficiency increased by 8.4% and 
7.4%, respectively.(8) 
 Lai et al. studied the “Haiyuan 1” buoy, the heave motion mode of which was modified to a 
vertical swinging motion mode. The results indicated that the hydrodynamic performance of the 
vertical swinging buoy was effectively improved compared with that of the heaving buoy.(9) 
Ahmed et al. studied the influence of buoy geometry variations on PTO power performance, 
using cylindrical hemisphere (C-HS) and S-shaped buoys as examples. The PTO integrated into 
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the S-shaped buoy led to a 26% higher input power than the PTO integrated into the C-HS 
buoy.(10) Most current studies focus on capturing the single-degree-of-freedom kinetic energy of 
buoys. For multiple-degrees-of-freedom oscillating buoy wave energy conversion systems, the 
structure and extracted key components, including the buoy, pendulum, damper, and spring, 
were simplified for mechanical analysis. When the buoy undergoes linear motion only, with the 
objective function being the maximum power produced by the damper and the damping 
coefficient being the decision variable, the motion equation under the influence of gravity, 
buoyancy, wave excitation force, added inertia force, wave damping force, static water restoring 
force, and the reaction forces of the damper and spring was established as the constraint 
condition, forming an unconstrained minimization problem regarding the damping coefficient. 
We determined the maximum power under linear motion. Further incorporating buoy rotation, 
the optimal power design scheme was obtained by adding the contribution of the rotational 
damper to the objective function, increasing the number of decision variables for the rotational 
damping coefficient, and incorporating torque analysis into the constraint conditions. To verify 
the reliability of the results, sensitivity analysis and various optimization algorithms were 
employed to validate the results. Therefore, this research involved a comprehensive mechanical 
analysis, the development of mathematical models, and the resolution of the following problems.
 Problem 1: With the device oscillating exclusively in response to ocean waves, using 
parameters such as incident wave frequency and additional pendulum mass, force analyses are 
conducted to calculate the oscillation displacement and velocity of the buoy and pendulum. 
These parameters are investigated under two conditions: constant damping coefficients and 
damping coefficients that vary systematically with the relative velocity of the buoy and 
pendulum.
 Problem 2: The device continues its oscillatory motion with constant damping coefficients 
within a specified range. The values within this range differ, and our objective is to determine 
the maximum output power and the corresponding damping coefficients under two scenarios: 
(1) constant damping coefficients and (2) damping coefficients that vary systematically with the 
relative velocity of the buoy and pendulum.
 Problem 3: The buoy undergoes both oscillatory and pitch motions. We use parameters to 
establish a mathematical model and calculate the oscillation displacement and velocity of the 
buoy and the pitch angle displacement and angular velocity under the conditions of constant 
linear and rotational damping coefficients.
 Problem 4: Similarly to the description in Problem 3, the buoy simultaneously experiences 
oscillatory and pitch motions. However, the linear and rotational damping coefficients are 
constant but within a specified range. The maximum output power and the optimal damping 
coefficients are calculated within this range.
 This research aimed to enhance the efficiency of wave energy conversion by addressing the 
complex dynamics and interactions within the system.(11–13) Internet of Things (IoT) devices, 
integrated with a variety of sensors, are used to ascertain diverse parameters and conditions of 
the ocean. These sensors include wireless voltmeters, wireless alternating current meters, 
wireless voltage detectors, wireless resistance sensors, wireless temperature sensors, wireless 
accelerometers, wireless pressure meters, and wireless water level sensors. They collectively 
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enable the real-time monitoring of ocean wave conditions via an IoT platform.(14) There is a close 
relationship between buoys and sensors in wave power generation systems, with sensors playing 
a crucial role in the monitoring and control of the system. These sensors are installed on buoys to 
monitor their position, orientation, and movement. Sensors can also be installed at the water 
surface near the buoys to monitor wave height, frequency, and direction. This information aids 
in optimizing the design of the power generation system to maximize the capture of wave 
energy. Additionally, sensors can be integrated into the power generation equipment to monitor 
its performance and status. These sensors can measure parameters such as rotational speed, 
voltage, and current of the generation equipment to ensure proper operation and necessary 
maintenance.(15) 
 We seek to contribute to the development of renewable energy sources in the face of growing 
energy demands and environmental concerns in the 21st century. Through these investigations, 
we aimed to gain a deep understanding of the mechanics and physics involved in this innovative 
energy conversion system. Furthermore, we sought to develop a reliable and efficient solution for 
harnessing ocean wave energy while addressing the complexities posed by varying conditions 
and parameters in a simulation.(16,17) This study was primarily focused on optimizing the design 
of a wave energy conversion system to address the four key problems above. First, a force 
analysis was conducted on the equilibrium state, which yielded the initial configuration of the 
entire device. Using the sea surface as the reference coordinate system, we set the initial 
displacements and velocities to zero. In the case of the pendulum, in its initial state, there was no 
relative velocity between the floater and the pendulum, the linear damper did not exert any 
force, and the spring force was in equilibrium with the pendulum’s gravity. During motion, the 
pendulum encountered resistance from the damper and a newly introduced spring force. For the 
floater, in the initial state, the buoyant force from the seawater was in equilibrium with the total 
weight of the device. During the motion, the floater was subjected to various forces, including 
wave excitation force, additional inertial force, wave-induced damping force, and buoyancy 
restoring force after balancing with gravity, as well as the reactive forces from the damper and 
the spring. The motion models of the floater and the pendulum were established on the basis of 
Newton’s second law, resulting in a system of second-order ordinary differential equations with 
displacement as the unknown variable. 
 To enhance precision in solving the model, the equations were transformed into a system of 
first-order ordinary differential equations by introducing velocity variables. To ensure accuracy 
in the results, the Euler-predictor-corrector method with second-order accuracy was used to 
solve the equations.(18) These models were programmed and solved for two different scenarios 
pertaining to Problem 1. Problem 2 involved the optimization of the PTO system’s energy 
output, which was governed by the work done by the linear damper. Using the equation power = 
force × velocity, we calculated the instantaneous power, and subsequently, the average power 
over a certain time interval could be obtained through integration. With the objective of 
maximizing the average power expressed as an integral and using the damping coefficient as the 
decision variable, subject to the motion equations established in Problem 1, we created an 
optimization model for maximizing power output. During the model-solving process, the 
integral in the average power expression was computed using the trapezoidal rule. In practical 
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implementation, the system’s motion equations were first simulated for a period T0, allowing the 
system to exhibit periodic behavior. Subsequently, the average power was computed within the 
time interval [T0, T0 + T]. 
 To solve the optimization model, it was transformed into an unconstrained minimization 
problem in terms of the damping coefficient. MATLAB’s fminsearch(19) or fmincon(20) functions 
were employed to solve the model, and the optimization process typically took only a few 
seconds. The third optimization challenge pertained to modeling the pendulum motion, building 
upon the foundation laid in Problem 1. When considering the presence of pitching motion, where 
the directions of gravity and buoyancy form angles with the pendulum’s axis, the model needs to 
account for the influence of the effects of gravity and buoyancy on these angles. For pitching 
motion, in addition to the various torques directly provided in the problem statement, the model 
also considered the torques generated by the vertical-axis components of gravity and buoyancy 
forces. Following the analysis of forces and torques, a coupled system of ordinary differential 
equations was established on the basis of Newton’s second law for linear and angular 
displacements for both the pendulum and the floater, taking into account pendulum and floater 
rotational inertias. The equations were solved by the Euler predictor-corrector method. Through 
programming implementation, simulations were carried out for the parameter scenarios provided 
in Problem 3.
 The fourth optimization challenge could be approached by modeling and solving it in a 
manner similar to Problem 2. In this case, the objective function for calculating average power 
was extended to include the contribution of the rotational damper. The decision variables 
consisted of two damping coefficients, one for the linear damper and one for the rotational 
damper, with the constraints based on the model from Problem 3. This approach enabled the use 
of the fmincon function to find the maximum output power. By incorporating the rotational 
damper into the optimization model, it became possible to address the enhanced design of the 
PTO system, optimizing its performance to harness wave energy more efficiently. This 
optimization process is aimed at striking a balance between the linear and rotational dampers to 
maximize power extraction from the oscillating motion of the floater and pendulum.

