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 In this paper, we propose an autonomous navigation system architecture for indoor mobile 
robots that combines the advantages of end-to-end (E2E) autonomous driving and traditional 
navigation algorithms. The architecture aims to overcome the challenges of traditional 
navigation algorithms relying heavily on high-precision localization and E2E struggling to make 
good decisions when unable to detect target objects. A neural network is trained using deep 
reinforcement learning in a simulated environment, and the approach of behavior cloning is 
introduced to stabilize the training process. With this approach, the trained neural network can 
make action decisions based solely on 2D LiDAR data and images captured by cameras, 
eliminating the reliance on high-precision localization systems and overcoming the challenges of 
traditional navigation algorithms. In real-world environments, the YOLO-v7-tiny model is used 
for object detection in indoor settings. When the target object is far away, A* and DWA 
algorithms are employed for path planning to ensure safe and efficient navigation. These 
algorithms can find the globally optimal path and perform local obstacle avoidance, thus 
achieving autonomous navigation in indoor environments.

1. Introduction

 In industrial automation, unmanned mobile vehicles play a crucial role. In the past, automated 
guided vehicles (AGVs) were used for product transportation, but they required guidance 
through methods such as wires, markers, or magnetic strips, resulting in increased costs.(1) 
Nowadays, autonomous mobile robots (AMRs) are employed, relying on sensors such as light 
detection and ranging (LiDAR) and cameras, utilizing simultaneous localization and mapping 
(SLAM) to construct maps, and incorporating path planning algorithms for navigation. 
Achieving precise localization remains a demanding requirement in AMRs, and obtaining a 
high-accuracy positioning system remains a challenge.(2)

 On the other hand, end-to-end (E2E) autonomous driving aims to enable vehicles to make 
autonomous decisions on the basis of sensor inputs. Compared with traditional AMRs, E2E 
approaches exhibit greater robustness in autonomous navigation, requiring lower precision in 
localization. However, implementing E2E poses significant challenges.(3) Conventional 
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autonomous navigation systems are typically rule-based, incurring substantial labor costs and 
struggling to handle unforeseen situations.
 In recent years, with the advancement of power electronics, artificial intelligence has found 
widespread applications in various fields. Deep learning (DL) and reinforcement learning (RL) 
stand as two of the most popular research directions in the AI domain. DL utilizes neural 
networks to approximate various functions, enabling automatic feature learning from vast 
amounts of data, and is applied to tasks such as image recognition, speech recognition, and 
natural language processing. RL is a machine learning approach where agents learn from 
interactions with the environment, balancing exploration and exploitation. Deep RL (DRL), a 
combination of DL and RL, has found applications in robotics, computer vision, finance, 
medicine, and more. Notably, DRL achieved remarkable breakthroughs in the field of Go, such 
as DeepMind’s method based on Monte Carlo tree search,(4) which defeated several Go masters. 
OpenAI’s RL from the human feedback (RLHF) approach(5) was also employed in training 
large-scale natural language processing networks, as seen in ChatGPT.

2. Related Work

 The literature review of this study is divided into three main parts: mobile robot navigation, 
deep RL, and the current state of E2E autonomous driving development.

2.1 Mobile robot navigation

 In the case of mobile robot navigation, we focus on robot localization, environment 
perception, map construction, and path planning in this research. For instance, Chan et al. 
introduced a method for fusing laser-based SLAM and visual SLAM, achieving a positioning 
error of less than 5% in actual distance.(6) Hao and Deng utilized the theory of phased array 
ultrasonic testing (PAUT) and developed a three-degree-of-freedom (DOF) scanning robot for 
automated weld seam inspection.(7)

2.2 DRL

 In the domain of deep RL, the breakthrough achieved by DeepMind in 2013, where deep RL 
successfully surpassed human experts in Atari games using deep RL, sparked a fervor in the 
field.(8) Haarnoja et al., on the other hand, argued against the approach of considering only the 
maximum action value in RL, as exemplified by Deep Q-Network (DQN). Instead, they 
proposed the use of a Boltzmann distribution for action values, while simultaneously seeking to 
maximize both rewards and entropy. This led to the development of soft actor-critic (SAC), 
wherein the policy is updated by minimizing the Kullback–Leibler Divergence (KLD) between 
action value distributions.(9)
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2.3 E2E autonomous driving

