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	 In this study, we propose a fuzzy control design for a table tennis robot to accurately strike 
ping-pong balls, regardless of whether they are topspinning or backspinning. The classification 
of topspin and backspin is determined through a comparison of ball trajectories measured by 
binocular vision with that of an ideal flying model derived from aerodynamics. By inputting 
trajectory features into the corresponding model, the striking signal, including contact position 
and hitting time, can be predicted. A fuzzy inference system is then utilized to derive the face 
angle of the racket at the hitting moment, which ultimately controls the robot to strike 
topspinning or backspinning balls. With an average error of approximately 3 cm for contact 
position prediction and less than 13.5 ms for hitting time prediction, our proposed fuzzy control 
design has demonstrated its effectiveness in striking spinning balls.

1.	 Introduction

	 Numerous studies have delved into the research of table tennis robots over the last few 
decades.(1–6) In the past, there was little discussion about robots that could strike topspinning/ 
backspinning balls.(7) However, given the prevalence of topspinning/backspinning balls in table 
tennis games, in this study, we aim to introduce a fuzzy controller that enables our robot to hit 
such spinning balls. The accurate prediction of a spinning ball’s trajectory is crucial in 
developing a ping-pong robot, and the key to achieving this lies in correctly classifying its spin 
type. Over the past years, several researchers have proposed various approaches to tackle this 
classification problem. Wang and Sun(8) focused on improving the neural network architecture 
of an extreme learning machine, successfully classifying five types of spinning balls with a high 
degree of accuracy. Gao et al.(9) employed a different method of analyzing the moving status of 
four lines affixed to a racket to recognize the spin type of a flying ball. Feature matching was 
the approach used in Ref. 10, which estimated the movement of an opponent’s racket and used 
this information to determine the spinning direction of the ball.(10) In contrast, an inertial sensor 
was installed on the racket to classify the spin type on the basis of the racket’s movement.(11) In 
addition, Furuno et al.(12) proposed a method that involved painting lines of five different colors 
on the ball and analyzing their variation to estimate the ball’s spinning velocity. Several markers 
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were drawn on the ball to calculate the rotation speed.(13) Lastly, a method to detect the labels on 
a ping-pong ball and estimate the spinning speed on the basis of the change of labels was 
proposed in Ref. 14. However, these studies required a visual system with extremely high 
resolution and high computing capability, as estimating the spinning speed using a low-level 
camera is often difficult. As such, the Magnus effect is often ignored, resulting in trajectory 
predictions that differ from those measured by vision.(8) In this study, we seek to bridge this gap 
by adopting the difference between the trajectory predictions measured by vision and those 
derived from the spinning speed estimation to classify the spin type of a ball.
	 The vertical position and hitting timing of a flying ball are significantly affected by its 
topspin or backspin. To predict a robot’s contact point position and hitting time, we model the 
shift in vertical position and hitting time in relation to the topspin/backspin. When hitting a 
spinning ball, the rebounding force differs owing to the direction and speed of the spin and the 
force from contact with the racket. For a topspinning ball, an upward force is generated, resulting 
in a high returning angle that may cause the ball to fly out of bounds. Tilting the racket forward 
and downward can reduce the rebounding angle and prevent this situation. Conversely, the 
racket should be tilted backward to increase the angle when hitting a backspinning ball. 
Obtaining the correct face angle of the racket requires the simultaneous consideration of the 
spinning status and contact position. To achieve this, a fuzzy controller is introduced using 
spinning speed and contact position as inputs. Our results showed average errors of 3 cm for the 
contact position and less than 13.5 ms for the hitting time. The proposed fuzzy controller is 
effective in striking topspinning or backspinning balls, as demonstrated by our experiments. In 
this study, we created a robotic arm and developed a visual system to measure and predict the 
trajectory of a ball. We used the prediction results to control the movement and angle of a racket 
to strike the spinning ball. Our demonstration showcased a cost-effective and self-made robotic 
arm that can hit a spinning ball. These achievements are highly relevant to the topic of this 
journal–applications: robotics.