2. Simulation Processes

 The relative motion between these two components drives the damper to perform work, 
which is then captured as energy output. To achieve this, mechanical analysis and mathematical 
modeling were conducted to address the following issues:
Issue 1: Analysis of the equilibrium state, initial configurations, and force considerations in the 

system.
Issue 2: Optimizion of the power output by considering the linear damper’s contribution and the 

damping coefficient as a decision variable.
Issue 3: Modeling of the pendulum motion, incorporating the influence of angles on the strength 

of the effects of gravity and buoyancy during pitching motion.
Issue 4: Extension of the optimization to include the contribution of the rotational damper, with 

the goal of maximizing output power.
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 In the initial state, the entire apparatus was in equilibrium. For the pendulum, the equilibrium 
was governed by the balance between gravity and spring force, resulting in a two-force 
equilibrium. In the case of the floater, equilibrium was achieved through the balance between 
gravity and buoyancy, also forming a two-force equilibrium. During motion, the pendulum 
experienced the forces of gravity, spring force, and damping force from a linear damper. The 
spring force was related to displacement, while the damping force was related to velocity, 
leading to the formulation of a first-order differential equation with respect to time. For the 
floater, the situation was more complex owing to the influence of seawater. It was subjected to 
six forces: wave excitation force, additional inertia force, wave damping force, static water 
restoring force, spring force, and damping force from a linear damper. The additional inertia 
force was related to acceleration, and by applying Newton’s second law of motion, a second-
order differential equation with respect to time was derived. Solving this system of differential 
equations provided the oscillatory displacement and velocity of both the floater and pendulum at 
different time points. In Problem 2, the power calculation formula was derived from the equation 
power = force × velocity, and an optimization model was established. As indicated in Problem 1, 
the motion exhibited periodicity. The optimal solution within one period was determined, and 
through sensitivity analysis, the stability of the results was verified.
 For Problems 3 and 4, in which pitch motion was introduced in addition to the oscillatory 
motion along the central axis for the floater and pendulum, we made slight modifications to the 
model established in Problem 1. For the pitch motion, where an angle was formed between the 
gravitational force and the pendulum’s oscillation direction, we needed to extend the model from 
Problem 1. This involved conducting force and torque analyses to establish a new model. The 
equations of pitch motion for the pendulum and floater were derived on the basis of Newton’s 
second law for angular displacement. In Problem 4, the objective remained the determination of 
maximum average power. Building upon the model developed in Problem 2, we additionally 
considered the output power from a rotational damper. Intelligent algorithms were employed for 
solving the above problems, and the stability of the results was verified through sensitivity 
analysis. The following were assumed in the model.
1. The masses of the spring, damper, floater compartment, and central axis can be disregarded.
2. The various frictional effects at the connections between components are negligible.
3. The floater is a thin-walled structure with mass uniformly distributed over the surface, and 

surface thickness need not be considered.
4. The pendulum is a solid cylinder with a uniform mass distribution (constant density).

