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 The safety of bridges, which are key components of roads, has attracted the attention of 
experts, technical engineers, and maintenance managers. Various apparent problems such as 
cracks, voids and pits, white precipitate, and corrosion must be identified during the visual 
inspection of a bridge. In this study, using soft-nonmaximum suppression (NMS), we improved 
the original NMS algorithm of the faster regional convolutional neural network (Faster R-CNN) 
and built a fine identification network model to classify and identify the structural problems of 
bridges to effectively reduce the missed detection rate. In addition, through manual inspection 
by photography, the average accuracies of the identification of problems, namely, voids and pits, 
cracks, and white precipitate, can reach 80.86, 81.42, and 87.39%, respectively, which are about 
20 percentage points higher than that of the original Faster R-CNN.

1. Introduction

 Administrative and maintenance departments usually check bridges regularly and identify 
whether problems such as cracks, crack damage, exposed reinforcement corrosion, and bearing 
separation in the main member of the bridge are present through conventional identification 
methods with the naked eye or auxiliary tools such as a bridge-detection vehicle and a telescope. 
However, in the bridge structure, there are many places that are difficult for humans or bridge-
detection vehicles to reach, and there are certain safety risks during the identification process. In 
addition, with the development of aerial photography and remote sensing technology, better and 
newer technologies are applied to the acquisition of apparent bridge images. For example, the 
overall scan of the appearance of bridge structures has been used in engineering practice by 
means of unmanned aerial vehicles,(1) wall climbing robots,(2) and noncontact instruments.(3) 
With such a development trend, manual inspection through photography by collecting images of 
problems will be replaced by machine learning and deep learning methods for the automatic 
identification of the type, size, and location of problems, which means that the identification of 
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bridge problems becomes smarter, more convenient, and more accurate, significantly reducing 
the workload and the working hours involved in manual inspection.(4) 
 In China, with the rapid development of computer performance and artificial intelligence 
technology, deep learning and other techniques have been widely applied in the field of bridge 
structure damage recognition.(5) For instance, researchers have examined the application of deep 
convolutional neural networks (CNNs) in the classification and recognition of bridge structure 
surface defects, categorizing bridge damages into three main types: cracks, corrosion, and 
defects.(6) Through the use of transfer learning techniques and the training of the AlexNet CNN, 
an automatic recognition model for bridge surface damages was constructed. This model has 
demonstrated a high accuracy rate (AP) in practical applications, making it suitable for the rapid 
identification of bridge surface damages.(7) Additionally, another study proposed a bridge 
damage detection and recognition method based on deep CNNs, which includes creating a 
database of annotated and labeled images, training neural networks for preliminary and detailed 
damage selection, and cross-training, all aimed at enhancing the accuracy and robustness of 
bridge damage recognition.
 Internationally, significant progress has also been made in the research of bridge structure 
damage recognition. For example, some scholars have used multilayer neural network methods 
to study an expert evaluation system for deteriorated prestressed concrete bridges, advancing the 
evaluation of deteriorating concrete bridges.(8) Moreover, various methods for assessing the 
health status of bridges, such as fuzzy mathematics, network system theory, and multi-objective 
comprehensive evaluation methods, have provided a mathematical foundation for the 
identification of bridge structural damages.(9)

 In recent years, a growing number of researchers have been using the deep learning method 
to identify image objects. By studying the image through CNN and automatically extracting the 
object features from the image, the deep learning framework can show high learning ability, 
identification speed, and accuracy. There are two types of object detection algorithm based on 
deep learning, namely, the regional CNN (R-CNN) series and the methods that convert detection 
into regression problem solving. The former includes R-CNN,(10) Faster R-CNN,(11) and region-
based fully convolutional network (R-FCN),(12) all of which have high detection accuracy but 
low detection speed. The latter includes You Only Look Once(13) and a single-shot multibox 
detector,(14) both of which have low detection accuracy but high detection speed. Since the 
detection of the structural problems of bridges requires a higher identification accuracy than 
real-time performance, in this study, Faster R-CNN was used to perform the automatic detection 
of the structural problems of bridges. As an engineering application of object detection, the 
detection of the structural problems of bridges has an important application value. In this paper, 
a detection model combined with soft-nonmaximum suppression (Soft-NMS) based on Faster 
R-CNN, which eliminates the impacts of object size and morphological properties and 
overcomes the shortcomings of a very large negative sample space during training, is put 
forward. In this study, a cascade network model of primary screening for multicategory problems 
and the accurate identification of single-category problems, which considerably reduces the 
missed detection rate and improves the detection accuracy, was also built. In addition, the 
identification model used in this study, with good identification effect and high practicability, 
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can target many types of structural problem of bridges and meet the requirements of practical 
engineering applications.(15)

