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 Indium gallium oxide (IGO) ultraviolet (UV) photodetectors (PDs) were fabricated by 
cosputtering. The power of the gallium oxide target was fixed at 80 W, while the power of the 
indium oxide target was varied at 20, 30, 40, and 80 W. As the amount of indium doping 
increased, the dark current and response decay time increased. Furthermore, the sensitivity and 
responsivity of the PDs also increased, reaching the maximum values of 5.20 × 103 at 30 W/80 
W and 1.72 × 102 A/W at 40 W/80 W, respectively. However, excessive indium doping resulted 
in excessively high dark current and increased sensitivity and response decay time. Therefore, 
proper control of indium doping can lead to high-performance IGO UV PDs.

1. Introduction

 Ultraviolet (UV) photodetectors (PDs) have received much attention in the past decade owing 
to the increase in UV radiation. UV radiation is a form of electromagnetic radiation with 
wavelengths shorter than those of visible light but longer than X-rays. The UV spectrum is 
typically divided into three regions,(1) UV-A, UV-B, and UV-C. UV-A (315–400 nm) has the 
longest wavelength among the three UV regions and is closest to visible light. UV-B (280–315 
nm) radiation has a higher energy than UV-A, which means it can cause more severe damage to 
the skin, causing skin swelling and extreme pain. However, it is blocked by the ozone layer, so 
only a small amount reaches the earth’s surface.(2) At wavelengths below 200 nm, vacuum UV 
rays can be absorbed by air. Therefore, the wavelength of UV-C that can pass through the 
atmosphere is between 200 and 280 nm. The shorter the wavelength, the more dangerous it is, 
but because the ozone layer can completely block UV-C, all living things on earth will be 
protected from UV-C. UV PDs find utility in a wide range of commercial and military 
applications.(3–5) They can be divided into two categories in accordance with wavelength: 
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visible-blind PDs (280 < λ ≤ 400 nm) and solar-blind PDs (λ ≤ 280 nm). With visible-blind PDs, 
we can detect the outdoor UV intensities of UV-A (315–400 nm) and UV-B (280–315 nm) 
radiation. Solar-blind PDs detect UV radiation but are insensitive to the longer wavelengths of 
visible and infrared light. They can also be used to detect flame and UV signatures in military 
applications.(6) The most important thing for humans is that long exposure to UV light can cause 
sun damage to the surface skin, DNA damage and mutation, and also eye damage. Hence, the 
development of UV PDs exhibiting superior sensitivity and exceptional selectivity is crucial. As 
technology advances, PDs achieve better response and miniaturization. There are numerous 
approaches to achieving better performance of the PD, such as modifying its structures or 
developing new sensing materials. Among all the different types of PD structure, we chose 
metal–semiconductor–metal (MSM) as our study structure.(7–10) It consists of two metal contacts 
(electrodes) placed on a semiconductor material, creating a sandwich-like structure. It offers 
advantages such as high-speed response, high sensitivity, and compatibility with integrated 
circuit fabrication processes. As the sensing materials, we chose metal oxide semiconductor-
based sensors because of their low cost, high efficiency, and easy fabrication. Ga2O3 is a 
potential material for electronic applications because of its wide bandgap, high electron mobility, 
UV transmittance, and physical and chemical stability.(11,12) However, it has the fatal flaw of low 
conductivity, which limits its development. Fortunately, we can improve the conductivity by 
doping it with other materials, such as SnO2, ZnO, and In2O3.(13) In this study, we deposited In/
Ga oxide thin film as our active layer material by cosputtering to achieve a high-performance 
sensor. Ga2O3 is an n-type material with a wide bandgap (around 4.8–5.3 eV) and demonstrates 
excellent transmittance in the deep-UV region, making it suitable for UV optoelectronic devices 
such as UV PDs, sensors, and LEDs. Also, it exhibits good physical and chemical stability, 
ensuring its reliability and longevity under high-temperature operating conditions.(14,15) In2O3 is 
also an n-type material with a wide bandgap (around 2.8–3.3 eV), and it exhibits both high 
electrical conductivity and high optical transparency.(16,17) By mixing Ga2O3 and In2O3, indium 
gallium oxide (IGO) with the bandgap of 4.2–4.6 eV is formed, which combines the advantages 
of Ga2O3 and In2O3, improving the demerit of the low conductivity of Ga2O3. Gallium and 
indium, both belonging to Group 13, exhibit stable oxidation states of +3 in their respective 
oxides.(18) The similarity in chemistry makes IGO a promising material, and we chose it as the 
active layer in this study.(19–22)