3. Results and Discussion

3.1 Establishment and solution of model for Problem 1

 In the equilibrium state, as shown in Fig. 1(a), the entire wave energy device experiences only 
vertical gravity and seawater buoyancy. The force balance relationship is expressed as

 ,total dm g g Vρ× = × ×  (1)
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where mtotal = mb (mass of buoy) + mp (mass of pendulum) = 7299 kg is the total mass of the wave 
energy device, ρ = 1025 kg/m3 is the density of seawater, g = 9.8 m/s2 is the acceleration due to 
gravity, and Vd is the displaced volume of the entire wave energy device (volume submerged in 
water). Substituting the given values, the displaced volume is calculated as Vd = mtotal/ρ = 
7.12096 m3.
 On the other hand, the volume of the conical shell portion of the buoy is

 31 / 3  0.83776 , mc cV h= ×π× =  (2)

where rf = 1.0 m is the bottom radius of the buoy and hc = 0.8 m is the height of the conical shell 
portion of the buoy. Since Vd > Vc, the conical shell portion of the buoy is completely submerged 
in seawater, as is a portion of the cylindrical shell. Let hc denote the height of immersion of the 
cylindrical shell into the water, then

 ( ) 2 2.00 m.c d c fh V V rπ =/= −  (3)

 Because of the fact that the damping force of the linear damper is proportional to the relative 
velocity between the buoy and the pendulum, in the initial equilibrium state, there is no relative 
motion between the buoy and the pendulum, and therefore, the damping force is zero. Thus, in 
the equilibrium state, as shown in Fig. 1(b), the pendulum experiences only the gravitational 
force and the spring force in the vertical direction. The force balance relationship is expressed as

 0 ,pm g k l= − ×∆  (4)

where mp = 2433 kg is the mass of the pendulum, k = 80000 N/m is the spring stiffness, and Δl0 

Fig. 1. (Color online) Force analysis of the equilibrium state of wave energy device: (a) buoyancy force analysis 
and (b) pendulum force analysis.

(a) (b)
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is the spring extension in the equilibrium state. The negative sign on the right side indicates that 
the direction of the spring force is opposite to the direction of extension. The extension is 
calculated as

 0 / 0.2980425 m.pl m g k∆ = − × = −  (5)

Therefore, the initial length l0 of the spring in the equilibrium state is

 0 0 0.5 0.2980425 0.2019575 m,l l l= + ∆ = − =  (6)

where l = 0.5 m is the original length of the spring. Establishing the mathematical model of the 
oscillating motion is accomplished with the reference frame of the earth (or sea surface).
 Taking the initial positions of the buoy and pendulum as their respective equilibrium 
positions, let their vertical displacements be denoted as xb(t) and xp(t), where upward is 
considered the positive direction (i.e., upward motion has positive displacement). Acceleration 
(a) and velocity (v) can be obtained by taking the derivatives of displacement with respect to time 
(t), that is, a = x and v = x. Here, a dot above x represents a first-order time derivative, and two 
dots represent a second-order time derivative. During the motion of the pendulum, it is subjected 
to three forces: gravity (−mp × g), spring force [−k(Δl0 + (xp − xb)], and damping force from the 
linear damper [−dd (xp − xb)]. Here, dd represents the damping coefficient of the damper. The 
force analysis is depicted in Fig. 2(a), and according to Newton’s second law, where the initial 
conditions are xp(0) = 0 and xb(0) = 0, the motion equation is given by

 ( ) ( ) ( ) ( )0 .(p p p p b d p b p b d p bm x m xxg k l x x d x k x d xx× = − × − ∆ + − − − = − − − −    (7)

 During the motion of the buoy, it is subjected to six forces: wave excitation force f cosωt, 
additional inertia force –ma × xf, wave-induced damping force –dwxb, static buoyancy force (the 
difference between total buoyancy and total gravity) –ρ × g × π × rf

2 × xb, spring force newly 

Fig. 2. (Color online) Force analyses of the motion processes for (a) the buoy, b, and (b) the pendulum, p.

(a) (b)



Sensors and Materials, Vol. 36, No. 4 (2024) 1715

generated relative to the equilibrium position k(xp − xb) resulting from the relative displacement 
between the pendulum and the buoy, and damping force from the linear damper dd(xp − xb). The 
force analysis is illustrated in Fig. 2(b), where f is the amplitude of the wave excitation force, ω is 
the incident wave frequency, ma is the oscillatory added mass, and dw is the wave-induced 
damping coefficient. On the basis of Newton’s second law, the motion equation for the buoy is

 ( ) ( ) ( )2cos  , f a b w b f b p b d p bm m x f t d x g r x k x x d x xω ρ+ = − − × ×π× × + − + −     (8)

where the initial conditions are xb(0) = 0 and xb(0) = 0 and the mass of the buoy is 4866 kg. In 
summary, the motion model for the buoy and the pendulum is

 
( ) ( ) ( )

( ) ( ) ( ) ( )2 cos  0,

,p b p b d p b

f a f w b f b p b d p b

m x t k x x d x x

m m x t f t d x g r x k x x d x xω ρ

× = − − − −

+ = − − × ×π× × + − + − =

  

   

