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 Bar-type steel is commonly used in engineering facilities, which is made from the raw 
material of steel wire with high-speed rolling. A hot steel-bar stack (HSBS) accident is a serious 
accident wherein a hot steel bar flies out from a bar stack fixed on a trolley during manufacturing. 
If not prevented on time, it can damage production equipment and cause fire and personal injury. 
At present, the monitoring and identification of HSBS accidents during the rolling manufacturing 
process are still limited to manual observation. We lack advanced monitoring and identification 
methods. Finding an effective, accurate, and rapid identification method as well as a treatment 
method for detecting an HSBS accident in the rolling manufacturing process is an urgent issue. 
To solve this problem, we propose a novel three-in-one image recognition (TIOIR) method based 
on the bagging and boosting ensemble learning schemes. The TIOIR method integrates the 
maximum distance positioning, corner detection positioning, and ablation methods to better 
identify different features of HSBS images. Furthermore, we designed and built a fault diagnosis 
system of HSBS accident detection, which includes temperature and visual sensors, visual 
detection devices, and a remote control and computing unit embedded with our proposed TIOIR 
scheme. Through the operation of the fault diagnosis system, we carried out an actual 
identification experiment of HSBS accident detection in the rolling field, and the obtained real-
time recognition rate was as high as 97%.

1. Introduction

1.1 Hot steel-bar stack accidents 

 Bar-type steel is the most common profile of steel, which is usually produced by single-line 
high-speed rolling, as shown in Fig. 1. Hot steel-bar stack (HSBS) accidents are the most 
common and serious accidents in the steel rolling process, and their frequency accounts for more 
than half of all steel rolling accidents, as shown in Fig. 2. When an HSBS incident occurred, hot, 
soft steel bar flew out of a pile of steel bar secured to a cart during the production process. If this 
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type of accident cannot be prevented on time, the production equipment will be severely 
damaged and the production will be halted, and even personal injury will occur.(1–5)

 Thus far, many studies have put forward a series of solutions to the common problem of 
HSBS accidents.(6–10) Rusnák et al.(6) proposed the method of increasing the final thickness of 
rolled steel to eliminate surface defects as much as possible. Dominik et al.(7) proposed a system 
that can be applied to reduce the occurrence of stacking steel accidents. By numerical simulation, 
Pater et al.(8) found that the criterion based on structural stress is more suitable for predicting the 
fracture of rolled steel. Bouguettaya et al.(9) proposed a novel approach that uses an ensemble of 
two pretrained state-of-the-art convolutional neural networks (CNNs) to deal with the 
identification problem for rolled steel. Qian et al.(10) established a new differential eddy-current 
method for classifying the raw materials of steel bars. 
 How to effectively detect HSBS accidents and take appropriate measures have become urgent 
problems that need to be solved. At present, machine vision methods based on various advanced 
and accurate recognition schemes such as the recurrent neural network, deep neural network, 
and CNN can effectively and accurately monitor harsh working environments and are suitable 
for this study.(11–15)

1.2 Machine vision technology for detecting HSBS accidents

 For HSBS accident detection, the human vision inspection method was commonly used. 
However, this method has extremely low efficiency and lacks reliability. Instead, currently, the 
machine vision method with advanced recognition schemes is widely used for inspection works. 
However, how to use machine vision methods to improve the accuracy and efficiency of image 
recognition is still challenging, especially with little research on HSBS accident detection.(16–18) 
Abhishek and Jegadeeshwaran(19) invented a new machine learning method to investigate the 
problems of classifying and predicting tool states. Yanzhou et al.(20) summarized the machine 
learning algorithms for detection in the process of metal laser-based additive manufacturing. In 
their study, the machine learning scheme, defect type, data type, material type, and calculation 
accuracy used in the laser-based additive manufacturing process were discussed.(20) Khan et 
al.(21) developed a learning model based on the CNN scheme to detect real-time malicious 

Fig. 1. (Color online) Steel-bar rolling site. Fig. 2. (Color online) HSBS accident.
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defects to reduce human involvement for checking product quality in manufacturing. This 
approach adopted the concepts of image classification and computer vision via machine learning, 
which is a popular technology for detecting the causal relationships of defects. Goyal et al.(22) 
used the support vector machine and artificial neural network schemes to identify and classify 
bearing defects. Benbarrad et al.(23) proposed a model containing various integrated machine 
learning schemes in the production chain to identify the data pattern and suggested corrective 
actions to ensure product quality during manufacturing. 
 On the basis of the vast merits of using machine learning schemes in the defect detection and 
classification of engineering products, we propose a three-in-one image recognition (TIOIR) 
method based on a machine learning scheme to solve the problem encountered in HSBS accident 
detection.

