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 In recent years, wireless sensor devices have become able to perform multiple functions such 
as detecting human sleep conditions, blood pressure, heartbeat, and running paths. We use the 
wireless channel model of a wearable Zigbee wireless sensing node to conduct research on 
human posture recognition. The received signal strength indicator (RSSI) obtained through the 
transmission and reception of wireless signals is used to obtain the model of the wireless 
channel. The wireless sensor nodes receive different RSSI patterns of human gesture based on 
which they recognize a gesture through their respective wireless channels by performing 
distance processing on the collected signal data. However, in this paper, we propose a weighted 
random reference pattern (WRRP) to achieve a higher recognition accuracy. Experimental 
results show that WRRP can achieve a recognition accuracy of 98%.

1. Introduction

 The wireless sensor network (WSN) uses wireless sensor nodes to monitor the surrounding 
environment and collect information, such as the signal strengths of buildings, roads, and human 
bodies, which is transmitted back to WSN through wireless network technology.(1–6) The 
wireless sensors used in WSN include devices such as a wireless communication module, a 
control circuit, a CPU, and a power supply unit. Therefore, WSN can be used in, for example, 
military, medical, livelihood, industry, and transportation applications.(7)

 With the advancement of technology, the application of WSN to human gesture sensing has 
become a hot topic.(6,8–11) Wireless sensor nodes have the advantages of small size, low cost, low 
power consumption, and easy network deployment. They can be used in the fields of livelihood, 
such as environmental and agricultural monitoring, home health care monitoring of the elderly, 
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industrial automation, and traffic control monitoring. Currently, Google Maps can be used for 
the outdoor application; however, WSN can also be used for indoor environments.
 The human body area network can use the ZigBee transmission technology to monitor the 
dynamic-related information of human gestures, such as health-related information and other 
data.(12–14) The relevant information and data can be processed and analyzed to understand the 
physical condition of a human gesture, such as blood pressure or falls.(14,15) The body sensor 
network uses a small number of wireless sensor nodes and a small sensing area to provide data 
for specific medical care.(3–4,7) The body sensor network can be minimized, which will facilitate 
the transmission between nodes and reduce other network interferences.(14,16,17) In this study, we 
use wireless sensor nodes combined with detection devices for human body sensing and 
recognition. After collecting relevant data through wireless sensor nodes, recognition results are 
transmitted back to WSN through ZigBee.
 A wireless body area network (WBAN) comprises many sensors connected to each other on 
a human body. To acquire data via WBAN, wireless sensor nodes are placed on a human body. 
Whenever the wearer moves, signals are sent to the heads of wireless sensor nodes and data are 
sent back to the base station to be used in decision-making. We carry out distance processing on 
the collected signal data to identify the human gesture. Moreover, the wireless sensor nodes 
generate different received signal strength indicator (RSSI) patterns for different human 
gestures, enabling a gesture  to be identified on the basis of the wireless channel by performing 
distance processing on the collected signal data. In this paper, we propose a weighted random 
reference pattern (WRRP) to improve recognition. Experimental results show that WRRP can 
achieve a recognition accuracy of 98%.

2. Literature Review

 Human body sensing and recognition can be analyzed and identified through image 
recognition and other technologies.(18,19) In wireless communication, the transmission 
environment cannot be ideal since there are many obstacles in the transmission environment. 
Signals in wireless communication are transmitted through a transmitter. Because of the 
presence of obstacles, the received signal might differ from the transmitted signal. For the 
receiving wireless sensor node, there may be a line-of-sight signal affected by reflection, as 
shown in Fig. 1. Such an affected signal will cause changes in the amplitude and phase of the 
transmitted signal. Signals arrive at the receiving wireless sensor nodes through different paths, 
whereby multiple signals with different delay times will have additive effects or destructive 
weakening effects on each other, thus causing the multipath fading phenomenon.(1–3) Some of 
the signals are sent directly to the destination, but other signals may reach the destination after 
being reflected by the obstacles. The result is that some signals are delayed and take a longer 
time to reach the destination.
 Human body sensing and recognition are a biological behavior characteristic with a dynamic 
characteristic pattern that changes with time, so human body sensing and recognition are 
relatively unstable. Moreover, in image recognition, cameras are used to capture human body 
gestures and then the obtained data are calculated and processed. In addition, wireless sensors 
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are also used for human body sensing and recognition.(20,21) We use RSSI to establish a reference 
pattern for recognition. Most of the wireless sensors used are three-axis accelerometer sensors, 
which can use the three-axis changes in the sensed data to identify the difference in 
posture.(22–26)