 In the past, numerous researchers have attempted to achieve E2E capabilities through 
machine learning approaches. One of the earliest attempts dates back to 1989, where the 
ALVINN system utilized camera images and laser rangefinders to update a fully connected 
neural network in a supervised learning manner, enabling the network to make decisions 
regarding vehicle navigation actions.(10) In 2016, Bojarski et al. employed convolutional neural 
networks (CNNs) to directly map raw camera images to steering actions, utilizing training data 
derived from human demonstrations for decision-making.(11) With the rise of deep RL, Yu et al. 
utilized DQNs in a simulated environment, taking images as input and deciding the optimal 
actions from nine discrete options.(12)

3. Methodology

 In this paper, we propose an autonomous navigation system that combines traditional path 
planning with DL techniques, as illustrated in Fig. 1. In this architecture, the robot’s end is 
responsible for map construction and gathers information from cameras, 2D LiDAR, and 
odometry, which is then transmitted to the computer end. At the computer end, the system 
analyzes the images received from the camera to determine if any target objects are observed 
and subsequently makes navigation decisions using either conventional algorithms or neural 
networks. The objective of this system is to provide smooth and efficient navigation.

3.1 DRL

 In this section, we will elaborate on the training of neural networks in the system, utilizing 
the SAC algorithm for training. RL learns through interaction with the environment. However, 
the cost of interacting with the real-world environment can be prohibitively high, particularly 
when conducting experiments on physical robots, which require substantial time and financial 

Fig. 1. (Color online) System architecture diagram.
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resources. Simulated environments have been widely adopted in RL. Training in a simulated 
world allows for the faster acquisition of abundant experiences, facilitating further policy 
optimization, while also reducing the costs associated with real-world experimentation.
 First, it is necessary to define the state space, action space, and reward function of the 
problem. The state space describes the system’s states, the action space defines the actions the 
system can take, and the reward function evaluates the agent’s performance after executing 
actions.

3.1.1 Action space

 The action space is defined as a set of elements containing linear velocity (v) and angular 
velocity (ω), as shown in Eq. (1), subject to constraints imposed by the limitations of the robot.

 [ ]
[ ]

: 0.22 ~ 0.22 m / s
 

: 2.5 ~ 2.5 rad / s
v

Action Space
ω

 − =  −  
 (1)

3.1.2 State space

 Considering the disparity between the simulated world and the real world, relying solely on 
images for state definition is insufficient. Therefore, in this paper, the state space is defined as a 
collection of laser scan points and the center points of target objects in the binarized image. As 
illustrated in Fig. 2, the left image represents the camera image captured by the agent in the 
simulated world, which is then binarized as shown in the right image. In the binarized image, the 
leftmost and rightmost points (index) are identified and named as Targetright and Targetleft, 
respectively. Consequently, the center point of the target object is determined, as shown in Eq. 
(2).

 ( ) / 2right left leftTarget Target Target Target= − +  (2)

Fig. 2. (Color online) Diagram of target object state space.



Sensors and Materials, Vol. 36, No. 5 (2024) 1963

 Therefore, the state is defined as Eq. (3) in this paper, where scan represents the values 
sampled from the LiDAR point cloud.

 [ ]1 2 , , , , kState Space Target scan scan scan=   (3)