2. Methods

2.1 Soft-NMS

 The NMS algorithm plays a crucial role in the Faster R-CNN algorithm by eliminating 
overlapping redundant frames of the same object. It achieves this by forcibly resetting the scores 
of adjacent detection frames to zero. Figure 1 shows a situation where the current detection 
results in a red frame and a blue frame, with scores of 0.8 and 0.95, respectively. As per NMS 
algorithm’s Eq. (4), the scores are compared and reset. Consequently, the blue frame, having the 
highest score, is selected, whereas the red frame is mistakenly deleted owing to excessive 
overlap with the blue frame. This leads to a missed detection scenario. Additionally, determining 
the threshold and finding the optimal value for the NMS algorithm can be challenging. This 
often requires extensive experimentation to minimize both missed detection and false detection, 
making the parameter adjustment process highly complex.
 In this study, the Soft-NMS algorithm was used to replace the original NMS algorithm. 
Equation (1) is the score reset formula of the NMS algorithm, and Eq. (2) is that of the Soft-NMS 
algorithm. Moreover, an attenuation function was set in the Soft-NMS algorithm on the basis of 
the size of the overlapping part of adjacent detection frames, instead of completely setting the 
score of adjacent detection frames to zero. In other words, the detection frame with a large 
overlap with the maximum detection frame is assigned a very low score. However, for the 
detection frame with only a small overlap with the maximum detection frame, its original 
detection score is not significantly changed.

Fig. 1. (Color online) Example of NMS.
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2.2 Automatic detection system for structural problems of bridges

 Considering that the accuracy of the identification model for multicategory problems cannot 
meet the requirements of the accuracy of identification under the limitation of a certain 
confidence, an automatic detection system for structural problems of bridges with primary 
screening and an identification model cascade was established; it includes a primary screening 
network for multiple problems and a detection network cascade for a single problem. The system 
structure diagram is shown in Fig. 2.

3. Training and Analysis of Models

 In this study, the mainstream deep learning framework, Caffe, was used as an experimental 
platform, and the transfer learning strategy was selected owing to the small number of datasets. 
In addition, the training network in this study was initialized by the pretrained model in the 

Fig. 2. Flow chart of cascade identification system.
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ImageNet classification task, whereas the convolutional layer weight of the feature extraction 
network was initialized by the pretrained VGG16 CNN in the ImageNet classification task. 
Furthermore, Faster R-CNN was subjected to the end-to-end approximate joint training using 
the gradient descent method, and the model training was calculated with the GPU because of the 
large computational effort.

3.1 Selection of dataset

 The image datasets in this study were obtained from photographs of the structural problems 
of bridges taken during manual inspection over the years and mainly include voids and pits, 
cracks, and white precipitate, as shown in Fig. 3. In the case of insufficient quantity, the image 
processing method for expansion was used to improve the generalization ability of the model. In 
this study, the horizontal mirror flip was used to expand the dataset, which doubled the number 
of datasets, and 424 voids and pits (marked as fwmm), 238 cracks (marked as lf), and 630 white 
precipitate (marked as bx) were obtained. Eighty percent of the dataset was used as the training 
set, while the remaining 20% was used as the test set. The dataset used in this study comprised 
the image data collected during engineering practice and was not ideal. Therefore, compared 
with the existing research results, the model obtained through training has a high engineering 
application value.
 The Faster R-CNN algorithm can process images of any size, but the image sizes of problems 
such as voids and pits are very large, increasing the computational burden of the graphics card. 
The VGG16 used in this study for  transfer learning was obtained from the training on the image 
dataset with a size of 500 × 300, and using oversized data may produce adverse effects. 
Therefore, in this study, the original images with sizes of 2994 × 2134 and 4608 × 3456 were 
converted to 600 × 450 by image processing, and a group of comparative experiments were 
conducted on the dataset of problems such as voids and pits. The results are shown in Table 1.
 Table 1 shows that the small image dataset has greater advantages in training time and testing 
time, and the AP is about 3.5% higher than the training result of the original large image dataset. 
The convolution results of the middle layer are shown in Fig. 4 after visualization, showing that 

Fig. 3. (Color online) Examples of structural problems of bridges. (a) Honeycomb pitted surface, (b) crack, and (c) 
white analysis.

(a) (b) (c)
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the convolution results of the small image dataset are clearer and with better effect. Therefore, 
small image datasets were used in the experiments described later in this paper.

