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 Currently, significant progress has been achieved in the field of 3D reconstruction, and this 
trend is anticipated to persist for at least the next decade. In this research, we discuss the 
utilization of an Azure Kinect depth camera sensor to capture an image of a stamping die and a 
bottle, recording their depth point values for generating a corresponding point cloud for surface 
reconstruction. The height of each punch within the die is set manually using a hexagonal key to 
match the surface of the bottle. The procedural steps involve defining and extracting the field of 
interest from the original point cloud, incorporating additional filtering, such as passthrough and 
voxel, to eliminate undesired noise. To enhance processing efficiency during the point cloud 
registration, clusters are established within the point cloud to distinguish one punch from 
another and retrieve only the highest point of each. These peak points are then placed within the 
same coordinate system of the bottle’s point cloud for further alignment and obtaining their 
fitness score at the convergence point. The average discrepancy in dimensions, measured in 
millimeters, between the actual object and the resulting point cloud is estimated to be less than 
10%, with an average time of 3 to 4 min required for the overall surface reconstruction and point 
cloud registration.

1. Introduction

 Depth cameras, also commonly referred to as RGB-D cameras, not only capture regular color 
images but also retrieve depth data, by means of an infrared sensor, for each pixel at a 
predetermined configuration.(1–6) This feature makes them highly suitable for performing 3D 
reconstruction of objects or scenes. An example of such a camera is the Microsoft Azure Kinect 
DK. While many experiments involve the use of multiple Kinect cameras for a comprehensive 
model reconstruction, Akay and Akgul noted that this method can be cost-inefficient, and 
simultaneous communication between multiple cameras may lead to bandwidth issues.(1) Hence, 
to address this challenge, they adopted a method that used a mirror to generate a virtual point 
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cloud of an object, which was then combined with the nonvirtual or real point cloud to create the 
overall surface model. Other users make use of an automatic turntable to rotate the object 360° 
while the camera captures images and retrieves depth data simultaneously at selected angles. 
Before being fused together at the end, these sets of points may be filtered once or multiple 
times, such as by using 3D voxel grid filters, to avoid data overlap and long processing time.(2,3) 

Related articles about point cloud registration methods were investigated for point cloud 
alignment and reconstruction. (7-10)

2. Methodology

2.1 Point cloud generation

 To capture the punch arrangement of the stamping die from the top view, the Azure Kinect 
depth camera sensor is mounted onto a structure of an aluminum profile and held using screws 
and bolts, facing downwards, as shown in Fig. 1. Before capturing images, the camera is first set 
to have the following configurations: 30 frames per second, BGRA 32, 1280 × 720 color image 
resolution, and wide field-of-view (WFOV) 2 × 2 binned depth mode. Compared with the 
narrow field-of-view mode, the WFOV mode allows depth data retrieval (in mm) within a field 
of view of 120° in both directions from a shorter range, starting from 0.25 m. By calibrating the 
camera using this configuration, a transformation handle is created to transform the coordinate 
system of the 512 × 512 depth image to that of the 1280×720 color image, while calculating and 
assigning the real-world xyz-coordinate of each pixel within the capture into an empty point 
cloud. 

Fig. 1. (Color online) Experimental setup of stamping die, depth sensor, and laptop.
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2.2	 Point	cloud	filtering	and	reconstruction

 Each capture of the scene, if unfiltered, has more than one million points, some of which 
them can be considered as ‘noise’ that is normally removed for reducing processing time. Two 
methods are included in this point cloud filtering stage, namely, passthrough and 3D voxel grid. 
The former crops the raw point cloud by declaring maximum and minimum limits of all three 
axes, focusing the view to the area of interest. Following this, Fig. 2 showcases how the latter 
then divides the remaining points into grids, in which, to determine the proper size of each grid, 
several results with different measures are compared, as it is crucial to reduce the point cloud 
density and reserve the data at the same time. Equations (1)–(6) describe the method to find the 
minimum and maximum bounds of the entire point cloud based on Xsize, Ysize, and Zsize of the 
grid, to further determine the number of grids (Xdiv, Ydiv, Zdiv) required.
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Fig. 2. (Color online) Schematic layout of point cloud voxelization process.
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 1div maxBound mixBoundY Y Y= + −  (5)

 1div maxBound mixBoundZ Z Z= + −  (6)

 The index value of each point is then calculated using Eqs. (7)–(9), where i, j, and k are the 
index numbers of the corresponding points in the x, y, and z axes. 
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 All points laying within the same grid are then represented only by a new single point, 
referred to be their centroid, calculated using Eq. (11), where pc refers to the centroid point and n 
is the number of points within the respective grid.
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 To prevent the occlusion of data as a result of downsampling, a moving least squares surface 
reconstruction method is included to fill in occluded data.(11–12) This method projects existing 
points within a predefined radius, with respect to their normal, onto a polynomial curve, which 
aids in smoothing the data as well.