3.1.3 Reward

 The design of rewards significantly affects the learning performance of the agent. In this 
study, multiple aspects of rewards were employed, including distance reward, angle reward, 
action reward, obstacle distance, and termination reward. Among them, the distance reward is 
represented by Eq. (4), where x and y represent the position vectors of the agent and target in 
space, and the denominator is the Euclidean distance between the agent and the target. Here, xi 
and yi denote the coordinates of the agent and target, respectively. The closer the agent is to the 
target, the higher the reward obtained, encouraging the agent to move towards the target. To 
avoid division by zero, λ is set to a very small value in this study, preventing infeasible or 
erroneous results.
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 The angle reward is designed on the basis of the angle between the target position and the 
agent’s heading direction. To guide the agent to learn how to reach the target more efficiently, 
the angle reward is defined as shown in Eq. (5), aiming to provide larger rewards when the 
agent’s heading direction aligns more towards the target. Here, θgoal angle represents the angle 
between the coordinates of the target and agent, and θyaw denotes the heading direction of the 
agent’s vehicle in the world coordinate system.

  angle goal angle yawr θ θ= − −  (5)

 The design of angle reward is illustrated in Fig. 3, where the agent receives a higher reward as 
it aligns more towards the target object. This design aims to guide the agent to reach the target as 
rapidly as possible.
 To encourage the agent to reach the target as rapidly as possible, i.e., aiming for the agent to 
arrive at the target with maximum speed and move as straight as possible, the action reward is 
defined as

 actionr vω= − + . (6)

 In addition, to encourage the agent to avoid obstacles, the distance between the agent and the 
obstacles is considered as a penalty factor. The closer the agent is to the obstacles, the greater the 
penalty, motivating the agent to actively avoid collisions. If the minimum point from the 2D 
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LiDAR is below a certain threshold, it is deemed as being too close to an obstacle, resulting in a 
deduction in score. The magnitude of this penalty term, denoted as rscan, is adjusted on the basis 
of specific circumstances. When the agent successfully reaches the target, a high reward is 
given, whereas collisions incur deductions and penalties.

3.1.4 Network architecture

 In this paper, we utilize a neural network for the agent’s action decision-making. The network 
architecture is depicted in Fig. 4. It consists of a state input network defined by Eq. (3), which 
undergoes processing through multiple layers of neurons. The output of the network is the mean 
(μ) and standard deviation (σ) of the actions. A ReLU activation function is applied to the layer 
preceding the standard deviation to ensure non-negativity. On the basis of the output mean and 
standard deviation, a random variable is sampled from a Gaussian distribution. The sampled 
variable is then compressed within the range [−1, 1] through the tanh function and multiplied by 
the action space boundaries defined in Eq. (1) to conform to the defined action space.
 We design a network responsible for evaluating the quality of an action taken by the agent. 
The purpose of this network is to assess the quality of the action on the basis of the current state 
input and the action decided by the agent, and return an evaluation value to aid the agent in 
making the next action decision. The network architecture is depicted in Fig. 5, with the defined 
state and the action determined by the actor network as inputs. The outputs are the action values 
Qv and Qω, which correspond to the evaluations of the desirability of the agent’s chosen vectors 
v and ω, respectively.

3.1.5 Training process

 The training of the agent is achieved through interaction with the environment. In this paper, 
the SAC algorithm is used to train the neural network. A batch of experiences is sampled from 
the experience replay buffer, and the training of the critic network and policy network is 
performed through offline updates.

Fig. 3. (Color online) Diagram of angle reward.
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 The update process for the critic network is shown in Eq. (7),(9) where r represents the 
rewards obtained from sampling trajectories from the experience replay buffer, and γ and α are 
hyperparameters representing the discount factor and temperature coefficient, respectively. The 
network parameters are updated using the gradient descent algorithm.

 ( ) ( ) ( )( )( ) 2

1 1 1 1 2
 , , log |t t t tCritic loss Q s a r Q s a a sγ α+ + + += − + − π  (7)

 The parameter update process for the actor network is shown in Eq. (8), where the state input 
st from the sampled experience in the replay buffer is fed into the actor network to compute ta− 
and log(π(at|st)). The state st and action ta− are then inputted into two critic networks to estimate 
the action values Q. The minimum of the estimated action values, Q(st, at), is selected. The actor 
network parameters are updated using the gradient descent algorithm.

 ( ) ( )1log ,t t tE s Q s a
α

 π −  
 (8)

 The temperature coefficient α is used to measure the relative importance between rewards 
and entropy. It is reasonable to have α that can vary, and its update process is shown in Eq. (9), 
where the target entropy Ĥ  is a hyperparameter defined as the negative size of the action space, 
−2, in this paper.