2.	 HSBS	Accident	Identification	Methodology	and	System

2.1	 Identification	methodology

 To better identify and further prevent HSBS accidents in a steel-making plant, we propose a 
methodology including four manipulation procedures for the image recognition of HSBS 
accidents. First, on the basis of the practical industrial network architecture of a steel-rolling 
manufacturing site, we designed an image detection and identification system for HSBS 
accidents. Second, we used the maximum gray-scale and median-filter methods to catch the red 
and hot steel bar features of collected images and reduce overall data noises. Third, for feature 
recognition and classification, we studied and compared three advanced methods, namely, the 
maximum-distance positioning method based on the Hough transform (MDPHT),(24) the 
positioning method based on the Harris corner detection (PHCD),(25) and the curvature-
recognition algorithm based on the ablation scheme (CRA).(26) Fourth, we combined the merits 
of the previous three methods and proposed a novel TIOIR method on the basis of the bagging 
and boosting ensemble learning scheme(27) to improve the final identification accuracy of HSBS 
accidents.

2.2	 Identification	system
 
 To effectively detect the HSBS accidents in the rolling manufacturing process, we built an 
identification system, as shown in Fig. 3, which includes the following six parts: the detecting 
unit (visual and infrared thermal image sensors), the data processing unit, the data transmitting 
unit (Ethernet and data exchanger), the data manipulation unit (cloud servers and cloud 
computers), an alarm unit, and a remote central control unit. The former three units constitute a 
detection subsystem, and we have four subsystems in total to obtain the images of various HSBS 
accidents in real time, which are set at the sites of rough rolling, middle rolling, pre-fine rolling, 
and fine rolling.
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3.	 Image	Detection	and	Preprocessing	

3.1	 Image	detection	and	temperature	sensing

 We adopted the detection and identification system established above. We used an infrared 
thermal image sensor and a vision sensor [Fig. 4(a)] to detect and capture physical images and 
the temperature distributions of HSBS accidents, respectively. The obtained typical results are 
respectively shown in Figs. 4(b) and 4(c). 

3.2	 Image	preprocessing

 The steel rolling environment is full of clutter items, such as crud, dust, and pollutants. This 
type of highly dirty and harsh environment causes the images of HSBS accidents taken by visual 
sensors to become vague and noisy, which are difficult to distinguish. The interference factors 
include various surrounding lights, scattered lights reflected by water stain, discrete hot spots 
caused by the high-temperature environment, and noise disturbances caused by machine 
vibration. To improve the accuracy of extracting crucial features from the images of HSBS 
accidents, it is necessary to develop appropriate preprocessing and feature extraction schemes. 

Fig. 3. (Color online) Detection and identification system for detecting HSBS accidents in rolling manufacturing 
process.
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The obtained typical image of HSBS accidents with interference by clutter items is shown in Fig. 
5(a) and that with interference by noisy lights is shown in Fig. 5(b). Focusing on these two typical 
images of HSBS accidents, we next performed the image data preprocessing, which is divided 
into the image gray-scaling and the image filtering. 

3.2.1	 Image	extraction

 To find a proper way of better extracting the images of HSBS accidents, we analyzed three 
commonly used methods: the maximum gray-scale method, the mean gray-scale method, and 
the component method.(28) These methods are capable of eliminating the image ambiguity 
caused by similar backgrounds. We applied these methods to analyze the image shown in Fig. 
5(a) and the obtained results are shown in Fig. 6(a) (extracted by the maximum gray-scale 

Fig. 4. (Color online) Image detection and temperature sensing: (a) infrared thermal image sensor, (b) image of 
HSBS accidents obtained by a visual sensor, and (c) temperature distributions of HSBS accidents obtained using an 
infrared thermal image sensor.

