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 The molecular dynamics simulation method with the embedded atom model/Finnis–Sinclair 
potential was used to investigate solid and hollow spherical platinum (Pt) nanoparticles under 
different heating rates during the additive manufacturing process. We concluded that the 
coalescence temperatures of solid and hollow spherical Pt nanoparticles range between 975 and 
1450 K and between 561 and 1414 K, respectively. We concluded also that the melting 
temperatures of solid and hollow spherical Pt nanoparticles range between 1300 and 1535 K and 
between 1250 and 1500 K, respectively. In this study, we found that the lower the heating rate, 
the greater the diffusion of Pt atoms. The solid-state sintering of Pt nanoparticles can 
spontaneously occur at 300 K. We concluded that the melting temperatures of both solid and 
hollow spherical Pt nanoparticles are still lower than the macroscopic melting point of Pt (2041.4 
K).

1. Introduction

 The additive manufacturing (AM)(1–4) technology is divided into seven categories, among 
which there are two technologies applied to metallic powder: powder bed fusion (PBF)(5) and 
laser metal deposition (LMD). The substances manufactured by the PBF technology are rougher 
and more precise than those made by other mechanical manufacturing processes, such as 
precision casting, turning, and forging, and complex and integrally formed structures can be 
produced. PBF can produce metallic supports without modular jigs and fixtures, whereas LMD 
can produce, coat, and repair curved metallic surfaces. Pt is a precious metal with high density, 
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ductility, corrosion resistance, and low reactivity. Pt can be used in electrodes, resistors, turbine 
engines, dental filling materials, anticancer drugs, and accessories.  In addition, glass coated 
with a Pt film has an opaque side and a transparent side, enabling one-way light transmission.
 In this study, molecular dynamics (MD)(6) is used to simulate solid and hollow spherical Pt 
nanoparticles under different parameter conditions by AM. The coalescence temperature, 
melting temperature, and crystalline structure(7–9) were determined.

2. Materials and Methods

2.1 MD simulations

 MD was derived from classical Newtonian mechanics.(10) MD with suitable potential 
functions can simulate, for example, atomic positions, trajectory, and forces. The large-scale 
atomic/molecular massively parallel simulator (LAMMPS)(11) based on MD is an open source 
program written and compiled in C++. LAMMPS can simulate the internal structure, 
thermodynamics, dynamics, and force of metallic nanoparticles. In this study, LAMMPS is used 
to simulate the thermomechanical properties, including the coalescence and melting 
temperatures of nanoscale Pt during AM.

2.2 Atomic model preparation

2.2.1 Solid nanoparticles 

 In this study, solid and hollow spherical Pt nanoparticles are simulated by LAMMPS, 
nonperiodic boundary conditions are set for the parameters, the canonical ensemble is given, and 
the initial structure of Pt is the face-centered cubic (FCC) crystal structure. The disordered 
atomic structure is set on the outer surface of Pt nanoparticles, and the space of the simulation 
box is several times larger than that of solid and hollow spherical Pt nanoparticles. The initial 
gap between the Pt nanoparticles is set to 5 Å, the lattice constant is set to 3.9201 Å, and the 
sizes of the Pt nanoparticles are 16a, 20a, and 24a. There are three groups of identical 
nanoparticle sizes and three groups of different nanoparticle sizes, as shown in Table 1 and Fig. 1.

2.2.2 Hollow nanoparticles

 A hollow spherical Pt nanoparticle is formed by removing the inner atoms of a solid spherical 
Pt nanoparticle by LAMMPS, as shown in Table 1 and Fig. 1.

2.3 Auxiliary analysis and calculation

 LAMMPS with EAM/FS potential(12) can describe the force of interactions(13) between Pt 
atoms, and the positions and trajectories of each Pt atom of solid and hollow spherical Pt 
nanoparticles at each time step during AM, where the electron density is obtained from the wave 
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function, and then the atoms that must be calculated for each atomic energy are embedded in the 
local electron density energy.(14) The fitting method has been proposed by Daw et al.(15)

 The common neighbor analysis(16) can simulate both solid and hollow spherical Pt 
nanoparticles in AM and visualize each lattice structure at each time step. The gyration radius 
(Rg) is used to calculate the mean square displacement (MSD)(17) between atoms and the center 
of mass of both solid and hollow spherical Pt nanoparticles in AM. In Eq. (1) below, the total 
mass of the space is M, the center of mass is rcm, the position of each atom in the nanoparticle is 
r, and the subscript i indicates the type of atom in the space.(18)

 ( )22 1
g i i cm

i

R m r r
M

= −∑  (1)

 MSD is an important parameter and it is the average distance between Pt atoms. The total 
mass of the space is N, the position of each atom in the nanoparticle is r, the time is t, and the 
subscript i indicates the type of atom in the simulated environment space.(19)