Fig. 4. (Color online) Actor network diagram. Fig. 5. (Color online) Critic network diagram.
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 ( )o ˆl g tE s Hα α − π −   (9)

 In the simulated world, the agent relies on sensor readings to make action decisions and 
stores the interaction trajectories with the environment in an experience replay buffer. When the 
number of experiences in the buffer reaches the batch size, the neural networks, including the 
policy network, critic network, target critic network, and the temperature coefficient, are 
updated sequentially. If the number of experiences in the buffer is insufficient to reach the batch 
size, the agent continues to interact with the environment to collect more experiences. The 
training process ends when the agent reaches the predefined training iterations. This is the 
update process of the neural networks in the simulated world, as depicted in Fig. 6.

3.2 Behavior cloning

 In RL, the learning process through interaction with the environment can be slow. Applying 
supervised learning methods to autonomous navigation involves directly mapping input states to 
output actions. This can be seen as a regression problem, as it attempts to predict a continuous 
output value (action). In this case, the approach of using many labeled training examples to train 
a model and learn the mapping relationship between input states and output actions is known as 

Fig. 6. (Color online) Training process of neural networks in simulated world.
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behavior cloning. However, supervised learning often requires a large amount of labeled training 
data, which can be challenging for real-time applications such as autonomous navigation.
 To overcome the limitation of requiring a large amount of labeled data in supervised learning, 
a combination of supervised learning and RL is employed. Supervised learning is used to train a 
set of initial parameters, and then RL is used to further optimize these initial parameters. Such a 
combination approach is commonly referred to as hybrid learning and enables the rapid training 
and optimization of agents without the need for a large amount of labeled data.
 As shown in Fig. 7, the state is first extracted from the sensor readings in the simulated 
world. Then, human-defined decision actions are used as labels for supervised learning. The 
same state is inputted into the initial network of the actor network. The network is trained using 
the least squares method as the loss function to update the decision network of SAC. Here, θπ 
represents the decision network of SAC, and ρ denotes the learning rate for supervised learning.

3.3 YOLO-v7-tiny network

 Despite the model’s excellent performance in the simulated world, real-world applications 
may encounter various challenges and difficulties. For instance, as mentioned in Sect. (3) 
regarding the design of the state space, finding the center point of the target object, Target, in the 
real world is not as straightforward as it is in the simulated world using binary thresholding 
methods.
 As shown in Fig. 8, (a) and (b) depict the images captured by the camera in the simulated and 
real-world environments, respectively. The binary thresholding results of the images (a) and (b) 
are shown in (c) and (d), respectively. It can be observed that in the simulated world, the image 
(a) after binary thresholding in (c) clearly highlights the target object, making it easy to find the 
center point of the target. Therefore, in this paper, YOLO-v7-tiny(13) will be utilized to locate the 
center point, Target, of the target object in the state space.
 YOLO-v7-tiny is divided into a backbone network and a head layer, and the architecture of 
the backbone network is illustrated in Fig. 9. In this architecture, CBL(−1, 32, 33, s = 2) 

Fig. 7. (Color online) Diagram of supervised optimization for RL training.
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represents a convolutional layer followed by batch normalization(14) and then a LeakyReLU 
activation function.(15) The specific parameters for CBL(−1, 32, 33, s = 2) are as follows: 
assuming the input image size is [1, 3, 600, 480] (with a batch size of 1, an RGB image with 3 
channels, and dimensions of 600 and 480), −1 denotes the depth of the previous layer, which is 3. 
CBL(−1, 32, 33, s = 2) performs a dot product with 32 convolutional kernels of size 33, where the 

Fig. 8. (Color online) Comparison of state space in simulated and real-world environments. (a) Gazebo agent 
capturing images, (b) real-world agent capturing images, (c) binary thresholding of Gazebo images, and (d) binary 
thresholding of real-world images.