(a) (b)

(c)



2302 Sensors and Materials, Vol. 36, No. 6 (2024)

method), Fig. 6(b) (extracted by the mean gray-scale method), and Fig. 6(c) (extracted by the 
component method). Comparing these three images with the original image, we found that the 
maximum gray-scale method has the best identification effect among all the methods.
 Furthermore, we used these three methods to analyze the image shown in Fig. 5(b) and the 
obtained results are shown in Fig. 7(a) (extracted by the maximum gray-scale method), Fig. 7(b) 
(extracted by the mean gray-scale method), and Fig. 7(c) (extracted by the component method). 
We found from Fig. 7 that the maximum gray-scale method still has the best identification effect 
among all the methods, even though there exists much interference from scattering lights and 

Fig. 6. Images obtained by different extraction methods for the picture shown in Fig. 5(a): (a) maximum gray-scale 
method, (b) mean gray-scale method, and (c) component method.

Fig. 5. (Color online) Images of HSBS accidents: (a) interference by cluster items and (b) interference by noisy 
lights.

(a) (b)

(c)

(a) (b)
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clutter noises. Hence, we concluded that the maximum gray-scale method is excellent in data 
preprocessing for the identification of HSBS accidents and we adopted this method throughout 
this study. 

3.2.2	 Image	filtering	

 The image filtering scheme is often used for the image noise reduction to obtain relatively 
clear images. Thus far, the most commonly used filtering schemes are mean filtering, Gaussian 
filtering, and median filtering.(29) The light-noise interfered image shown in Fig. 5(b) was 
selected as the target picture. After the extraction processing by the maximum gray-scale 
method, we applied the above three schemes to filter the target picture. The obtained results are 
shown in Fig. 8. We found that, in an overall comparative sense, the median filtering scheme has 
the best denoising effect among all the methods because of higher articulation. 

3.3	 Image	feature	extraction

3.3.1	 Image	binarization	processing

 To solve the problem of image confusion between the features of the red and hot rolling steel 
bars and their background, we further needed to introduce the image binarization (IB) scheme. 

(a) (b)

Fig. 7. Images obtained by different extraction methods for the picture shown in Fig. 5(b): (a) maximum gray-scale 
method, (b) mean gray-scale method, and (c) component method.

(c)
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The IB scheme involves the data normalization and threshold segmentation.(30) The appropriate 
threshold in the IB scheme is closely related to the integrity of image feature extraction, which 
ultimately affects the classification effect. We found that a setting of the threshold as the 
maximum gray-scale value or within the range of 35–45 can completely separate the confusion 
noise from the original image. The thus-obtained HSBS images shown in Figs. 5(a) and 5(b) via 
the IB scheme are respectively shown in Figs. 9(a) and 9(b). 

3.3.2	 Image	marginalization	processing

 We encountered two problems in the execution of the IB scheme: long calculation time and 
misleading information. To solve these two problems, we introduced the image marginalization 
(IM) scheme that mainly includes two operators: Sobel and Canny.(31) Through calculations by 
the IM scheme with these two operators, we obtained two edge images of Fig. 5(a), as shown in 
Figs. 10(a) and 10(b). We comparatively found that both operators yield clear images of the edges 
of the hot steel bars. Therefore, in the following case study, the IM scheme together with these 
two operators was adopted. 

Fig. 8. Image filtering by different schemes: (a) mean filtering, (b) Gaussian filtering, and (c) median filtering.

(a) (b)

(c)
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4.	 Image	Feature	Recognition	and	Classification

 To overcome the recognition difficulties caused by interference such as lens vibration, lens 
offset, and spark during the image acquisition via the visual sensor system at the rolling site, we 
introduced three advanced regional boundary-crossing (ARBC) methods to deal with the 
obtained images, namely, MDPHT, PHCD, and CRA.(32) In the following, the comparative 
analyses of these three methods were carried out and a more comprehensive identification 
method was developed on the basis of their combination.