2.3	 Point	cloud	registration

 In the case of the stamping die, the crucial part that forms the resulting surface is mainly the 
tip of the punches.(13–15) To ease the alignment process in the final stage, these ‘peak points’ 
must be extracted from the point cloud. Therefore, once filtered, by isolating each punch and 
calculating the Euclidean distance of neighboring points within a predefined radius, as illustrated 
in Fig. 3(a), clusters are formed to distinguish one punch from another [Fig. 3(b)]. The distance d 
between a point Pi and its surrounding neighboring points Pk can be calculated using Eq. (12).
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Here, xi, yi, and zi are the x, y, and z coordinates of point Pi and xk, yk, and zk are the x, y, and z 
coordinates of point Pk, respectively. From each cluster, the point with the lowest z-value (highest 
from the real-world perspective) is selected and copied into an empty point cloud. Conversely, 
considering that the point cloud of the bottle is initially inverted upon capture, it necessitates 
both rotation and additional translation to align accurately with its real-world position for 
successful alignment.
 After both point clouds are acquired and processed, by a point cloud registration method 
called iterative closest point (ICP), the point cloud containing the peak points is set as the source 
cloud that is to be aligned to the target cloud, namely, the point cloud of the bottle. Upon reaching 
the convergence point during the alignment, the fitness score is computed to see if the two point 
clouds can fit well with each other. A score closer to 0 is preferable as it indicates a minimal 
error or gap in the difference between the two corresponding point clouds.

3.	 Results	and	Discussion

 In this study, we focused on a specific area of interest, namely, the central five rows of 
punches in the die, which were configured to emulate the surface of the bottle. To achieve this, 
the passthrough filter limits were set as follows: −85 to 27 mm in the x-axis, −150 to 150 mm in 
the y-axis, and 100 to 350 mm in the z-axis. Determining these values involved conducting 
multiple iterative trials, applying the limits, and dynamically visualizing the point cloud using 
the Point Cloud Library Visualizer. Figure 4 shows the resulting point cloud after the passthrough 
filter has been applied.
 Afterwards, the filtered point cloud is divided into grids with size 1 × 1 × 1 mm3 for its 
density to be reduced. The difference can be seen between Figs. 5(a) and 5(b), where in Fig. 5(b), 
there are fewer points within an area, yet the surface structure can still be maintained. The data 
for every point within a 2 mm radius is then fitted into a 2nd-order polynomial curve. The 
number of points in the point cloud after each phase can be observed in Table 1.

Fig. 3. (Color online) Measuring Euclidean distance (a)between neighboring points within a specified radius and 
(b) formed to distinguish one punch from another.

(a) (b)
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 To distinguish each punch in the point cloud, measurements of 23 and 20 mm in both x- and 
y-axes (estimated on the basis of real distance from one punch to the next) are taken iteratively 
through the point cloud using a passthrough filter. Gaps of approximately 9 and 5 mm are 
provided between each cluster in both axes to exclude unnecessary parts. In each iteration, the 
corresponding isolated points are formed into a single cluster, making a total of 55 main clusters, 
in which each cluster represents a single punch. The clustering takes 30 to 40 s to form: the 
overall visualization of the clusters can be seen in Fig. 6(a). From each cluster, the point with the 

Fig. 4. (Color online) Point cloud of stamping die’s field of interest during real-time capture by depth sensor.

Fig. 5. (Color online) Point cloud of stamping die (a) before voxelization and (b) after voxelization.