Table 1
Parameters and number of atoms of the Pt nanoparticle model. (a) Solid and (b) hollow.
Type (D1–D2) Structure Atoms
16a–16a

Solid

17178
16a–20a 25346
16a–24a 37486
20a–20a 33514
20a–24a 45654
24a–24a 57794
16a–16a

Hollow

15056
16a–20a 20696
16a–24a 27836
20a–20a 26336
20a–24a 33476
24a–24a 40616

Fig. 1. (Color online) Cross-sectional view of Pt nanoparticles: (a) solid and (b) hollow models. 
(a) (b)
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3. Results and Analysis

3.1 Solid nanoparticles

3.1.1 Thermal equilibration at room temperature

 In this study, LAMMPS is used to simulate solid and hollow spherical Pt nanoparticles, and 
the internal lattice structure, force, and trajectory of the Pt nanoparticles are observed at a room 
temperature of 300 K. The four points, Points A, B, C, and D, correspond to the four states 
shown in Fig. 2. In Fig. 2, Point A indicates solid spherical Pt nanoparticles to maintain the 
initial gap of 5 Å, the Rg of solid spherical Pt nanoparticles is 45.22 Å, the neck width is 0 Å, 
FCC accounts for 80.24%, hexagonal close packing (HCP) accounts for 0%, and the others 
account for 19.76% of state A. As shown in Fig. 2, the small size effect at Point B of solid 
spherical Pt nanoparticles causes the solid spherical Pt nanoparticles to coalesce together. At 
Point B, Rg is 45.21 Å, the neck width is 31.55 Å, FCC accounts for 80.46%, HCP accounts for 
0%, and the others account for 19.54% of state B. At Point C in Fig. 2, the Rg of solid spherical Pt 
nanoparticles is 45.21 Å, the neck width is 40.56 Å, FCC accounts for 78.21%, HCP accounts for 
0.39%, and the others account for 21.40% of state C. At Point D in Fig. 2, the Rg of solid spherical 
Pt nanoparticles is 44.13 Å, the neck width is 40.05Å, FCC accounts for 80.87%, HCP accounts 
for 0.08%, and the others account for 19.05% of state D.

3.1.2. Laser sintering

 In this study, LAMMPS was used to simulate the solid spherical Pt nanoparticles during AM. 
As shown in Fig. 3, the solid spherical Pt nanoparticles heated at 0.25 K/ps are divided into four 

Fig. 2. (Color online) Solid spherical Pt nanoparticles for the combination 16a-20a in Table 1 are shown. At room 
temperature, the neck width changes with the density of surface disordered Pt atoms with different time steps.
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sections by five points, Points A, B, C, D, and E. From Points A to C, solid spherical Pt 
nanoparticles are relatively stable. The area between Points C and D in Fig. 3 is the region of 
atomic coalescence. After being heated using a laser, the nanoparticles coalesce together. In Fig. 
3, from Points D to E, solid spherical Pt nanoparticles gradually melt, and the internal lattice 
structure changes considerably. Beyond Point E in Fig. 3, the Pt nanoparticles are completely 
melted.
 Figure 4 shows the change in the MSD of the solid spherical Pt nanoparticles heated linearly 
at heating rates of 1, 0.5, and 0.25 K/ps during AM. It is found that the diffusion effect of the Pt 
nanoparticles is best at 0.25 K/ps since the MSD of Pt is the largest.
 Figures 5 and 6 respectively show that the coalescence temperature is between 975 and 1450 
K and that the melting temperature is between 1300 and 1535 K for solid spherical Pt 
nanoparticles during AM.(19)

3.2 Hollow nanoparticles

3.2.1 Thermal equilibration

 In this study, LAMMPS is used to simulate hollow spherical Pt nanoparticles, and the 
internal lattice structures, forces, and trajectories of Pt are observed at a room temperature of 
300 K. Four states, (a), (b), (c), and (d), are shown in Fig. 7. In Fig. 7, Point A indicates hollow 
spherical Pt nanoparticles to maintain the initial gap of 5 Å, the Rg of the hollow spherical Pt 
nanoparticles is 46.70 Å, the neck width is 0 Å, FCC accounts for 66.88%, HCP accounts for 0%, 
and the others account for 33.12%. As shown in Fig. 7, the small size effect at Point B of the 
hollow spherical Pt nanoparticles causes the hollow spherical Pt nanoparticles to coalesce 
together. At Point B, Rg is 46.70 Å, the neck width is 29.72 Å, FCC accounts for 66.73%, HCP 
accounts for 0%, and the others account for 33.27% of state B. At Point C in Fig. 7, the Rg of 
hollow spherical Pt nanoparticles is 46.70 Å, the neck width is 31.34 Å, FCC accounts for 
66.31%, HCP accounts for 0.06%, and the others account for 33.63% of state C. At Point D in 
Fig. 7, the Rg of hollow spherical Pt nanoparticles is 46.69 Å, the neck width is 35.53 Å, FCC 
accounts for 67.55%, HCP accounts for 0%, and the others account for 32.45% of state D.