2. Experimental Procedure

 The fabricated devices consist of a quartz substrate, IGO thin film deposited by cosputtering, 
and Ni/Au interdigitated electrodes. Before the fabrication, the 2 cm × 2 cm quartz substrate was 
cleaned by soaking in acetone, isopropanol, and deionized (DI) water in sequence and vibrated 
in a ultrasonic bath for five minutes. Finally, it was dried with a nitrogen gun. After cleaning the 
substrate, a radio frequency (RF) magnetron sputter system was used to deposit the IGO thin 
film (150 nm) as the active layer at room temperature. In this study, cosputtering with the two 
targets of In2O3 and Ga2O3 is introduced. The RF power of the Ga2O3 target was fixed at 80 W, 
whereas the RF power of the In2O3 target was varied as 20, 30, 40, and 80 W with the chamber 
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pressure of 5 mTorr. In the last step, Ni/Au (30 nm/70 nm) electrodes with width/length (W/L) of 
0.1 mm/1.2 mm and the finger distance of 0.2 mm were deposited through a mask using electron 
beam (E-beam) evaporation equipment. Atomic force microscopy (AFM) was used to observe 
the surface morphology and roughness of the film. Energy-dispersive X-ray spectroscopy (EDS) 
was used to determine the ratio of element composition. An Agilent B1500A semiconductor 
parameter analyzer was used to measure the current–voltage (I–V) characteristics of the devices.

3. Results and Discussion

 The surface morphology and roughness of the film were measured by AFM. As shown in 
Fig. 1, the cosputtered films were investigated, varying the RF sputtering power of the In2O3 
target as 20, 30, 40, and 80 W, while keeping the power of the Ga2O3 target at 80 W. Table 1 
shows the average root mean square (RMS) surface roughness values of IGO films. Lower 
values represent smoother surfaces.(23) Therefore, the measurement results indicate that the 
surface roughness of the cosputtered films is lower than that of pure indium oxide [Fig. 1(a)].

Fig. 1. (Color online) AFM images of surface roughnesses of cosputtering film. (a) Pure In2O3, (b) 20 W/80 W, (c) 
30 W/80 W, (d) 40 W/80 W, and (e) 80 W/80 W.

(a) (b)

(c) (d)

(e)
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 The ratio of element composition was determined by EDS analysis. Figure 2 shows the EDS 
spectrum and the atomic ratio of the thin film. The In/Ga ratios with In2O3 target powers of 20, 
30, 40, and 80 W were 25.1, 44.7, 69.8, and 136%, respectively. We can observe that when the 
In2O3 target power increases, the ratio of indium to gallium also increases, which means that the 
proportion of indium increases, and the conductivity will improve.
 Figure 3 shows the Tauc plots and linear fitting of absorption spectra. We apply the Tauc 
relation to calculate the energy bandgap.(24,25)

 ( ) ( )2
ghv hv Eα = −  (1)

Here, α represents the absorption coefficient, hv is the photoenergy, and Eg is the energy 
bandgap. 
 In Fig. 3, the bandgaps of 20 W/80 W, 30 W/80 W, and 40 W/80 W thin films are seen to be 
4.6, 4.3, and 4.2 eV, respectively. As a result, the more indium is doped, the smaller the energy 
band.
 The I–V characteristics of the fabricated IGO PDs are shown in Fig. 4. The dark current of the 
80 W/80 W film is too large to measure (exceeding 100 mA); that of the 40 W/80 W film is also 
large but still within the measurement range. However, only the photocurrent in the maximum 
response wavelength (320 nm) was measured. For the 20 W/80 W and 30 W/80 W films, both 
dark current and photocurrent with incident illumination of 220 to 500 nm were measured. 
Under 10 V applied bias, the measured photocurrents were 2.44 × 10−10, 1.46 × 10−6, and 4.25 × 
10−2 A, and the dark currents were 2.69 × 10−12, 2.8 × 10−10, and 2.64 × 10−2 A for the 20 W/80 
W, 30 W/80 W, and 40 W/80 W films, respectively. Therefore, it is understood that when the 
proportion of doped indium increases, the current also increases owing to the good conductivity 
of In2O3. Furthermore, the photo/dark current ratios were 91.5, 5.20 × 103, and 1.61 for the 20 
W/80 W, 30 W/80 W, and 40 W/80 W films, respectively, which indicated that the 30 W/80 W 
film has a high photo/dark current ratio that is suitable for light sensing, and the low photo/dark 
current ratio of the 40 W/80 W film is due to its high current value.
 Responsivity is the ability of PDs to convert incident light into photoelectrons and can be 
expressed as follows.