4.1	 MDPHT	

 To solve the problem that the picture taken by vision sensors usually has too many image 
pixels, which leads to a long calculation time, we adopted MDPHT to eliminate unnecessary 
image pixels. First, considering two different pictures of HSBS accidents as shown in Figs. 11(a) 
and 12(a), we set the point ratio (PR), which is the ratio of the point number inside the boundary 
to the point number at the boundary, as 0.146 and 0.107, respectively, in MDPHT calculations. 

Fig. 9. (Color online) Images after processing by IB scheme: (a) processed image of Fig. 5(a) and (b) processed 
image of Fig. 5(b).

Fig. 10. (Color online) Processed edge images of Fig. 5(a): (a) image by Sobel operator scheme and (b) image by 
Canny operator scheme.

(a) (b)

(a) (b)
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Then, we obtained the final regional boundary maps via MDPHT as shown in Figs. 11(b) and 
12(b), respectively. 
 Second, we performed two recognition tests (Cases 1 and 2). In Case 1, 50 accident-type 
images with different HSBS accidents were adopted. In Case 2, 50 normal images with different 
rotational angles and vibration levels of the sensor lens were adopted. The threshold was set as 
0.8 (higher than 0.8 means a normal picture and lower than 0.8 means an abnormal picture) in 
calculations. Through calculations via MDPHT, we obtained the recognition results for Cases 1 
and 2, as shown in Figs. 13 and 14, respectively. In the accident-type image verification case, we 
found from Fig. 13 that there are four points with PR values greater than 0.8, that is, four images 
failed to be identified. In the normal image verification case, we found from Fig. 14 that there 
are nine points with PR values smaller than 0.8, that is, nine images failed to be identified. The 
identification accuracies of the above two cases are summarized in Table 1. The overall 
identification accuracy was obtained to be 0.87 using MDPHT.
 To sum up, the recognition accuracy of MDPHT is not as expected in general, and this 
method is especially weak in recognizing pictures taken from a camera with lens vibration or 
offset. Therefore, we need other comprehensive methods to remedy this shortcoming. 

Fig. 11. (Color online) Pictures of rolled-type HSBS accident: (a) picture taken by vision sensors and (b) picture 
processed by MDPHT.

Fig. 12. (Color online) Pictures of fork-type HSBS accident: (a) picture taken by vision sensors and (b) picture 
processed by MDPHT.

(a) (b)

(a) (b)
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4.2	 PHCD

 Among the image features, the three most difficult parts are the image edge, the corner point, 
and the spot. Morphologically, corner points are usually located at the intersection of image 
edges. From the image pixel perspective, the corner point is a point whose gray value changes 
considerably in some directions, which is an important basis for PHCD. Because the red-hot 
steel bar under normal conditions mainly has a four-sided or parallel four-sided contour, we 
replaced the two corner points with a maximum distance to replace the two points with a 
maximum distance in calculations. On the basis of the picture of the HSBS accident in Fig. 15(a), 
we obtained the final regional boundary map via PHCD as shown in Fig. 15(b). 
 Then, we performed two recognition tests (Cases 3 and 4). In Case 3, 50 accident-type images 
with different HSBS accidents were adopted. In Case 4, 50 normal images with different 
rotational angles and vibration levels of the sensor lens were adopted. The PR was chosen as the 
recognition parameter as usual whose threshold value was set as 0.8 (higher than 0.8 means a 
normal picture, lower than 0.8 means an abnormal picture) in calculations. Through calculations 
via PHCD, we obtained the recognition results for Cases 3 and 4, as shown in Figs. 16 and 17, 
respectively. In the accident-type image verification case, we found from Fig. 16 that there are 
six points with PR values greater than 0.8, that is, six images failed to be identified. In the 
normal image verification case, we found from Fig. 17 that there is one point with a PR value 
smaller than 0.8, that is, one image failed to be identified. The identification accuracies of the 
above two cases are summarized in Table 2. The overall identification accuracy was obtained to 
be 0.93 using PHCD.

Table 1
Identification accuracies of tests by MDPHT.