Table 1.
Total number of points in stamping die point cloud after downsampling and reconstruction.
Item Raw Before voxelization After voxelization After polynomial reconstruction
Number of points 1843200 106587 45763 45717

(a) (b)
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lowest depth value (z-coordinate) is placed into an empty point cloud. This new point cloud thus 
only consists of points that mark the peak point of each punch. Figure 6(b) shows how the peak 
points correlate to the original point cloud. Despite having a reduction in the number of points, 
the peak point positions are not altered. This is an improvement compared with the previous 
method, which did not result in 100% isolated peaks, as it is fully dependent on the height of the 
punches. Meanwhile, for the depth sensor to retrieve the point cloud of the bottle successfully, its 
translucent surface must be covered with paper to prevent the light pass through the surface. 
Having a symmetrical shape, the point cloud of the bottle is rotated 180° in the y-axis based on 
the calculated centroid. To bridge the gap from shifting as a result of the rotation, the rotated 
point cloud must be further translated relative to all three axes. Figure 7 shows a representation 
of the point cloud during capture, and after rotation and translation.

Fig. 6. (Color online) Point cloud of stamping die punch: (a) extraction as a cluster and (b) each cluster 
corresponding peak point (colored in red).

Fig. 7. (Color online) Point cloud of a symmetrical, square bottle.

(a) (b)
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 In the last stage of the process, employing the ICP algorithm involves designating the peak 
points as the source cloud, which is then aligned with the target cloud, that is, the point cloud of 
the bottle. This step, lasting approximately 1 min, yields fitness scores of 8.59823 and 7.29925 at 
the convergence point when the maximum correspondence distance is set to 10 and 20 mm, 
respectively. The observed trend suggests that as the tolerance in distance increases, a lower 
fitness score can be attained. However, experimental results indicate that setting a value higher 
than 20 does not lead to further reduction of the fitness score. Another result obtained using the 
original, filtered point cloud, instead of the peak points, leads to a fitness score of more than 100. 
Therefore, judging by the scores, the alignment between the two point clouds is relatively good, 
but a more precise adjustment of their coordinate axes is necessary before proceeding with the 
alignment process.

4.	 Conclusions

 In conclusion, by filtering and downsampling the raw point cloud significantly (more than 
90%), the mentioned alignment processes can focus only on the field of interest and thus require 
less time to finish. For the purpose of this research, determining the length along both axes for 
each iteration during peak point extraction is an important step as a minor change can result in 
misplaced peaks. To attain a fitness score better than 7.3, the coordinate axis of the two point 
clouds should match more accurately. It is recommended to include a trained model for object 
recognition as it will be more adaptive for other arrangements of punches.

Acknowledgments

 This work was partially supported by the Ministry of Science and Technology, under Grant 
Nos. NSTC 112-2221-E-150-047 and NSTC 112-2637-E-150-005, and Smart Machine and 
Intelligent Manufacturing Research Center.

References

 1 A. Akay and Y. S. Akgul:  Proc. 9th Int. Conf. Computer Vision Theory and Applications (2014). https://doi.
org/10.5220/0004676303250334 

 2 W. Guan, W. Li, and Y. Ren: 2018 Chinese Control and Decision Conf. (CCDC, 2018) 1461. https://doi.
org/10.1109/ccdc.2018.8407357 

 3 X. Teng, G. Zhou, Y. Wu, C. Huang, W. Dong, and S. Xu: Sensors 21 (2021) 4628. https://doi.org/10.3390/
s21144628 

 4 L. Guo, X. Chen, Y. Chen, and B. Liu: Optoelectron. Lett. 11 (2015) 153. https://doi.org/10.1007/s11801-015-
5013-2 

 5 A. Ruchay, K. Dorofeev, and A. Kober: Proc. SPIE 10752, Applications of Digital Image Processing XLI 
(2018). https://doi.org/10.1117/12.2319911 

 6 V. Pradeep, C. Rhemann, S. Izadi, C. Zach, M. Bleyer, and S. Bathiche: 2013 IEEE Int. Symp. Mixed and 
Augmented Reality (ISMAR, 2013) 83–88. https://doi.org/10.1109/ismar.2013.6671767 

 7 C. R. Popescu and A. Lungu: Computer Science and Information Technology 2 (2014) 95. https://doi.
org/10.13189/csit.2014.020206 