 photo dark

in

R
I I

P
=

−
 (2)

Iphoto is the photocurrent, Idark is the dark current, and Pin is the power of incident light. 

Table 1
Average RMS surface roughness values of IGO films.
In2O3/Ga2O3 Average RMS (nm)
80 W/0 W 5.49
20 W/80 W 2.81
30 W/80 W 1.5
40 W/80 W 0.428
80 W/80 W 0.357
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Fig. 2. (Color online) Results of EDS analysis of cosputtered film: (a) 20 W/80 W, (b) 30 W/80 W, (c) 40 W/80 W, 
and (d) 80 W/80 W.

Fig. 3. (Color online) Tauc plots and linear fitting of the absorption spectra of the as-deposited IGO thin films.

(a) (b)

(c) (d)
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 The responsivities of the 20 W/80 W, 30 W/80 W, and 40 W/80 W films were 4.66 × 10−6, 
2.21 × 10−2, and 1.72 × 102 A/W, respectively, indicating that when the ratio of indium doping 
increases, the responsivity also increases. It indicates that when the doped indium content 
increases, the responsivity will increase. Under UV illumination, the oxygen-related states could 
generate more photocarriers, increasing the responsivity.(26) Figure 5 shows the dynamic 
response of the devices. We chose a specific wavelength for each sample which devices under 
illumination with the highest photocurrent. Five cycles of dynamic optical response with the 
wavelength for each sample were 280, 290, and 320 nm for the 20 W/80 W, 30 W/80 W, and 40 
W/80 W films, respectively. The process of turning on and off is included in each cycle. The 
detectors were turned on by illuminating for 3 min (20 W/80 W), 5 min (30 W/80 W), and 2 min 
(40 W/80 W), then turned off by covering the light source for 2 min (20 W/80 W), 3 min (30 
W/80 W), and 2 min (40 W/80 W). Rise and decay times are also important parameters of PDs. 
Therefore, the rise time (from 0 to 90%) and decay time (from 90 to 0%) were investigated. The 
results are summarized in Table 2. When more indium is doped, the rise/decay times are longer 
because it takes more time to generate more photocarriers.(27,28) However, when doping 
continues to increase, the dark current increases so that it saturates relatively quickly, thus 
shortening the rise/decay times.

Fig. 4. (Color online) I–V characteristic of IGO PDs: (a) 20 W/80 W, (b) 30 W/80 W, (c) 40 W/80 W, and (d) 80 
W/80 W.

(a) (b)

(c) (d)
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4. Conclusions

 In this study, a series of MSM UV PDs with different cosputtering conditions were fabricated 
in an RF sputter system and with E-beam evaporation. Doping In2O3 into Ga2O3 can improve 
the dark current and optical properties, but excess doping might limit the applications of PDs 
because of excessive dark current. The sensitivity showed the highest value of 5.2 × 103 for the 
30 W/80 W film and the responsivity showed the largest value of 1.72 × 102 (A/W) for the 40 
W/80 W film. Finally, the 40 W/80 W film had the shortest rise time of 7 s and the 20 W/80 W 
film had the shortest decay time of 27 s. Therefore, proper control of indium doping can lead to 
high-performance IGO UV PDs.

Fig. 5. Dynamic responses of (a) 20 W/80 W, (b) 30 W/80 W, and (c) 40 W/80 W films.

Table 2
Rise/decay times of IGO PDs.
In/Ga oxide Rise time (s) Decay time (s)
20 W/80 W 250 27
30 W/80 W 465 103
40 W/80 W 7 60

(a) (b)

(c)
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