Fig. 3. (Color online) Solid spherical Pt nanoparticles of 16a-20a were sintered using a laser at 0.25 K/ps in the 
range of 300–1800 K. The changes in Rg and density of surface disordered Pt atoms are plotted.
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Fig. 4. (Color online) Temperature change vs MSD 
of solid spherical Pt nanoparticles of type 16a-20a 
solid model at heating rates of 0.25, 0.5, and 1 K/ps in 
the range of 300–1800 K.

Fig. 5. (Color online) Coalescence temperature as a 
function of number of atoms between 10000 and 
60000 for solid spherical Pt nanoparticles with three 
heating rates.

Fig. 6. (Color online) Melting temperature as a function of number of atoms between 10000 and 60000 for 
nanoscale solid spherical Pt nanoparticles with three heating rates. The dashed line shows the macroscopic melting 
point of Pt (2041.4 K).

Fig. 7. (Color online) Hollow spherical Pt nanoparticles are illustrated as the combination of 16a–20a. The neck 
width and the density of surface disordered Pt atoms at room temperature are shown at different points in time.
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3.2.2 Laser sintering

 As shown in the results of the laser sintering process in Fig. 8, hollow spherical Pt 
nanoparticles heated at 0.25 K/ps are divided into four sections by five points, Points A, B, C, D, 
and E. From Points A to C, the nanoparticles are relatively stable. The coalescence stage is from 
Points C to D. The melting stage is from Points D to E. Beyond point E, the Pt nanoparticles are 
completely melted.
 From the results shown in Fig. 9, it is concluded that the MSD of hollow spherical Pt 
nanoparticles heated at 0.25 K/ps is larger than those heated at 1 and 0.5 K/ps. In other words, 
the diffusion of Pt atoms is more rapid and slower at higher and lower heating rates, respectively. 
The higher the heating rate, the slower the Pt atom diffusion, and vice versa.
 Figures 10 and 11 show that for hollow spherical Pt nanoparticles heated using a laser, the 
coalescence temperature is in the range of 561–1414 K and the melting temperature is between 
1250 and 1500 K, respectively.(19)

Fig. 8. (Color online) Hollow spherical Pt nanoparticles of 16a-20a were sintered using a laser at 0.25 K/ps in the 
range of 300–1800 K. The change in Rg and the density curve of surface disordered Pt atoms are plotted.

Fig. 9. (Color online) MSD vs temperature for 
hollow spherical Pt nanoparticles of 16a–20a heated at 
rates of 0.25, 0.5, and 1 K/ps between 300 and 1800 K.

Fig. 10. (Color online) Coalescence temperature as a 
function of number of atoms between 10000 and 
50000 for hollow spherical Pt nanoparticles at three 
heating rates.



2012 Sensors and Materials, Vol. 36, No. 5 (2024)

4. Conclusions

 The LAMMPA results of MD simulations were used for the comparative study of Pt 
nanoparticles with different sizes during AM. Three heating rates of 0.25, 0.5, and 1 K/ps were 
considered. The findings of this study are as follows.
(1) Solid-state sintering can occur for the simulated Pt nanoparticles at a room temperature of 

300 K. During the sintering of Pt nanoparticles, crystal defects temporarily appear in the 
simulated Pt nanoparticles. The above phenomenon of Pt nanoparticles is caused by the high 
ratio of surface area to volume.

(2) Hollow spherical Pt nanoparticles have more surface Pt atoms than solid Pt nanoparticles 
because of a higher ratio of surface area to volume.

(3) The higher the heating rate, the slower the diffusion of Pt atoms, and vice versa.
(4) The coalescence temperatures of solid and hollow spherical Pt nanoparticles were between 

975 and 1450 K and between 561 and 1414 K, respectively. Their melting temperatures were 
between 1300 and 1535 K and between 1250 and 1500 K, respectively. The melting 
temperatures of both solid and hollow spherical Pt nanoparticles are still lower than the 
macroscopic melting point of Pt (2041.4 K).(19)

(5) The melting temperature of nanoscale solid and hollow spherical Pt nanoparticles is much 
lower than the melting point of Pt (2041.4 K).

Fig. 11. (Color online) Melting temperature as a function of number of atoms between 10000 and 60000 for 
nanoscale hollow spherical Pt particles at three heating rates. The dashed line shows the macroscopic melting point 
of Pt (2041.4 K).
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