 (9)

where the initial conditions are xb(0) = 0, xb(0) = 0, xp(0) = 0, and xp(0) = 0.
 The parameters for the model of Problem 1 are shown in Table 1. When the wave circular 
frequency is ω, the time for one wave period is 2π/ω. For Problem 1, considering only 40 wave 
periods, the total simulation time is chosen as T = 40 × 2π/ω ≈ 180 s. Within the interval [0, T], 
with a time step of Δt = 0.01 s, a uniform grid is created for time discretization, where the 
discrete time points are denoted as tn = nΔt and the corresponding displacement is x(tn) = xn, 
where T/Δt = 18000 and n = 0, 1,…, N. By introducing the velocity variable v = x, the control 
equation can be equivalently transformed as follows:

 
( ) ( ) ( )

( ) ( ) ( ) ( )2

 

 cos  0,

p p p b d p b

f a b w b f b p b d p b

m v t k x x d v v

m m v t f t d v g r x k x x d v vω ρ

× = − − − −

+ = − − × ×π× × + − + − =
 (10)

where xp(t) = vp, xb(t) = vb, xp(0) = 0, vp(0) = 0, xb(0) = 0, and vb(0) = 0. To ensure the reliability of 
the computational results, we employ the Euler-predictor-corrector scheme to discretize the 
aforementioned system of ordinary differential equations.(21) The discretization format for the 
prediction steps are

Table 1
Parameters in model for Problem 1.

Parameter Incident wave 
frequency ω (s−1)

Oscillatory added 
mass ma (kg)

Oscillatory wave 
damping coefficient 

dw (Ns/m)

Oscillatory excitation 
force amplitude f (N)

Value 1.4005 1335.535 656.3616 6250
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( )
( )
( )
( )

*
1

*
2

*
3

*
4

, , , , ,

, , , , ,

, , , , ,

, , , , ,

n n n n n n
p p p b p p

n n n n n n
p p p b p p

n n n n n n
p p p b p p

n n n n n n
p p p b p p

v v tf t x x v v

v v tf t x x v v

x x tf t x x v v

x x tf t x x v v

= + ∆

= + ∆

= + ∆

= + ∆

 (11)

and the correction steps are

 

( ) ( )
( ) ( )
( ) ( )

( 1) 1 * * * *

( 1) 1 * * * *

( 1)

2

1 * * *

1 1

*

2

(

3 3

0.5 , , , , , , , , ,

0.5 , , , , , , , , ,

0.5 , , , , , , , , ,

n n n n n n n n
p p p b p p p b p p

n n n n n n n n
b b p b p p p b p p

n n n n n n n n
p p p b p p p b p p

n
b

v v t f t x x v v f t x x v v

v v t f t x x v v f t x x v v

x x t f t x x v v f t x x v v

x

+ +

+ +

+ +

+

 = + ∆ + 
 = + ∆ + 
 = + ∆ + 

( ) ( )1) 1 * * * *
4 40.5 , , , , , , , , ,n n n n n n n

b p b p p p b p px t f t x x v v f t x x v v+ = + ∆ + 

 (12)

where

 

( ) ( ) ( )
( )

( ) ( ) ( )
( )
( )

0

1

0 0 0

2

4

2

3

, , , , /

, , , ,

cos / ,

, ,

.

0,

,

,, ,

, , , ,

b b p p

p b p b p b d p b p

p b p b

w b f b p b d p b p b

p b p b p

p b p b b

x

d

v x v

x v vf t x x v v k x d m

f t x x v v

f t v g r x k x d v m m

f t x x v v v

x

x v

f t x v v v

ω ρ

 = − − 

 = − − × ×π× + + + 

=

= = = =

× −

=

− −

−
 (13)

3.1.1 dd is 10000 N‧s/m

 MATLAB programming was utilized to solve and obtain the oscillation displacement and 
velocity curves for the buoy and pendulum, as shown in Fig. 3. The reference points for the 
oscillation displacement and velocity curves of the buoy are the initial position points, and the 
two curves exhibit extremely high similarity. As time progresses, the extreme values of the 
oscillatory displacement and velocity of the buoy gradually stabilize at approximately 0.43 m 
and 0.6 m/s, respectively, and eventually exhibit periodic variations after a certain duration. 
Similarly, the oscillation displacement and velocity curves for the pendulum, with the buoy as 
the reference object, also demonstrate a high degree of similarity. Over time, the relative 
oscillation displacement and velocity extremes of the pendulum with respect to the buoy 
gradually stabilize at approximately 0.025 m and 0.038 m/s, respectively, and exhibit periodic 
variations after a certain duration. Table 2 provides the oscillation displacement and velocity of 
the buoy and pendulum at time intervals of 10, 20, 40, 60, and 100 s.
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3.1.2 dd = 10000|vp − vb|0.5 N‧s/m

 We also employed MATLAB programming to solve and obtain the oscillation displacement 
and velocity curves for the buoy and pendulum. As illustrated in Fig. 4, we observed that even 
with varying damping coefficients, the results obtained were highly similar to those in scenario 
1. Table 3 provides the oscillation displacement and velocity of the buoy and pendulum at time 
intervals of 10, 20, 40, 60, and 100 s.

3.2 Establishment and solution of model for Problem 2

 From Problem 2, it is known that the energy output of the PTO system is the work done by 
the linear damper. According to the modeling process in Problem 1, it is known that the damper 
bears a damping force of dd(vp − vb). Under this force, the displacement of the damper is (xp − xb), 
and the deformation velocity of the damper is (vp − vb). According to the equation power = force 
× velocity, the instantaneous power P of the damper is dd(vp − vb)2. The average output power P 
during the time interval [T0, T0 + ΔT] is calculated as

 ( )0

0

21  .
T T

d p bT
P d v v dt

T
+∆

=
∆

−∫  (14)

Fig. 3. (Color online) Computational results for scenario 1 of Problem 1: (a) oscillation displacement curves of the 
buoy and pendulum and (b) oscillation velocity curves of the buoy and pendulum.