 Image recognition involves the use of a camera to capture the posture of the human body and 
the calculation and processing of the data to determine the posture. A camera with a single lens 
is used for 2D image recognition. There are also dual-lens cameras and infrared models used to 
measure the distance and depth of the human body for 3D image recognition. Moreover, there 
are also some image recognition methods that use wearable objects for gesture recognition.(21,27)

 Furthermore, human bodies interact with each other on the basis of hand gestures that can be 
applied in many fields such as the study of body language. Therefore, how to recognize a human 
gesture is becoming increasingly important.(28–30) Wireless sensors are placed on different 
locations of a human body to understand what actions a person is performing in order to prevent 
risks. Furthermore, the symptoms or signals captured from a human body may be used to 
identify various events that might be occurring, such as an elderly man falling down. To prevent 
such events, wireless sensor nodes can be placed on a human body to capture data and send 
signals back to the base station. For example, emergency data provided by an elderly person in a 
wearable device can be used to prevent the risk before falls and to perform distance processing 
on the collected signal data to recognize human gestures. There are ways to recognize human 
activities, such as using sensors and image processing. There have been related studies on image 
processing.(31–34)

Fig. 1. (Color online) Multipath transmission environment.
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3. Weighted Random Reference Pattern Method

 The main procedures and methods used are training, feature pattern extraction, reference 
pattern establishment, test of program, feature pattern extraction, pattern comparison, and 
majority decision to achieve a higher recognition rate. The wireless sensor nodes are used to 
measure signal data, and signals are extracted to select characteristic patterns. Then, the 
extracted signals are averaged to establish reference patterns for calculation. Because of the 
uncertainty of dynamic signals, time, climate, the location of items, and multipath fading will 
affect experimental data. For a more accurate analysis of the experimental results, the reference 
pattern signal is divided into n pairs, and we use n, n−2, n−4, n−6… pairs for comparison. The 
characteristic patterns are extracted from the signals and converted into test pattern signals. 
Assuming that there are 10 pairs of signals, a few pairs will be selected for pattern comparison. 
 Assuming that n pairs of reference pattern signals are extracted, other n pairs of signal data 
different from the previous pairs are extracted as the 1st group of test patterns for comparison. 
Then, the 3rd group of n pairs of signal data different from the 2nd group are extracted and used 
as the 2nd group of test patterns, the 4th group of n pairs of signal data different from the 3rd 
group are extracted and used as the 3rd group of test patterns, and so on. There will be n+1 sets 
of test patterns from n pairs for later analysis and comparison, and the other n−2, n−4, n−6, and 
1 pairs will also make up n+1 sets of patterns.
 Typically, nine pairs of reference pattern signals are compared for 100 data judgments. Seven 
pairs of reference pattern signals are compared for 300 data judgments. Five pairs of reference 
pattern signals are compared for 500 data judgments.  Three pairs of reference pattern signals 
are compared for 700 data judgments. One pair of reference pattern signals is compared for 900 
data judgments. After the majority vote, the system carries out the final processing of recognition 
results, that is, nine pairs, seven pairs, five pairs, three pairs, and one pair of reference patterns 
are identified for recognition results. Figure 2 shows the recognition flowchart where the 
difference in signal distribution is used to investigate reference patterns for body movement 
recognition.
 When p pairs of signals take x actions in several pairs, each action will have n sampling data, 
and the average of each pair, used as the reference value for analysis, is expressed as

 [ ] [ ] [ ] [ ]{ }, , , , ,X X 1  X 2   X X N ,p l p l p l p l p ln= … …   (1)

where Xp,l is the RSSI test pattern obtained for the p pair for l number of times.
 The patterns are divided into two types: test pattern Xp and reference pattern Yp. The 
reference pattern is expressed as
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where Yp is obtained by taking Xp,l as the p pair of RSSI test patterns acquired at the l time.
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 The distance d is obtained by subtracting Yp and Xp, taking the square and the root sign as

 ( ) ( )( ) Y X  y  y ,
T

p p p p p pd x x= − = − −  (3)

where d is the distance between Yp and Xp. However, the results of analyzing and calculating the 
test and reference patterns using Eq. (3) show that the smaller the distance d, the higher the 
probability of human body movement recognition.
 Therefore, the weights assigned to the n pattern values in 4 s are expressed as

 [ ] [ ] [ ] [ ]{ }Diag ,1 2m m m mm w w w ww i n=  

 (4)

where wm is the mth weight and Diag{} is an array.
 The distance with weights can be expressed by 

 ( ) ( ) ( )  ,
T

pw p p p p m p pd Y X y x w y x= − = − −  (5)

where dpw is a distance combined with wm.
 After the step of extracting feature patterns, the next step is pattern matching. The reference 
pattern signal is used for distance calculation using Eq. (3), and the calculated distances are then 

Fig. 2. Recognition flowchart.