(a) (b)

(c) (d)

Fig. 9. (Color online) Diagram of the YOLO-v7-tiny backbone network.(13)
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Fig. 10. Diagram of the YOLO-v7-tiny head layer.

kernels move two pixels at a time. The resulting feature map has a size of [1, 32, 300, 240]. The 
operation Concat(dimension = 1) indicates that the feature map will be concatenated along the 
first dimension, which corresponds to the depth dimension.
 In YOLO-v7-tiny, the backbone network extracts three different sizes of feature maps and 
passes them to the head layer, as illustrated in Fig. 10. These three feature maps are obtained 
from different layers of the backbone network. For instance, the feature map extracted from the 
last layer is specialized for detecting large objects and thus contains more distinctive features 
compared with the previous two feature maps. In the head layer, these three feature maps are 
upsampled to the same size and then subjected to feature extraction and fusion. Here, the 
Upsample(2, “nearest”) layer indicates a 2× upsampling scale using the nearest-neighbor 
interpolation method. The final output of the head layer comprises information about three sizes 
of bounding boxes (bbox). Subsequently, non-maximum suppression (NMS) is applied to 
eliminate redundant boxes, retaining only the bbox with the highest probability as the final 
predicted box.

3.4 Path planning and navigation

 When the agent is unable to perceive the target object, the neural network may struggle to 
make informed decisions. Therefore, in this study, we employed a path planning navigation 
algorithm to guide the agent along a predefined path until the target object becomes visible. The 
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A search algorithm (A*)(16) in combination with the dynamic window approach (DWA)(17)  
algorithm will be utilized to implement the path planning navigation when the agent cannot 
detect the target object. This approach is based on a pre-established map and localization system 
for navigation.
 Initially, the environment undergoes map construction, and the agent’s own position is 
estimated using angular and linear velocities. The A*+DWA algorithm is then employed to 
calculate the optimal path for the agent along the map. The implementation leverages the ROS 
Navigation package.(18)

3.5 Integrated E2E and AMR autonomous navigation system

 In the neural network and traditional path planning and navigation algorithms, each has its 
own advantages in controlling mobile vehicles. In this study, the neural network relies on camera 
images and the feedback from 2D LiDAR to make path decisions for navigation without the need 
for precise localization. However, it may struggle to make optimal decisions when the target 
object is not visible. On the other hand, the traditional A*+DWA algorithm relies on a constructed 
map and precise localization to accomplish navigation.
 The proposed system flowchart is depicted in Fig. 11. At the beginning of the system, the 
camera continuously captures the environment and employs the trained YOLO-v7-tiny object 
detection to detect the target object. If the target object is detected, the state is provided to the 
neural network for action decision-making. When the target object is not detected, the system 
utilizes the A* algorithm to plan a global path and employs the DWA algorithm for navigation. 
This process is repeated until the target object is reached.

Fig. 11. System flowchart.
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4. Experiments

4.1 Experimental procedure and objectives

 We conducted a detailed experimental evaluation of the proposed autonomous navigation 
framework. First, the stability of the neural network training will be tested in the simulated 
world using Gazebo.(19) We will explore the enhancement of RL by incorporating behavior 
cloning as a training optimization method. Additionally, the performance characteristics of RL 
algorithms, path planning and navigation techniques, and the proposed combined approach will 
be compared. Subsequently, the trained network will be transferred to the real-world environment 
for evaluation, and experimental assessments will be conducted to validate the effectiveness and 
practicality of the proposed autonomous navigation framework presented in this paper.

4.2 Experiments in Gazebo

 In Gazebo, three simulated world environments were created for training purposes, namely, 
the obstacle-free, static obstacle, and random moving obstacle maps. These three environments 
correspond to three different reward schemes. As shown in Fig. 12, when the agent is in an 
environment without obstacles, it should strive to reach the target and avoid colliding with the 
surrounding walls. Therefore, the reward includes a combination of localization distance, angle, 
and action rewards, designed to encourage the agent to achieve the goal of moving towards the 
target. In the map with static obstacles (b), the agent should be cautious in avoiding obstacles and 
reaching the target as rapidly as possible. Hence, it is necessary to provide a reward that guides 
the agent in avoiding obstacles, in addition to the rewards used in (a). In the case of the map with 
dynamic obstacles (c), the rewards remain the same. The agent should be attentive in avoiding 
dynamic obstacles while making progress towards the target, taking into account the movement 
of the obstacles as well.