(a) (b)

Table 2
Oscillation displacement and velocity of the buoy and pendulum in scenario 1.
Time (s) 10 20 40 60 100
Buoy oscillation displacement xf (m) −0.19703 −0.59289 0.28848 −0.31922 −0.08965
Buoy velocity vf (m/s) −0.63652 −0.22854 0.30792 −0.47276 −0.60230
Pendulum oscillation displacement xp (m) −0.21847 −0.63673 0.29981 −0.33651 −0.09049
Pendulum velocity vp (m/s) −0.68897 −0.25942 0.32771 −0.50865 −0.64106
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 Problem 2 requires optimizing the damping coefficient of the damper to maximize the 
average output power. Therefore, the mathematical model for this problem is expressed as 
follows:

 ( ) ( )0

0

21max  ,
T T

d d p bTT
P d d v v dt

+∆

 ∆
 = −  ∫  (15)

 
( ) ( ) ( )

( ) ( ) ( ) ( )2cos  0,

,p p p b d p b

f a b w b f b p b d p b

m v t k x x d v v

m m v t f t d v g r x k x x d v vω ρ

× = − − − −

+ = − − × ×π× × + − + − =





 (16)

where ( ) ( ) ( ) ( ) ( ) ( ), , 0 0 0 0 .p p p pb b bbt v t v xx x v x v= = = = = 

 For Problem 2, we will also consider two scenarios and solve the above model accordingly. 
For Problem 2, the parameters in the model are as follows: the incident wave frequency is 2.2143 
s−1, the oscillatory added mass ma is 1165.992 kg, the oscillatory wave damping coefficient dd is 
167.8395 N‧s/m, and the oscillatory excitation force amplitude f is 4890 N.

Fig. 4. (Color online) Computational results for scenario 1 of Problem 2: (a) oscillation displacement curves of the 
buoy and pendulum and (b) oscillation velocity curves of the buoy and pendulum.

Table 3
Oscillation displacement and velocity of the buoy and pendulum in scenario 2.
Time (s) 10 20 40 60 100
Buoy oscillation displacement xf (m) −0.21227 −0.61340 0.27173 −0.33199 −0.09451
Buoy velocity vf (m/s) −0.64798 −0.24185 0.29078 −0.48441 −0.60775
Pendulum oscillation displacement xp (m) −0.24139 −0.66354 0.28329 −0.35476 −0.09999
Pendulum velocity vp (m/s) −0.69437 −0.26297 0.30785 −0.51793 −0.64783

(a) (b)
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3.2.1 dd is a constant

 In the case where the damping coefficient is constant, given that the damping coefficient lies 
within the range [0, 100000], if the average output power is a monotonic function of the damping 
coefficient, an efficient solution can be obtained by the binary search method. However, from 
the model, it can be observed that when dd = 0, P = 0; and when dd tends to infinity, there will be 
no relative motion between the pendulum and the float, resulting in P = 0. Therefore, the average 
output power is not a monotonic function of the damping coefficient. In this case, using the 
binary search method may not lead to the optimal solution. Given these reasons, we transform 
the objective function equivalently to

 ( ) ( )0

0

2
min  .1 T T

d d p bT
P d d v v dt

T
+∆ − =

∆
−  ∫  (17)

 The problem is transformed into an unconstrained minimization problem with respect to the 
damping coefficient and then solved using optimization tools in MATLAB, such as fminsearch 
or fmincon. The solving process takes only a few seconds. When computing the integral in the 
objective function, we employ the trapezoidal rule. In the specific implementation, we first 
simulate the motion equations for duration T0 to induce periodicity in the system. Subsequently, 
we calculate the average power over the time interval [T0, T0 + T], and the calculation is 
performed using the MATLAB library function fminsearch. For this scenario, with T0 = 100 s 
and T = 200 s, the maximum average power is found to be 229.16 W, corresponding to an optimal 
damping coefficient of 37198 N·m/s. To validate the reliability of the results, Fig. 5 illustrates the 
variation of maximum output power with the damping coefficient. It is evident that the curve is 
convex, facilitating the attainment of a global optimum, and the optimal solution aligns with our 
computed result.

Fig. 5. Variation of maximum output power with damping coefficient in scenario 1 of Problem 2.
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3.2.2 dd is a power function of the absolute value of the relative velocity

 In this scenario, the formula for calculating the damping (damping coefficient) is as follows:

 0 ,
c

d p bd d v v× −=  (18)

where the proportionality coefficient d0 lies in the range [0, 100000], and the power exponent c 
is within the range [0, 1]. In this case, the objective function is actually given by

 ( ) ( )0

0
0 0T

.1max ,  
T T c

p b p bP d c d v v
T

dtv v
+∆

×
∆

 = − −
× ∫  (19)