2500 Sensors and Materials, Vol. 36, No. 6 (2024)

compared. Each pair of reference patterns is divided into horizontal and vertical reference 
patterns. Therefore, d will have two values after each test pattern comparison. More precisely, 
since the human body sensing measured using 2d is better, a good value of d will be relatively 
small. If there are seven pairs of reference pattern signals, the three remaining pairs are the test 
signals for distance calculation. If there are five pairs of reference pattern signals, the five 
remaining pairs are the test signals for distance calculation. 
 The majority voting process is performed on the values of each group. The majority decision 
is adopted to improve the accuracy of recognition. Assuming that there are seven pairs of 
reference patterns in each set of values, the pattern comparison will compare seven values to see 
if there are better actions. If five of the seven values are judged as correct, the group is judged to 
be correct, which can also be correct once. On the contrary, if fewer than four of the seven values 
are correct, this group is judged to be an error.

4. Simulation Results

 We use the ZigbeX system as a simulator for calculating both vertical and horizontal body 
movements. The ZigbeX system is composed of software, a microcontroller (ATmega128L), a 
wireless communication chip (CC2420), a sensor, and an antenna.(22,31) There are two types of 
movement recognition action in this experiment as shown in Fig. 3. The first type is raising the 
arm vertically until the arm is parallel to the body. The second type of movement action is 
moving the arm horizontally. The data measured are divided into ten pairs of signal patterns. 
Each pair (day) consists of five vertical movements and five horizontal movements, a total of ten 
times per day for a total of 100 times in ten days. Each action has a movement time of 4 s and is 

Fig. 3. Schematic diagram of the operation process.
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sampled every 0.5 s. The speed of arm movement is about 20 cm∙s−1. The reference database for 
this experiment consists of 10 data values from the P1R1 database, where P stands for people and 
R stands for rounds. These 10 data values are the average dBm values of each day for 10 pairs. 
The test patterns are the measurement data of P1R2, P2, and P3. The reference for reference 
comparison analysis in this experiment is the logarithm of RP. Among the 10 pairs of patterns, 
the horizontal and vertical distances are each set to 1, 2, 3, 4, 5, 6, 7, 8, 9, and 10. If the reference 
pattern is one pair, take the 9 pairs of test patterns. If the reference pattern is five pairs, take the 
5 pairs of test patterns. When there is one pair of reference patterns, there will be 90 majority 
comparisons. When there are three pairs of reference patterns, there will be 70 majority 
comparisons. When there are five pairs of reference patterns, there will be 50 majority 
comparisons. When there are seven pairs of reference patterns, there will be 30 majority rule 
comparisons, and when there are nine pairs of reference patterns, there will be 10 majority rule 
comparisons.
 In this study, we use two wireless sensor nodes, where the receiving node B1 is placed on the 
left leg of the subject. The other node B2 is worn under the left wrist of the subject. At the start, 
the distance between these two wireless sensor nodes is about 1 cm. These two wireless sensor 
nodes move at a speed of about 20 cm∙s−1 to collect the signals used for recognition, as shown in 
Fig. 3.
 Figure 4 shows the dynamic signal distribution of B2 horizontal movement. The distributions 
of the 10 pairs of signal values are similar. Among them, the dotted line of the 8th pair reaches 
−45 dBm in the next 2.5 to 4 s, and all values decrease from −25 to 58 dBm.

Fig. 4. (Color online) Horizontal distribution diagram.
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 Figure 5 shows the dynamic signal distribution of B2 vertical movement. The RSSI value of 
the horizontal part drops from −46 to 53 dBm in the first second. The RSSI value of the vertical 
part is from −43 to 54 dBm. From 2 to 4 s, the RSSI values of the  horizontal and vertical parts 
decrease to −55 dBm.
 In Figs. 4 and 5, the main difference between the horizontal and vertical signal distributions 
is seen between 2 and 4 s. Therefore, if only the signal from 2 to 4 s is extracted as a pattern, the 
signal recognition rate can be used. However, the weights determined using Eq. (4) will be 
assigned to the n sampled values in 4 s. The horizontal and vertical distributions of one of the 10 
pairs are selected for discussion, as shown in Fig. 6. The solid line H2 is the horizontal 
distribution and the dotted line V1 is the vertical distribution. There is little difference between 
the dynamic signals of the horizontal and vertical movements.
 The data of P1R1 itself is used as the reference pattern. Three weights (wm) are used, 
00001111, 000111000, and 11110000, as shown in Table 1. The weight sum is used for WRRP 
identification and analysis. The analysis results of P1R1 using itself as a reference pattern for 
weight summation are shown in Fig. 7. The analysis results show that the accuracy of Type N 
weights is higher than those of Types E and I weights. Figure 8 shows the accuracy rate for the 
recognition results. The horizontal axis is the reference pattern signal and the vertical axis is the 
accuracy rate of recognition. The results show that the reference pattern proposed in this paper 
has a recognition accuracy of 98%.