2.	 Table Tennis Robot

	 Figure 1 shows the developed robotic system used in this study, which includes a robotic arm, 
a binocular vision system, and a computer. Additionally, a launcher machine is employed to 
serve a ball to verify the proposed control design.

Fig. 1.	 (Color online) Developed robotic system.

6-DOF robotic arm
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2.1	 Robotic arm

	 The 6-degree-of-freedom robotic arm used in this system is shown in Fig. 1. Joint-0 can drive 
the slide rail mechanism to move the robotic arm along the horizontal direction (X-coordinate).  
Joint-1 can derive the robotic arm swing along the Z-coordinate to strike the ball. Joints-2–4 
form a planar link structure to move the racket on a defined hitting plane. Joint-5 can control the 
tilt angle of the racket for striking the topspinning/backspinning balls. 

2.2	 Binocular vision system

	 The binocular shown in Fig. 1 consists of two high-speed cameras that can capture images at 
the resolution of 1280 × 1024 pixels with a frame rate of 60 fps. By thresholding the captured 
images represented in HSV color space and the smallest enclosing circle algorithm, the ping-
pong ball can be detected. Through the calibration described in Ref. 15, the intrinsic and 
extrinsic parameters of the binocular vision system can be obtained. The ball is then positioned 
through the stereo geometry of the binocular vision system.

3.	 Ball Trajectory Analysis

	 The practical ball trajectories can be estimated on the basis of the positions measured with 
the visual system. In this study, the type of ball spin is recognized by comparing the practical 
ball trajectory with the trajectory determined using the ideal flying model without the Magnus 
effect. Consequently, the contact point and hitting time for the table tennis robot can be 
predicted. 
	
3.1	 Ball spin recognition

	 The ideal flying model that ignored the Magnus effect is as follows:(7)
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Here, ρ is the air density, m is the mass of the ball, S is the effective cross-sectional ball area, CD 
is the drag coefficient, g is the gravity acceleration, and v is the velocity of the ball. According to 
aerodynamics, the Magnus force caused by the spin of a ball during its flight is as follows:

	 M b LF r SC vρ ω= × ,	 (3)

where ω is the rotation velocity, rb is the radius of the ball, and CL is the lift coefficient. 
	 According to Newton’s second law, the Magnus force applied to the ball is as follows:

	 z b L yma r SC vρ ω= .	 (4)

Then, we obtain

	 z

y

a
vω ∝ ,	 (5)

where vy is the flying velocity along the Y-coordinate and az is the acceleration along the 
Z-coordinate. The spin type and spinning strength of a ball can be estimated using Eq. (5). Note 
that in this study, we did not measure the ball’s rotation velocity; instead, we estimated the flight 
velocity and acceleration, which can be measured through the binocular vision system. The 
differences between the practical ball trajectory and the ideal flying model that ignored the 
Magnus effect are illustrated in Fig. 2. Obviously, the height difference is caused by az.
	
3.2	 Contact point prediction

	 Figure 3(a) shows the definition of the coordinate system. According to Eqs. (3) and (5), the 
topspinning/backspinning ball flying along the Y-coordinate only induces the Magnus effect 
along the Z-coordinate. Hence, the trajectory of the topspinning/backspinning ball projected on 
the X-Y plane is regarded as a straight line, as shown in Fig. 3(b). In this study, the predicted 
contact position in the X-coordinate is derived from the 2nd and 11th measured points according 
to Eq. (6). In Fig. 3(b), (xhp, yhp) represents the predicted contact position on the hitting plane, 
where  is based on the setting of Joint-0 of the robotic arm, i.e., yhp = −42.

Fig. 2.	 (Color online) (a) Topspin and (b) backspin Magnus effects.