 In this scenario, there are actually two decision variables. When using the fminsearch 
function for computation, there arises an issue of the variable exceeding its range. Therefore, the 
fmincon function is employed to solve the problem. The obtained maximum average power is 
229.16 W, corresponding to the optimal damping proportionality coefficient of 37198 and a 
power exponent of 6.3 × 10−7. To verify the reliability of the computational results, we plotted a 
3D graph illustrating the relationship between the maximum output power and the 
proportionality coefficient and power exponent of the damping factor, as shown in Fig. 6.
 We observe that the obtained 3D surface is convex, indicating the existence of a maximum 
average power and consequently yielding a globally optimal solution. It is noteworthy that the 
peak of the graph is relatively flat. Therefore, when using different optimization algorithms, 
there may be instances where the objective function values are nearly identical, but the optimal 
parameter values differ significantly. Furthermore, Fig. 7 illustrates the 1D functional 
relationship between the maximum output power and the proportionality coefficient and power 

Fig. 6. (Color online) 3D plot illustrating the relationship between the maximum output power and the 
proportionality coefficient and power exponent of the damping factor.
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exponent. It is evident that the maximum output power decreases with decreasing power 
exponent. This observation helps explain why the optimal power exponent we obtained is close 
to 0.
 Here, we analyze the sensitivity of the calculation results to the chosen interval length T. In 
the analysis, T0 is set to 100 s, and different values of T are considered. Figure 8 presents the 
corresponding results. We observe that with the increase in interval length, the damping power 
exhibits periodic fluctuations and gradually stabilizes. All maximum power values are around 
229, indicating that the calculation results are insensitive to T, thereby ensuring the stability of 
the computational results.

3.3 Establishment and solution of model for Problem 3

 When analyzing the pendulum motion equation, the primary reference frame is established 
with respect to the earth (sea surface). Subsequently, the initial positions of the buoy and 
pendulum are defined as equilibrium positions, and oscillatory displacement and angular 
displacement are measured with reference to these positions. In the context of oscillatory motion, 
the variable notations employed in Problem 1 are maintained. Specifically, their displacements 
along the vertical direction (along the central axis direction) are denoted as xb(t) and xp(t), with 
corresponding velocities denoted as vb(t) and vp(t). Upward is considered the positive direction. 
For pitch motion considerations, their angular displacements are designated as θb(t) and θp(t), 
with angular velocities denoted as wb(t) = θb(t) and wp(t) = θp(t), and a clockwise rotation is 
considered as the positive direction. The oscillatory motion of the pendulum is still driven by the 
combined forces of spring elasticity and damping resistance, with the direction of oscillatory 
motion aligned along the central axis. As deduced from the modeling process in Problem 1, in 
the case of pure oscillatory motion, the spring force is actually given by −k(∆l0 + xp − xb). When 
the angular displacement of the pendulum, θp, is 0, the gravitational force on the pendulum, 

Fig. 7. (Color online) Parameter dependence of the maximum output power. (a) Variation of the maximum output 
power with the power exponent. (b) Variation of the maximum output power with the proportionality coefficient.

(a) (b)
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−mp × g, is balanced by −k∆l0, resulting in an effective driving force for oscillatory motion of 
−k(xp − xb). However, when θp ≠ 0, an angle is formed between the gravitational force and the 
direction of pendulum oscillation. The component of gravity in the oscillation direction can be 
calculated as −mp × g × cos(θp). Consequently, the effective driving force for oscillatory motion 
becomes

 ( ) ( ) ( )( ) ( )0 c .os 1 cosp b p p p p p bk l x x m g m g k x xθ θ− ∆ + − − × × = × × − − −  (20)

 The linear damping force is the same as in Problem 1. Therefore, by drawing on the modeling 
approach from Problem 1, we can derive the oscillatory motion equation for the pendulum in the 
presence of pitch motion as shown below. 

 ( ) ( )( ) ( ) ( ) ( )( ) ( )1 cos  and  p p p p p b d p b p pm v t m g k x x d v t v t x t vθ× = × × − − − − − =   (21)

 The rotation of the pendulum is primarily driven by the torque generated from the torsional 
spring, –kt × (θp – θb), and the torque produced by the rotational damper, –dr(wp – wb), where kt 
and dr are the stiffness of the torsional spring and the damping coefficient of the rotary damper, 
respectively. Additionally, the gravitational component along the vertical central axis direction 
exerts a torque that drives the rotation. The formula for calculating this torque is given by 
mp × g × sin(θp) × Lp. Therefore, on the basis of Newton’s second law, the equation of motion for 
the pendulum in pitch motion is obtained as

 ( ) ( ) ( ) ( )sin  an ,d p p p p p t p b r p b p pI w t m g L k d w w wθ θ θ θ× = × × × ×− − − − =  (22)

where Ip is the moment of inertia of the pendulum. The initial conditions for the above motion 
equation are xp(0) = 0, vp(0) = 0, θp(0) = 0, and wp(0) = 0. 

Fig. 8. (Color online) Results of sensitivity analyses regarding the interval length: (a) scenario 1 and (b) scenario 2.

(a) (b)
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 For the pitch motion, it is noteworthy that the rotation of the buoy occurs around the center of 
buoyancy (the intersection point of the central axis and the horizontal plane). As analyzed in 
Problem 1, the distance from the center of buoyancy to the apex of the cone when in the 
equilibrium state is hd + hc = 2.8 m, where hd and hc are the dipping length and cone shell length, 
respectively. Therefore, during motion, the distance from the center of buoyancy to the apex is 
(2.8 – xb) m. Additionally, to calculate the moment of inertia for the rotation of the float, it is 
necessary to determine the position of its center of mass. Since the mass of the buoy is distributed 
over the surface, determining the center of mass requires the calculation of the surface area. For 
the cone shell and the cylindrical shell (considering the top cover), their surface areas are, 
respectively,

 2 2  and 2 ,col b shell shell con b conS r h r S r h= π + = π + π  (23)

where Scol, Scon, and hcon are the surface area of the cone shell, surface area of the cylinder, and 
height of the cylinder. The distance from the centroid to the apex of the cone can be determined 
from them, as shown below. 