4.2.1 Map 1

 The SAC algorithm was employed for RL training in the obstacle-free map, using the 
cumulative reward per episode as the evaluation criterion. The sampling of the state space was 
based on the number of points in the LiDAR point cloud, and selecting different numbers of 
points could affect the stability of the training. Therefore, in the same obstacle-free map, we 
utilized 24, 50, and 100 2D LiDAR return values as inputs to the neural network and evaluated 
their performance.
 As shown in Fig. 13, in terms of training performance, using 24 points yields slightly better 
results than using 50 and 100 points. In this experimental environment, utilizing 24 2D LiDAR 
return values outperforms using 50 and 100 2D LiDAR, indicating that achieving better training 
outcomes with fewer inputs is possible.
 The method that combines RL and DL first involves manually controlling the agent to 
navigate through the obstacle-free map for 20 episodes, collecting 869 state-action pairs. Then, 
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DL is employed for pretraining, conducting 500 training iterations with a learning rate of 
3 × 10−4. Subsequently, the SAC algorithm is applied for further training. The results, as shown 
in Fig. 14, clearly demonstrate that the SAC algorithm with the integration of DL outperforms 
the standard SAC algorithm in terms of average reward.

Fig. 12. RL maps and rewards. Maps (a) 1, (b) 2, and (c) 3.

Fig. 13. (Color online) Testing with different state quantities.

(a) (b)

(c)
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4.2.2 Map 2

 In the static obstacle map, the 2D LiDAR returns were also divided into 24, 50, and 100 
points as inputs to the neural network. On the basis of the results from Fig. 15, it can be observed 
that in this map, the neural network using 24 2D LiDAR points as input slightly outperforms the 
networks with 50 and 100 points. Therefore, the choice of using 24 points as input for pretraining 
the neural network, as shown in Fig. 16, ensures a more stable convergence performance.

4.2.3 Map 3

 In the dynamic obstacle map, the neural network’s input state does not converge effectively 
with 50 LiDAR data points, while with 24 data points, it achieves convergence but exhibits 
significant fluctuations. However, with 100 data points, it demonstrates the most stable 
performance, as illustrated in Fig. 17.
 Similarly, under this optimal condition, utilizing expert data-based DL pretraining leads to 
faster convergence but with relatively less stability, as shown in Fig. 18. This could be attributed 
to the interference or lack of adaptability of the model’s pretraining with expert data under 
specific input states.
 In comparing the performance characteristcs of various algorithms on different maps, the 
evaluation metric is based on predefined rewards. The compared algorithms include RL, 
traditional algorithms, RL with DL pretraining, standalone deep learning, and the neural 
network integrated with path planning and navigation proposed in this paper. In the previous 
experiments, three distinct maps were used, namely, the map without obstacles, the map with 
static obstacles, and the map with randomly moving obstacles (Maps 1 to 3, respectively).
 Table 1 presents the comparison results of various algorithms on different maps. In the table, 
SAC represents the RL algorithm, navigation denotes the traditional algorithm, SAC with 
behavior cloning refers to the RL algorithm with DL pretraining, Behavior cloning represents 

Fig. 14. (Color online) SAC combined with behavior cloning results chart.
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Fig. 15. (Color online) Testing of different state quantities in static obstacle maps.

Fig. 16. (Color online) Testing of static obstacle map combined with behavior cloning.

Fig. 17. (Color online) Testing of different state quantities in dynamic obstacle maps.
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the DL algorithm, and Navigation with SAC represents the proposed approach of integrating 
neural network with path planning and navigation. To simulate real-world localization bias, the 
navigation algorithm and navigation with SAC in the aspect of localization are subjected to a 
certain degree of noise. The SAC algorithm utilizes the best-performing network from the 
previous section, and the DL network uses a pretrained network. In each algorithm, the agent 
should reach the target point 10 times, and the average reward per episode is used to evaluate the 
algorithm’s performance. It can be observed that the proposed method in Maps 2 and 3 
outperforms the other four algorithms, while navigation excels in the obstacle-free map 
compared with other algorithms.