(a) (b)
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	 As shown in Fig. 2 and Eq. (5), the contact position in the Z-coordinate is generally affected 
by factors such as the ball’s flight velocity and acceleration. Therefore, the predicted contact 
position in the Z-coordinate is determined by multivariate regression as

	 11

11 11

11

1 11 2 11 3 4 5
z

hp z y
y

a
z b w z w y w v w v w

v
= + + + + + .	 (7)

Here, b is the bias and wi for i = 1, 2, ..., 5 is the weight of the corresponding variable. The 
subscript 11 indicates the value of the corresponding variable at the 11th timestamp.

3.3	 Hitting time prediction

	 For the table tennis robot to successfully strike the topspinning/backspinning ball, it should 
predict correctly not only the contact point, but also the hitting time. Likewise, the above 
multivariate regression is also used to predict the hitting time as

	 11

11 11

11

6 11 7 11 8 9 10
z

h z y
y

a
T c w z w y w v w v w

v
= + + + + + .	 (8)

Here, c is the bias and wi for i = 6, 7, ..., 10, is the weight. Th is the time required for the ball to fly 
from the position at the 11th timestamp to the predicted contact point.

Fig. 3.	 (Color online) (a) Coordinate system of robotic system and (b) ball trajectory on X–Y plane.

(a) (b)
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4.	 Control Design for Robotic Arm

	 In this study, the control design for the robotic arm is divided into three parts, namely, 
posture control, racket tilt angle control, and swing control.

4.1	 Posture control for robotic arm

	 The posture control of the robotic arm is mainly realized by Joint-0 and Joints-2–4. Joint-0 
can ensure that the robotic arm has an appropriate swing radius when striking the ball. If the 
swing radius is very large, the motor should drive more torque, which also causes the robotic 
arm to swing slower. If the swing radius is very small, the force of the strike will be too small to 
return the ball over the net. According to our experimental results, 40–50 cm would be an 
appropriate swing radius, as shown in Fig. 4(a). 
	 Then, the posture of the robotic arm on the hitting plane can be solved through inverse 
kinematics. Figure 4(b) illustrates the geometric relationship between the posture of the robotic 
arm and the predicted contact point (xhp, zhp) on the hitting plane. In Fig. 4(b), the origin is 
located at the center of Joint-2. l2, l3, and l4 are link lengths of Joints-2–4, respectively. θ2, θ3, 
and θ4 are the corresponding angles of Joints-2–4, respectively. 

4.2	 Racket tilt angle control

	 When the spinning ball hits the racket, the spin creates additional force Fs. Owing to the 
combination of rebound force Fb and rotation-induced force Fs, the actual rebound direction of 
the returned ball is different from the direction of the rebound force. Figures 5(a) and 5(b) 
illustrate the topspinning and backspinning cases, respectively. Therefore, when striking a 
topspinning ball without tilting the racket face, it is easy for the returned ball to fly out of 
bounds. Consequently, when striking a topspinning ball, tilting the racket face forward and 
downward appropriately can prevent the returned ball from flying out of bounds, as illustrated in 
Fig. 5(c). Similarly, tilting the racket face backward and upward appropriately can avoid 

Fig. 4.	 (Color online) (a) Appropriate swing radius and (b) robotic structure definition.

(a) (b)
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returning the ball to the net, as illustrated in Fig. 5(d). According to Eq. (5), the slower the ball 
flies, which implies the greater spinning strength, the more tilt the racket should have. In 
addition to tilting the racket face, the height of the contact point should also be considered when 
striking the spinning balls. When striking a backspinning ball, the higher the contact point, the 
less tilt the racket should have. Conversely, when striking a topspinning ball, the higher the 
contact point, the greater the tilt required for the racket. Accordingly, the fuzzy controller for 
controlling the tilt of the racket is designed on the basis of the contact position zhp and az/vy in 
Eq. (5). The fuzzy sets of these two input (antecedent) variables are shown in Figs. 6(a) and 6(b), 
respectively. The fuzzy sets of the output (consequent) variable, which indicate the tilt angle of 
the racket through Joint-5 for striking topspinning or backspinning balls, are shown in Figs. 6(c) 
and 6(d), respectively. 
	 The rule table of the fuzzy controller design for striking the topspinning balls is shown in 
Table 1. The fuzzy rule table for striking the backspinning balls is shown in Table 2. Finally, the 
center of gravity defuzzification is used to obtain the fuzzy control final output.