Image type Number of pictures Unsuccessful 
recognition

Successful 
recognition

Recognition 
success rate

Accident-type images (Case 1) 50 4 46 0.92
Normal images (Case 2) 50 9 41 0.82
Sum 100 13 37 0.87 (ave.)

Fig. 13. (Color online) Verification test result of 50 
accident-type images with different HSBS accidents 
by MDPHT.

Fig. 14. (Color online) Verification test result of 50 
normal images with different HSBS accidents by 
MDPHT.
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Fig. 15. (Color online) Pictures of HSBS accidents: (a) picture taken by visual sensors and (b) picture processed by 
PHCD.

Fig. 16. (Color online) Verification test result of 50 accident-type images with different HSBS accidents by PHCD.

Fig. 17. (Color online) Verification test result of 50 normal images with different HSBS accidents by PHCD.

Table 2
Identification accuracies of tests by PHCD.

Image type Number of pictures Unsuccessful 
recognition

Successful 
recognition

Recognition 
success rate

Accident-type images (Case 3) 50 6 44 0.88
Normal images (Case 4) 50 1 49 0.98
Sum 100 7 93 0.93 (ave.)

(a) (b)
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4.3	 CRA

 Previous studies have shown that (1) MDPHT is not sufficiently accurate and has strong 
randomness, especially worse in accident-type image recognition, and (2) PHCD has a poor 
ability to recognize accident-type images. Therefore, we proposed CRA to overcome the above 
problems.
 On the basis of the picture of an HSBS accident in Fig. 18(a), through calculations via CRA, 
we obtained a clear regional boundary map, as shown in Fig. 18(b), where the boundary shape of 
the HSBS can be definitely determined. 
 Then, we performed two recognition tests (Cases 5 and 6). In Case 5, 50 accident-type 
images with different HSBS accidents were adopted. In Case 6, 50 normal images with different 
rotational angles and vibration levels of the sensor lens were adopted. The curvature of the curve 
in the image (k) is selected as the recognition parameter and its threshold is set to 1.5 (higher 
than 1.5 means a normal picture and lower than 1.5 means an abnormal picture) in calculations. 
Through calculations via PHCD, we obtained the recognition results for Cases 5 and 6, as shown 
in Figs. 19 and Fig. 20, respectively. In the accident-type image verification case, we found from 
Fig. 19 that there are two points with k values greater than 1.5, that is, two images failed to be 
identified. In the normal image verification case, we found from Fig. 20 that there are two points 

Fig. 18. (Color online) Pictures of HSBS accidents: (a) picture taken by visual sensors and (b) picture processed by 
CRA.

(a) (b)

Fig. 19. (Color online) Verification test result of 50 accident-type images with different HSBS accidents by CRA.
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with PR values smaller than 0.8, that is, two images failed to be identified. The identification 
accuracies of the above two tests are summarized in Table 3. The average identification accuracy 
obtained was 0.96 using CRA.

4.4	 TIOIR	method

 To overcome the defects of MDPHT, PHCD, and CRA and retain their merits for recognizing 
HSBS accidents, we integrated these three methods into a three-in-one learning classification 
method as discussed in the following.
 The Bagging method(33–35) is a sampling method with retraction, and its algorithm process is 
as follows: 
Step 1:  Extract the training set from the original sample set. Each time, k data is extracted as a 

training set to obtain a classifier, and n classifiers are made. This results in n weak 
classifiers. 

Step 2:  Use these n weak classifiers in parallel, vote with the same weight, and finally obtain the 
classification result according to the minority obedience to majority.

 The core algorithm of the Bagging method is the decision tree scheme. The structure of the 
decision tree generally starts from the root node, passes through the middle node (non-leaf and 
root nodes), and moves step by step to the leaf node. All the data will continously branch through 
the node and finally fall to the leaf node to form the target classification. We used two feature 
selection methods for the tree root nodes and each intermediate node: Iterative Dichotomiser 3 
(ID3) and C4.5 methods, described as follows.
 ID3, an algorithm invented by Quinlan,(36) is used to generate a decision tree from the 
obtained dataset. In ID3, we use the entropy to measure the message gain. The entropy is defined 
as the uncertainty of a random variable:

 2logH p p= − ×∑ , (1)

where H is the entropy and p is the probability of an event occurring in a set. The greater the 
entropy, the greater the event uncertainty. Conventionally, ID3 has some defects such as, in some 

Fig. 20. (Color online) Verification test result of 50 normal images with different HSBS accidents by CRA.
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situations, the entropy value becomes too small to be used in calculations. Therefore, we used 
the C4.5 method under certain conditions. 
 For C4.5, “C” means that this algorithm is written in C and 4.5 specifies the version of the 
algorithm. C4.5 is an algorithm used to generate a decision tree developed by Taspinar et al.,(37) 
and it is an extension of Quinlan’s earlier ID3 algorithm. In this method, we define the 
information gain rate as

 ( , )( , )
( )

IG D aGR D a
IV a

= , (2)

where GR is the information gain rate, D is an event, a is a feature in event D, IG is the 
information gain of feature a, and IV(a) represents the entropy of a.
 In the Stacking method,(38) first, we made n weak classifiers by the Bagging method, and 
then the outputs of these n trained weak classifiers were used as the model inputs with certain 
weights. The weights are naturally generated by the classifier. Eventually, we can obtain the 
final model output through calculations. The Boosting method(38) is different from the Bagging 
method in that it connects multiple weak classifiers in series and integrates the weighted idea of 
the Stacking method. 
 In this study, we combined the ideas of equal voting in the Bagging method and tandem 
classification in the Boosting method with the integration of MDPHT, PHCD, and CRA to form 
a novel TIOIR method. The manipulation procedure of the TIOIR method is as follows. First, we 
integrate the MDPHT and PHCD methods to deal with the pictures of HSBS accidents taken at 
the HSBS rolling site. Second, we vote out the pictures that are different from the majority. 
Third, we vote through the CRA method to decide on whether the processed picture is normal  
or is of the accident type. Finally, we obtain the recognition results. 
 Through the manipulation of TIOIR, we performed the recognition tests of 100 HSBS 
pictures (Cases 7 and 8). In Case 7, 50 accident-type images with different HSBS accidents were 
adopted. In Case 8, 50 normal images with different rotational angles and vibration levels of the 
sensor lens were adopted. The obtained identification accuracies are shown in Table 4. The 
recognition success rate of the TIOIR method was as high as 97% for accident-type images and 
98% for normal images. The overall average recognition success rate was 97%, which means 
that the TIOIR method is much more accurate than the MDPHT, PHCD, and CRA methods. 
Hence, the recognition robustness and fault tolerance are considerably improved by using the 
proposed TIOIR method in HSBS accident detection at a steel-bar rolling site.

Table 3
Identification accuracies of tests by CRA.

Image type Number of pictures Unsuccessful 
recognition

Successful 
recognition

Recognition 
success rate

Accident-type images (Case 5) 50 2 48 0.96
Normal images (Case 6) 50 2 48 0.96
Sum 100 4 96 0.96 (ave.)
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5.	 Conclusion

 In this study, we proposed a novel TIOIR method to rapidly and accurately recognize the 
images of HSBS accidents at a steel-bar rolling site. The proposed TIOIR method integrates the 
merits of MDPHT, PHCD, and CRA. Moreover, for practical applications, we designed and built 
an image detection and identification system of HSBS accidents, which includes the following 
six parts: the detecting unit (visual and infrared thermal image sensors), the data processing unit, 
the data transmitting unit (Ethernet and data exchanger), the data manipulation unit (cloud 
servers and cloud computers), an alarm unit, and a remote central control unit. The former three 
units constitute a detection subsystem, and we have four subsystems in total to obtain the images 
of various HSBS accidents in real time, which are set at the rough, middle, pre-fine, and fine 
rolling sites. Through the operation of the designed diagnostic system, we found that the average 
recognition accuracies of MDPHT, PHCD, and CRA are 87, 93, and 96%, respectively. However, 
the overall and average success rate of the TIOIR method was as high as 97%. Through the 
operation of the proposed image detection and identification system with an imbedded TIOIR 
calculation method, we can rapidly and accurately monitor the HSBS accident in the rolling field 
in real time with a fairly high recognition rate.
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