4.3 Experiments in real world

 The proposed framework was applied in a real-world environment using Limo(20) as the 
experimental platform.

4.3.1 Only navigation

 In the navigation algorithm, the process involves map construction followed by path planning 
and navigation, as illustrated in Figs. 19(a) and 19(b). The agent aims to reach the vicinity of the 
target locations (c) and (d). This map-based navigation approach can only provide approximate 

Fig. 18. (Color online) Testing of dynamic obstacle map combined with behavior cloning.

Table 1
Algorithm architecture comparison table.

Map
Method

SAC Navigation SAC with 
behavior cloning Behavior cloning Navigation with 

SAC (ours)
Map 1 105 126 110 −9 119
Map 2 40 105 42 −53 117
Map 3 114 94 13 −12 119
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coordinates of the target locations, which is why in this paper, we introduce a certain degree of 
noise in the localization aspect for the navigation algorithm and the proposed navigation with 
SAC method, as presented in Table 1.
 As shown in Fig. 20, the navigation algorithm effectively guides the agent towards the target 
locations. However, since the actual coordinates of the target locations are estimated manually, 
the real-world agent does not reach the exact positions of the targets.

4.3.2 Only neural network

 When the neural network, trained through RL, is applied to the real-world environment, it is 
integrated with YOLO-v7-tiny to achieve target perception and recognition. Figure 21 illustrates 
the third-person perspective of the neural network applied to the real-world Limo motion 
trajectory. The results demonstrate that when Limo detects a target object, it autonomously 
moves towards the target. However, in cases where Limo cannot visually perceive the target 
object, it initiates self-rotation to search for the target. Nevertheless, it may encounter difficulties 
in accurately locating the target when it is far away.
 When the RL network is transferred to the real-world environment and detects the target 
object while moving, it encounters challenges due to the effect of time series. Assuming at time 
t, the neural network makes action decisions v and ω on the basis of the environmental state, 
Limo should be located at coordinates (x, y). According to the original design, the difference 
between time intervals t and t + 1 should approach zero. However, in the real world, Limo is 
actually positioned at coordinates (ẋ, ẏ), leading to a deviation between the observed 
environmental state at time t + 1 and the ideal scenario, which in turn results in significant 
oscillations and instability in Limo movements.

Fig. 19. (Color online) Navigation diagram. (a) Map construction. (b) Point of departure. (c) Plane target (red box 
target). (d) Trophy target.

(a) (b)

(c) (d)
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 In this paper, to address the issue of significant oscillations, a modification was made to the 
tanh activation function by changing its slope through tanh compression. As depicted in Fig. 22, 
the tanh input was multiplied by a value between 0 and 1, resulting in a smooth compression of 
the action distribution. This modification effectively mitigated the problem of severe oscillations 
in the agent’s movements.
 Limo was instructed to search for the target object three times in a map without obstacles, 
and the trajectories are illustrated in Fig. 23. The black trajectory represents the movement 
without any modification to the tanh slope, while the red trajectory shows the result after 
changing the tanh slope. It can be observed that by modifying the tanh slope, the severe 
oscillations in Limo’s movement were effectively resolved, resulting in smoother trajectories.
 When using neural networks alone, achieving satisfactory static obstacle avoidance results in 
the real world can often be challenging. Therefore, in this paper, we introduce some constraints 
when the neural network outputs actions. Environmental perception information is obtained by 
reading 2D LiDAR returns. To ensure that the acquired 2D LiDAR returns have a consistent 

Fig. 20. (Color online) Navigation process illustration (from left to right, from top to bottom).

Fig. 21. (Color online) Navigation process illustration, starting from the first image in the first row and ending at the 
third image in the last row.
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number of points, a fixed interval sampling of c points is adopted. To ensure that the 
measurements for left and right turns are equal, c is chosen as an even number, as shown in Eq. 
(10). The relationship between rescan and the real 2D LiDAR is depicted in Fig. 24.