Fig. 5. (Color online) Vertical distribution diagram
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Fig. 6. (Color online) Horizontal and vertical signal patterns of one pair out of the 10 pairs of P1R1.

Table 1
Types of weight (wm).  

Type N Type E Type I
0,0,0,0,1,1,1,1,1 0,0,0,1,1,1,0,0,0 1,1,1,1,1,0,0,0,0

Fig. 7. (Color online) One pair of horizontal and vertical signal patterns out of the 10 pairs of P1R2.  
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  In Figs. 6 and 7, V1 is for horizontal motion and H2 is for vertical motion. The main 
difference between the horizontal and vertical signal distributions is seen in the distribution 
from 2 to 4 s. Therefore, if only the signal from 2 to 4 s is extracted as a pattern, the signal 
recognition rate can be discussed for signals of recognition rate. The effects of different weight 
distribution characteristics on the recognition rate will be designed. The weights determined 
using Eq. (4) are assigned to the nine pattern values in 4 s, and n is set as 9. There will be 
different weight sets, A, B, C, D, E, F, G, and H, as shown in Table 2, calculated using Eq. (4). 
According to Table 3, the test pattern for identification analysis is P1R1. However, the result of 
the reference pattern shows that P1R1 is better than P1R2 as shown in Table 3. The results 
obtained with the weight categories A, B, C, D, E, F, G, and H are shown in Table 4. If the weight 
of the later pattern values is increased, the accuracy rate will be higher, as we expected, than the 
other weights. 
 The results of weight categories are shown in Fig. 8. In Table 2, the weight categories 
gradually decrease or increase on the right side of B and C, revealing the effect of the weight 
distribution on the identification. In Table 4, the recognition accuracy of the weight category D is 
the highest. This is because the weight of category D placed on the last four samples has a large 
difference between the horizontal and vertical signals in the last part of movements. A change in 
weight distribution will affect the identification results. The experimental recognition results 
show that using WRRP as a reference pattern improves the recognition accuracy. Experimental 
results show that the WRRP proposed in this paper led to a recognition accuracy of 98%.

Fig. 8. (Color online) Accuracies obtained using various weighting patterns.
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5. Conclusions

 In this paper, we proposed WRRP by using Zigbee wireless sensor nodes for human body 
gesture recognition. Owing to the fact that sample signals of a gesture differ for the beginning 
and ending movements, we set different weights from 0 to 1 for weighting different samples. 
Experimental recognition results show that the proposed WRRP improved the recognition 
accuracy of 98%. Moreover, the weight of category D placed on the last four samples even 
showed a large difference between the horizontal and vertical signals in the last part of 
movements with a recognition accuracy of 99%.
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Table 2
Weights for different categories (wm).
Category wm
A 1,1,1,1,1,1,1,1,1
B 0.9,0.8,0.7,0.6,0.5,0.4,0.3,0.2,0.1
C 0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9
D 0,0,0,0,0,1,1,1,1
E 0,0,0,1,1,1,0,0,0
F 1,1,1,1,1,0,0,0,0
G 1,1,1,1,0,0,0,0,0
H 0,0,0,1,1,1,1,0,0

Table 3
Recognition results for reference pattern and a number of reference patterns.

Reference pattern Number of reference patterns (pairs)
9 7 5 3 1

P1R1 98.0% 95.3% 87.0% 91.5% 76.2%
P1R2 95.0% 67.0% 60.0% 51.6% 37.4%

Table 4
Weight analysis results with reference pattern.

Category Number of reference patterns (pairs)
9 7 5 3 1

A 97.5%   95.3% 87.0% 91.5% 76.2%
B 98.0% 96.7% 86.2% 91.0% 75.2%
C 98.0% 98.0% 87.8% 92.0% 76.8%
D 99.0% 99.0% 88.6% 93.3% 77.6%
E 97.0% 96.0% 86.8% 88.7% 72.7%
F 98.5% 96.7%   86.4% 88.7% 74.3%
G 93.0% 92.0% 83.0% 84.9% 71.8%
H 97.3% 96.3% 86.6% 91.0% 76.1%
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