3.2 NMS replaced by Soft-NMS

 Taking the problem of voids and pits as an example in this study, the comparative experiment 
of NMS and Soft-NMS algorithms was conducted, and the results of the P–R precision vs recall 
(P–R) curve of the model under the two algorithms are as shown in Fig. 5. The AP of the original 
Faster R-CNN algorithm using NMS is 78.54%, which becomes 80.86% after changing to Soft-
NMS, which shows an increase of about 2.32%. In addition, the recall (also known as recall 
ratio) of the model has also been considerably improved, thereby markedly reducing the missed 

Table 1 
Results of comparative experiment of image size.
Image size of dataset Training speed (s/iter) Training time AP Test speed (/img)
Original image 0.449 74 min 56.839 s AP for fwmm = 0.7203 0.145
600 × 450 0.416 69 min 26.857 s AP for fwmm = 0.7755 0.091

Fig. 4. Visualization of convolutional results of the middle layer in various sizes. (a) 600 × 450--rpnoutput layer, 
(b) master drawing--rpnoutput layer, (c) 600 × 450--rpn_cls_prob_reshape layer, and (d) master drawing--rpn_cls_
prob_reshape layer.

(a) (b)

(c) (d)
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detection rate, which is more in line with the original intention of detecting structural problems 
of bridges. The APs of identification models of white precipitate before and after the 
improvement are 86.47 and 87.39%, respectively, which shows an increase of about 1%. On the 
other hand, there is less overlap of the crack problem, so the improvement is unclear.

3.3 Cascade network model

 According to the system structure diagram in Fig. 2, the best primary screening network 
model for multiple bridge structural problems needs to be trained first, and the identification 
accuracies of the three types of bridge structural problem are 63.54, 62.57, and 61.17%, 
respectively. Figure 6 shows the P–R curve. In the automatic monitoring system for structural 
problems of bridges, the confidence rate of the network model was reduced to decrease the 
missed detection rate and improve the recall rate. The APs of detection models of single 
problems, namely, voids and pits, cracks, and white precipitate, are 80.86, 81.42, and 87.39%, 
respectively, and the P–R curves of three secondary models are each shown in Fig. 7. Moreover, 
the accuracy and the identification effect of a single problem are much better in the secondary 
model than in the primary model.
 The main objective for the primary screening network model is to reduce the missed detection 
rate, so that the images with suspected problem types can be transferred to the next level for 
further accurate identification in the detection model for a single problem. Therefore, the 
confidence thresholds of the primary screening network should be discussed first. If the model 
identifies that the confidence of the detection frame is greater than ω, the problem in the 
detection frame should be considered as the target of correct detection, and the image should be 
input into the single-problem detection model, which corresponds to the next level. However, if 
the confidence is less than ω, it should be assumed that no target is detected in the detection box. 
The missed detection rates of three types of problem target obtained through experiments under 
different confidence thresholds are shown in Table 2. When the confidence rate of the primary 

Fig. 5. (Color online) P–R curve under NMS and Soft-NMS. (a) P–R curve of fwmm model in NMS and Soft-
NMS and (b) P–R curve of box model in NMS and Soft-NMS.

(a) (b)
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screening network model is 0.1, the missed detection rate is the lowest. Therefore, 0.1 was used 
as the confidence threshold of the primary screening network in this study.

3.5 Parameter settings

 In this study, the end-to-end training method of Faster R-CNN was adopted, and the 
parameter settings of the four subnetworks in the cascaded network model were determined 
after optimization and algorithm improvement, as shown in Table 3.

Fig. 7. (Color online) P–R curves of secondary identification network. (a) P–R curve of honeycomb pitted surface, 
(b) fracture model P–R curve, and (c) white analysis model P–R curve.

(a) (b) (c)

Table 2
Missed detection rates of three types of problem target under different confidence thresholds.
Confidence threshold Fwmm missed detection rate (%) lf missed detection rate (%) Bx missed detection rate (%)
0.1 4.06 1.86 3.91
0.2 8.94 5.59 7.81
0.3 13.01 8.07 10.94
0.4 13.82 8.70 12.50
0.5 13.82 9.94 16.40
0.6 15.45 11.80 19.53
0.7 17.07 13.66 23.44

Fig. 6. (Color online) P–R curve of primary screening network.
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4. Conclusions 

 In this study, we built upon the Faster R-CNN algorithm by incorporating the Soft-NMS 
algorithm to enhance the original NMS algorithm. Furthermore, the training model was 
optimized, and identification models were combined to create an automatic detection system for 
structural problems of bridges. However, the dataset used in this study consisted solely of 
manually captured image data from daily inspections, resulting in significant variations in 
angles, scenes, and conditions. As such, this dataset may not be ideal. Nevertheless, the 
developed model holds great application value and can be directly implemented in bridge 
detection projects.
 To fully leverage the benefits of deep learning, it is crucial to address the limitations of 
insufficient and incomplete datasets in this study. Future research should focus on expanding the 
dataset to achieve more robust and accurate results. Additionally, it is recommended to develop a 
corresponding user interface to display the identification results or create detection software 
specifically designed for identifying the structural problems of bridges. These advancements 
will enhance the practicality and usability of the proposed method.
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