 ( ) ( ) ( )2 20.5 / 2 0.5 0.5 0.5 2.2298con con col b con con shell shell bh S S r h h h r r−+ π = =− + + +  (24)

 Thus, the distance between the center of gravity and rotational center point of the buoy can be 
obtained.

 ( )2.8 2.2298 0.5702b b bL x x= − = −−  (25)

 It can also be determined that the rotational inertia of the buoy is Ib = mbLb
2. For Problem 3, 

the parameters in the model are as follows: the incident wave frequency is 1.7152 s–1, the 
oscillatory added mass ma is 1028.876 kg, the oscillatory wave damping coefficient dd is 
683.4558 N s/m, the oscillatory excitation force amplitude f is 3640 N, the pitch added moment of 
inertia Ia is 7001.914 kg·m², the pitch wave damping coefficient dp is 654.3383 Nms, and the 
pitch excitation moment amplitude L is 1690 N·m. When the wave circular frequency is ω, the 
time for one wave period is 2π/ω. For Problem 3, only 40 wave periods are considered, so the 
total simulation time is taken as T = 40 × 2π/ω ≈ 146.5 s. Here, the Euler-predictor-corrector 
scheme continues to be used to solve this model. Because of the complexity of the model, it is not 
convenient to provide the discrete format. We have obtained the oscillatory displacement curves 
for the buoy and pendulum, as well as the oscillatory velocity curves, pitch angle displacement 
curves, and pitch angular velocity curves, as shown in Fig. 9. Detailed results are presented in 
Table 4.
 From the above calculation results, it can be seen that the buoy and pendulum rotate almost 
synchronously, and their rotational amplitudes are nearly identical. This may be attributed to an 
overly rigid connection between the buoy and pendulum, namely, an excessively high torsional 
spring stiffness. To validate our hypothesis, we reduced the torsional spring stiffness from 
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250000 to 25000 and performed the calculations again. The results are shown in Fig. 10. At this 
point, the oscillatory displacement and velocity of the pendulum and buoy remain unchanged. 
However, the pitch amplitude of the pendulum is significantly larger than that of the buoy, 
consistent with the animation of Problem 2, thereby confirming the validity of the model 
presented in this paper.

Fig. 9. (Color online) Computational results for Problem 3 (torsional spring stiffness is 250000): (a) oscillatory 
displacement curve of the buoy and pendulum, (b) oscillatory velocity curve of the buoy and pendulum, (c) pitch 
angle displacement curve of the buoy and pendulum, and (d) pitch angular velocity curve of the buoy and pendulum.

Table 4
Oscillatory displacement and velocity of the buoy and pendulum, and pitch angle displacement and angular velocity.
Time (s) 10 20 40 60 100
Buoy oscillatory displacement xb (m) –0.55198 –0.75425 0.35870 –0.35160 –0.05554
Buoy velocity vv (m/s) 0.96684 –0.41629 0.70467 –0.76841 –0.97396
Buoy angular displacement θb (Tad) 0.04549 0.23791 –0.14155 0.08640 0.03858
Buoy angular velocity wb (Tad/s) –0.18799 0.12651 –0.0721 0.13581 0.21637
Pendulum oscillatory displacement xp (m) –0.62418 –0.81647 0.38400 –0.37476 –0.04844
Pendulum velocity vp (m/s) 1.02760 –0.46095 0.78928 –0.84853 –1.06690
Pendulum angular displacement θp (Tad) 0.04738 0.24807 –0.14903 0.09055 0.04057
Pendulum angular velocity wp (Tad/s) –0.19571 0.13074 –0.07811 0.14158 0.22072

(a) (b)

(c) (d)
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3.4 Establishment and solution of model for Problem 4

 Problem 4 requires further consideration of the output power of the rotational damper, 
judging from the analysis for Problem 2. As revealed in the modeling process for Problem 3, the 
damping torque generated by the rotational damper is given by dr × (wo – wb). Under the 
influence of this torque, the rotational damper undergoes an angular displacement of θo – θb, and 
the angular deformation velocity of the damper is given by wo – wb. Applying the principle of 
rotational power = torque × angular velocity, the instantaneous power of the rotational damper is 
expressed as dr × (wp – wb)2. Over the time interval [T0, T0 + T], the overall average output power 
P can be defined as follows.

 ( ) ( )0

0

2 21   –d p

T

r p

T

T b bP d v v d w w dt
T

+  = × − + ×  ∫  (26)

Fig. 10. (Color online) Computational results for Problem 3 (torsional spring stiffness is 25000): (a) oscillatory 
displacement curve of the buoy and pendulum, (b) oscillatory velocity curve of the buoy and pendulum, (c) pitch 
angle displacement curve of the buoy and pendulum, and (d) pitch angular velocity curve of the buoy and pendulum.

(a) (b)

(c) (d)
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 Problem 4 requires the optimization of the damping coefficients of the linear damper and 
rotational damper to maximize the average output power. Therefore, the mathematical model for 
this problem is as follows.