4.3	 Swing control for robotic arm

	 Table tennis players turn their shoulders and swing their arms to strike the balls. In this 
study, the robotic arm swing is realized by controlling Joint-1 in trapezoidal point-to-point 

Fig. 5.	 (Color online) (a) Striking back directions with topspin, (b) striking back directions with backspin, (c) 
tilting the racket for hitting the topspinning ball back, and (d) tilting the racket for hitting the backspinning ball 
back.

(a) (b)

(c) (d)
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control mode. The trapezoidal point-to-point control mode includes acceleration, constant speed, 
and deceleration phases. The total area of the trapezoid is the angle through which Joint-1 
swings. In this study, when preparing to strike the ball, the robotic arm is set at an angle of 30° 
behind the striking plane, and the total angle of the robotic arm swing is 120°.

(a) (b)

(c) (d)

Fig. 6.	 (Color online) (a) Fuzzy sets of input variable 1: zhp; (b) fuzzy sets of input variable 2: az ⁄vy; (c) fuzzy sets of 
output variable: for topspin; (d) fuzzy sets of output variable: for backspin.

Table 1
Fuzzy rule table for striking topspinning balls.

zhp
az ⁄vy

W_S W_MS W_M W_MB W_B
Z_L T_S T_S T_MS T_MS T_M
Z_ML T_S T_MS T_MS T_M T_MB
Z_M T_MS T_M T_M T_M T_MB
Z_MH T_M T_M T_M T_MB T_MB
Z_H T_M T_MB T_MB T_MB T_B

Table 2
Fuzzy rule table for striking backspinning balls.

zhp
az ⁄vy

W_S W_MS W_M W_MB W_B
Z_L B_B B_MB B_MB B_MB B_M
Z_ML B_MB B_MB B_M B_M B_M
Z_M B_MB B_MB B_M B_M B_MS
Z_MH B_MB B_M B_M B_MS B_S
Z_H B_M B_MS B_MS B_S B_S
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5.	 Experimental Results

	 In this section, we showcase the effectiveness of the proposed method through three distinct 
experiments. These experiments aim to verify the accuracy of zhp for topspinning/backspinning 
balls, the accuracy of hitting time prediction, and the performance of striking the ball. It should 
be emphasized that spin type classification is a necessary prerequisite.

5.1	 Accuracy of contact position prediction

	 Following the classification process, we utilized 364 data points for regression analysis 
training while reserving 110 data points for testing. The trained prediction model of the predicted 
contact point in the Z-coordinate for topspinning balls is denoted by Eq. (9).

	 11

11 11

11

11 1134.3083 0.256 0.016 0.028 0.007 0.379 zt
hp z y

y

a
z z y v v

v
= + − + − − 	 (9)

	 Moving on to the analysis of backspinning balls, we utilized a total of 369 data points for the 
regression analysis training and 132 data points for testing. The trained prediction model of the 
predicted contact point in the Z-coordinate for backspinning balls is denoted by Eq. (10).

	 11

11 11

11

11 1120.423 0.457 0.066 0.058 0.003 0.26 zb
hp z y

y

a
z z y v v

v
= + − + − − 	 (10)

	 In Table 3, we have compiled an overall summary of the average errors and standard 
deviation for our model’s training and testing phases. 

5.2	 Accuracy of hitting time prediction

	 In the context of the topspin analysis, 347 data points were utilized for regression analysis 
training, whereas 129 data points were set aside for testing. The resulting formula for the 
prediction of hitting time is presented below.