 [ ]1 2, , ,scan cre scan scan scan= 
 (10)

 Subsequently, the minimum value in rescan is identified, and when this value is below a 
certain threshold, the action is switched from being output by the neural network to directly 
selecting the index of the minimum value in rescan. The angular velocity for obstacle avoidance 
is then chosen as the corresponding value from the range of angular velocities ω−, defined in Eq. 
(11), while the linear velocity is set to 0.22 m/s. The ω− range is formed by concatenating two 
lists, one ranging from 0 to 2.5 divided into c/2 parts, and the other ranging from −2.5 to 0 
divided into c/2 arts. The interval size ϕω for each part can be calculated by dividing the total 
range of 2.5 by the number of parts, c/2. The neural network integrates the obstacle avoidance 
algorithm, as shown in Algorithm 1.

Fig. 22. (Color online) Diagram illustrating the change in tanh slope.

Fig. 23. (Color online) Limo trajectory diagram.
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 : 0, , 2 , , 1 , 2.5, 2.5, 1 , , , 0 rad / s
2 2
c cω φω φω φω φω φω−     … − − − − … −        

 (11)

 Figure 25 demonstrates the application of the neural network with the obstacle avoidance 
algorithm in a real-world environment containing numerous static obstacles. In this scenario, 
Limo successfully avoids obstacles and reaches the target point with high efficiency.
 In Fig. 26, the system effectively navigates around dynamically appearing obstacles, 
demonstrating its ability to avoid obstacles and reach the target point in such dynamic 
environments.

4.3.3 Navigation with SAC

 The proposed framework, which combines both approaches, is illustrated in Fig. 27. The 
results demonstrate that by integrating the two algorithms, the system effectively addresses the 
challenges of navigating towards distant target objects and dealing with cases where target 
localization is not possible.
 Figure 28 illustrates the results of tracking the trophy target object. The proposed method 
performs well across different categories of target objects and only requires training a single 
YOLO-v7-tiny model to handle various types of target.

Fig. 24. (Color online) Diagram depicting the relationship between rescan and physical 2D LiDAR.

Algorithm 1. Neural network combined with obstacle avoidance algorithm
Imput: rescan, c, state
Output: v, ω
1: function AVOIDANCE(rescan, c, state)
2:  v ← 0.22 m/s
3:  ω ← [0, ϕω, 2ϕω, ..., (c/2 − 1)ϕω, 2.5, −(c/2 − 1)ϕω, ..., −ϕω, 0]
4:  if min(rescan) < z then
5:   index ← argmin(rescan)
6:   ω ← ω[index]
7:   return v, ω
8:  else
9:   v, ω ← network(state)

10:   return v, ω
11:  end if
12: end function
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Fig. 25. (Color online) Results of static obstacle environment testing.

Fig. 26. (Color online) Results of dynamic obstacle environment testing.

Fig. 27. (Color online) Diagram illustrating the fusion of traditional navigation and RL navigation to track a red box 
target object.
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Fig. 28. (Color online) Diagram illustrating the fusion of traditional navigation and RL navigation to track a trophy 
target object.

5. Conclusion

 In this paper, we proposed the architecture of an autonomous navigation system for indoor 
mobile robots, which successfully combines the advantages of E2E autonomous driving and 
traditional navigation algorithms to overcome the challenge of traditional navigation algorithms 
relying too much on high-precision positioning. The E2E module is designed using the deep RL 
method, and the autonomous navigation system is realized by using 2D-LiDAR and the camera 
combined with the object detection technology YOLO-v7-tiny. Through behavioral replication 
and stability training, the deep RL network is successfully migrated to the real world, improving 
the adaptability and stability of the system in the real environment. At the same time, the A* 
algorithm is used for global optimal path planning, and the DWA algorithm is combined to 
complete local path planning, which effectively solves the problem that RL neural networks are 
difficult to make good decisions when making decisions.
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