 ( ) ( ) ( )0

0

2 21max ,  ,
T T

d o d p b r p bT
P d d d v v d w w dt

T
+∆  × + ×  

− −∫  (27)
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 (28)

ks is the static water restoring moment coefficient. For Problem 4, the parameters in the model 
are as follows: the incident wave frequency is 1.9806 s−1, the oscillatory added mass ma is 
1091.099 kg, the oscillatory wave damping coefficient dd is 528.5018 N m/s, the oscillatory 
excitation force amplitude f is 1760 N, the pitch added moment of inertia Ia is 7142.493 kg·m², the 
pitch wave damping coefficient dd is 1655.909 N m/s, and the pitch excitation moment amplitude 
L is 2140 N·m. Figure 11 illustrates the 3D relationship between the maximum output power, 
rotational damping coefficient, and linear damping coefficient. As can be seen, the obtained 3D 
surface remains convex, indicating the existence of a maximum average power. The optimization 
algorithm easily yields a globally optimal solution. The final result reveals a maximum output 

Fig. 11. (Color online) 3D relationship between the maximum output power and the rotational damping coefficient 
and linear damping coefficient.
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Fig. 12. (Color online) Convergence process of the quantum genetic algorithm.

power of 294.8583 W, with corresponding optimal values for the rotational damping coefficient 
at 99999.9199 N m/s and the linear damping coefficient at 56957.96676 N·m/s.
 To verify the reliability of the results, we conducted result validation using both the quantum 
genetic algorithm(22) and the improved flower pollination algorithm (tMFPA).(23) Figure 12 
illustrates the convergence process of the quantum genetic algorithm, while Fig. 13 shows the 
results obtained through the tMFPA algorithm. It is noteworthy that the computational outcomes 
from these various methods are consistent, thereby validating the reliability of the results. This 
multi-algorithm validation approach enhances the robustness and credibility of the findings. The 
tMFPA algorithm utilizes chaotic mapping for the initialization of the positions of individual 
flowers. Subsequently, during the global pollination process, individual positions are updated by 
leveraging random individuals with t-distribution perturbations and Levy flights. This 

(a) (b)

Fig. 13. (Color online) Schematic diagram of flower pollination algorithm: (a) parameter space composed of two 
differential vectors and (b) gradual convergence of the objective function.
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collaborative approach accelerates convergence and enhances the diversity of the search space. 
In the local pollination process, the algorithm incorporates a mutation strategy with two 
differential vectors and a low-probability strategy to facilitate escaping from local optima. 
 Within the algorithm, the expression for maximum power output is employed as the fitness 
function for tMFPA, aiming to determine the maximum power output value. Figure 13(a) 
illustrates the parameter space composed of two differential vectors, while Fig. 13(b) 
demonstrates the gradual convergence of the objective function with increasing iteration counts. 
The algorithm ultimately achieves a maximum power output value of 294.8583 W. This 
comprehensive approach combines chaotic initialization, global pollination with t-distribution 
perturbations and Levy flights, and local pollination with a mutation strategy, contributing to 
the efficiency of the tMFPA algorithm in finding optimal solutions in the context of maximum 
power output. Similar to Problem 2, we conducted a sensitivity analysis on the results, and the 
findings are presented in Fig. 14. Upon analysis, we observed a satisfactory level of result 
stability, meeting our expectations.

4. Conclusions

 For Problem 1, we established a motion model for the buoy and pendulum on the basis of 
complex oscillatory motion and simplified the problem. Newton’s second law was applied, 
taking into account the damping forces of gravity, spring force, and the linear damper during the 
pendulum motion. Additionally, the buoy experienced six forces (wave excitation force, added 
inertia force, wave damping force, static water restoring force, spring force, and linear damper 
force) from the seawater, enhancing the accuracy and reliability of the model. The Euler-
predictor-corrector scheme was employed to discretize the ordinary differential equation system, 
simplifying the solution process. For Problem 2, building on Problem 1, an optimization model 
for maximum power output was established, considering the periodic nature of the motion. A 
binary search was initially used to find the optimal solution for one period, which reduced the 
model complexity. Because of the non-monotonic nature of average output power with respect to 

Fig. 14. (Color online) Sensitivity analysis for Problem 4.
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damping coefficients, the binary search may not yield the optimal solution. Further optimization 
was carried out by the steepest descent method, but efficiency was found to be suboptimal. 
Finally, the Matlab fminsearch function was employed to simplify model calculations.
 For Problem 3, the model from Problem 1 was extended to consider the gravitational force on 
the pendulum, introducing an angle between the direction of gravity and the pendulum’s 
oscillation. Further force analysis was conducted to establish a mathematical model, which 
reduced the model complexity. The equations of motion for pitch and buoy oscillation were 
obtained through force and torque analyses. The Euler-predictor-corrector scheme was again 
used for model solution, ensuring simplicity and feasibility. For Problem 4, an optimization 
model for the damping coefficients of the linear damper and rotational damper was established 
on the basis of that of Problem 2, enhancing model reliability. Smart algorithms were employed 
to simplify model calculations. Sensitivity analysis showed good stability, affirming the 
reliability of the model. Additionally, tMFPA was used to validate the results, and the model’s 
reliability was confirmed. On the basis of the results of the mechanical analysis of wave energy 
devices, we obtained a motion model for the device transitioning from one dimension to two 
dimensions. Through the analysis of the motion model, we conducted an analysis of the 
maximum average output power of wave energy, providing insights for the analysis of the 
device’s motion in more dimensions. This work yielded valuable insights into the research 
direction of power optimization control for wave energy generation devices. It can serve as a 
reference for further research and exploration in the field of wave energy, especially in 
understanding and optimizing the power output of devices operating in multiple dimensions.
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