	 11

11 11

11

11 11134.079 0.261 2.148 0.006 0.162 0.334 zt
h z y

y

a
T z y v v

v
= + + + − − 	 (11)

Table 3
Accuracy of contact point for topspinning/backspinning balls.

Phase Average error (cm) Standard deviation (cm)

Topspinning ball Training 2.6079 3.2872
Testing 2.7724 3.2875

Backspinning ball Training 2.5160 3.2102
Testing 3.0552 3.6970
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	 In this study, we employed 363 data points for training and 136 for testing the backspin case 
in the context of regression analysis. The model was subsequently derived and formulated as in 
Eq. (12), and numerical results are tabulated in Table 4.

	 11

11 11

11

11 11203.368 1.082 2.923 0.06 0.286 0.124 zb
h z y

y

a
T z y v v

v
= − + + − + . 	 (12)

5.3	 Experiments of striking performance

	 On the basis of the experimental results collected, it was observed that the contact point 
position had an average error of approximately 3 cm, whereas the average error in predicting the 
hitting time was less than 13.5 ms. To validate the robustness of returning balls, we conducted 
experiments using a ball launcher to launch topspinning/backspinning balls at three different 
angles. Results for the topspinning and backspinning balls are shown in Table 5. A successful 
return is defined as the robot being able to strike the ball to the opposite side of the table, while 
failed attempts include swinging the ball in the air, returning it to the net, or going out of bounds.

6.	 Discussion

	 To fully control a table tennis robot, an accurate visual system is required to track and predict 
the ball trajectory, along with a well-designed strategy for striking the ball back. Our 
experimentation has yielded successful results in programming the robotic arm to counterattack 
the topspinning or backspinning balls. What differentiates our study from others is the 
implementation of binocular vision to sense the necessary parameters for estimating the ball’s 

Table 4
Accuracy of hitting time for topspinning/backspinning balls.

Phase Average error (ms) Standard deviation (ms)

Topspinning ball Training 5.8810 7.5929
Testing 6.432 8.2375

Backspinning ball Training 10.5436 13.2606
Testing 13.4743 15.6570

Table 5
Striking performance for topspinning/backspinning balls.

Angle (°) Successful return Failed counterattack Success rate (%)

Topspinning ball

11 39 11 78
14.2 36 14 72
17.4 44 6 88
Total 119 31 79.3

Backspinning ball

8 19 31 38
9.6 26 24 52

11.2 22 28 44
Total 67 83 44.7
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rotation degree, which is directly proportional to its rotation velocity, by utilizing Eq. (5). 
Subsequently, we designed a fuzzy controller to adjust the racket’s facing angle.
	 The following discussion was centered on two fundamental performance indicators: the 
prediction error of the contact position and the batting success rate. Our analysis revealed a 
prediction error of approximately 3 cm for the contact position, which is a slight improvement 
from Ref. 2’s result of 3.6 cm. In terms of batting success rate, our performance was similar to 
that shown in Ref. 3, but the proposed method can hit back the topspinning/backspinning balls.

7.	 Conclusions

	 Through our research, we developed a fuzzy controller that allows a robotic arm to strike 
topspinning/backspinning balls. Our proposed method was found to be effective in striking the 
ball back, with small average errors in contact point position and hitting time prediction. 
However, we encountered certain difficulties in hitting the backspinning ball, with a success 
rate of only 44.7%, while the topspinning ball had a success rate of 79%. To address this issue, 
we conducted a thorough analysis of the reasons for the counterattack failure and found that 
improving the accuracy of prediction errors remains a key challenge. To enhance the 
performance, it is essential to utilize a camera with a higher capturing rate as this would be 
beneficial in reducing the error in predicting the contact point position and hitting time. In 
addition, controlling the face angle of the racket is also crucial in improving success rates.
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