 8 R. Hänsch, T. Weber, and O. Hellwich: ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci. II–3 (2014), 
57. https://doi.org/10.5194/isprsannals-ii-3-57-2014 

https://doi.org/10.5220/0004676303250334
https://doi.org/10.5220/0004676303250334
https://doi.org/10.1109/ccdc.2018.8407357
https://doi.org/10.1109/ccdc.2018.8407357
https://doi.org/10.3390/s21144628
https://doi.org/10.3390/s21144628
https://doi.org/10.1007/s11801-015-5013-2
https://doi.org/10.1007/s11801-015-5013-2
https://doi.org/10.1117/12.2319911
https://doi.org/10.1109/ismar.2013.6671767
https://doi.org/10.13189/csit.2014.020206
https://doi.org/10.13189/csit.2014.020206
https://doi.org/10.5194/isprsannals-ii-3-57-2014


Sensors and Materials, Vol. 36, No. 6 (2024) 2379

 9 Z. Zheng, Y. Li, and W. Jun: 2015 IEEE Int. Conf. Progress in Informatics and Computing (PIC, 2015) 588. 
https://doi.org/10.1109/pic.2015.7489916 

 10 W. Yookwan, K. Chinnasarn, C. So-In, and P. Horkaew: IEEE Access (2022) 77123. https://doi.org/10.1109/
access.2022.3192869 

 11 S. K. Singh, S. Raval, and B. Banerjee: Int. J. Min. Sci. Technol. 31 (2021) 303. https://doi.org/10.1016/j.
ijmst.2021.01.001 

 12 L. C. Chen, S. H. Huang, and B. H. Huang: Vision Sensors - Recent Advances (Intechopen, Mexico, 2023) 1. 
https://doi.org/10.5772/intechopen.107968 

 13 C. L. Kang, T. N. Lu, M. M. Zong, F. Wang, and Y. Cheng: Int. Archives of the Photogramm. Remote Sens. 
Spatial Inf. Sci. XLII-3/W10 (2020) 145. https://doi.org/10.5194/isprs-archives-xlii-3-w10-145-2020 

 14 J. Raschhofer, G. Kerekes, C. Harmening, H. Neuner, and V. Schwieger: Remote Sens. 13 (2021) 3124. https://
doi.org/10.3390/rs13163124 

 15 A. M. Ramiya, R. R. Nidamanuri, and R. Krishnan: Egypt. J. of Remote Sens. Space. Sci. 20 (2017) 71. https://
doi.org/10.1016/j.ejrs.2016.04.001

About	the	Authors

 Wen-Yang Chang received his M.S. degree in 2001 from the Department of 
Mechanical Engineering and his Ph.D. degree in 2008 from the Department of 
Engineering Science of National Cheng Kung University. He is currently 
working at National Formosa University. His current research involves the 
development of smart manufacturing, automatic control and integral systems, 
and mechanics simulation.

 Li-Wei Chen received his M.S. degree from National Taiwan Ocean 
University, Taiwan, in 2003 and his Ph.D. degree from the University of 
Sheffield, UK, in 2012. Since 2023, he has been a professor at National 
Formosa University, Taiwan. His research interests are in advanced metal 
forming and thermal analysis. (liwei@nfu.edu.tw)

 Nadia received her B.S. degree from International University Liaison 
Indonesia, Indonesia, in 2021. She is currently studying for her M.S. degree at 
National Formosa University, Taiwan.  Her research interests are in 3D surface 
reconstruction and point cloud processing.

 Michael Leandro Hartono received his B.S. degree from International 
University Liaison Indonesia, Indonesia, in 2021. He is currently studying for 
his M.S. degree at National Formosa University, Taiwan.  His research 
interests are in system automation, image processing, and object detection.

https://doi.org/10.1109/pic.2015.7489916
https://doi.org/10.1109/access.2022.3192869
https://doi.org/10.1109/access.2022.3192869
https://doi.org/10.1016/j.ijmst.2021.01.001
https://doi.org/10.1016/j.ijmst.2021.01.001
https://doi.org/10.5772/intechopen.107968
https://doi.org/10.5194/isprs-archives-xlii-3-w10-145-2020
https://doi.org/10.3390/rs13163124
https://doi.org/10.3390/rs13163124
https://doi.org/10.1016/j.ejrs.2016.04.001
https://doi.org/10.1016/j.ejrs.2016.04.001
mailto:liwei@nfu.edu.tw

