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 Skin parameters such as transepidermal water loss (TEWL) and water content are important 
information in relation to the skin barrier function of the human body. It was reported that the 
structures of corneocytes and intercellular lipids are important for the skin barrier. In a recent 
study, it has been found that there is a correlation between the packing structure of intercellular 
lipids and TEWL. However, there have been no studies that focused on the correlation between 
the structures of individual cells and skin parameters. On the other hand, the advances in sensor 
technology have made it possible to acquire high-resolution 2D electron diffraction (ED) images. 
Thus, we attempted to examine the relationship between the 2D ED images of corneocytes and 
the TEWL or water content values, which is difficult with the rule-based analysis, by introducing 
a deep learning model. Our results showed that the highest prediction accuracy of 13.92 ± 0.57% 
as the error rate is achieved for water content with a diffraction image rather than with 1D ED 
profiles, which suggests that spatial anisotropy in a 2D image may contribute to the skin barrier 
function. 

1. Introduction

 The stratum corneum (SC), which exists in the outermost layer of the human skin, plays a 
crucial role in the skin barrier function.(1) SC is mainly composed of a large number of 
corneocytes filled with keratin fibers and intercellular lipids regularly arranged like an almost 
crystalline structure such as orthorhombic (Ort) and hexagonal (Hex) lipid packing phases.(1–5) 
Recent studies have revealed that this highly ordered intercellular lipid region is particularly 
important for the skin barrier.(4–7) Alternatively, if the aim is to inject transdermal drugs into the 
body, the crystal-like structure of intercellular lipids, which exists in the permeation route for the 
drugs in SC, acts as an undesirable barrier. To develop transdermal drugs, it is necessary to 
analyze the interactions between drugs and intercellular lipids; therefore, the structural analysis 
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of intercellular lipids is important from both contradictory viewpoints of maintaining healthy 
skin conditions by ordering the lipid structure and developing transdermal drugs that permeate 
more easily into SC (by disordering the lipid structure).(8–9)

 Intercellular lipids have been structurally analyzed by various methods such as synchrotron 
X-ray diffraction, electron diffraction (ED), neutron diffraction, and Fourier transform infrared 
spectroscopy.(10–14) ED is the only method that can noninvasively analyze the structure of 
intercellular lipids attached to corneocytes, which are considered to play an important role in the 
skin barrier function.(15–16) In ED experiments of SC, one 2D diffraction image can be obtained 
from approximately one corneocyte with the development of sensor technology, making it 
possible to locally analyze the structural characteristics of SC. Therefore, when analyzing the 
average structure of samples with large individual differences, such as human SC, for clarifying 
its relationship with function, a large number of 2D diffraction images must be acquired and 
analyzed to achieve sufficient statistical significance. However, analyzing large numbers of 2D 
images is very complex, and most current research is limited to analyzing the 1D profiles, which 
are obtained by averaging 2D images radially.(10,16)

 On the other hand, the deep learning model has made significant progress in recent years, 
leading to technological innovations in various scientific fields. The origins of the neural 
network, which has become the mainstream of deep learning in recent years, can be traced back 
to the multilayer perceptron (MLP) model.(17) Traditional neural network models have not been 
influential in other scientific fields. However, with the development of the computation ability of 
the calculator and the advancement of numerical algorithms in the learning phase of the model, 
neural network models with deep architectures can learn patterns in the data and achieve high 
expressiveness. In particular, AlexNet outperforms rule-based classification models developed 
by researchers and other machine learning methods, which has led to significant advances in the 
use of neural network models for computer vision tasks.(18) When constructing a deep learning 
model for image data, it is considered more efficient to use the convolutional neural network 
(CNN) than a simple MLP model.(19,20) At the convolutional layer in a CNN model, the 
convolution of the image and kernel is introduced with an idea of the translational invariance of 
feature extraction in the image, and each component of the convolutional kernel is optimized in 
the learning phase. CNN models have worked well in various previous tasks for feature 
extraction in image data. In addition, as a definition of this research, a model that includes 
convolutional layers is called CNN, and a model that only has fully connected layers, which does 
not include convolutional layers, is called MLP.
 As a novel approach, we introduced deep learning modeling in the analysis of complex 2D 
ED images, which can be obtained with the advances in sensor technology, with an aim of 
investigating the new structural information of SC. There have been no studies on the correlation 
between individual cells and skin parameters, and this study is a new attempt. To clarify the 
relationship between the structure and function of SC, we applied deep learning modeling to 
examine the relationship between the 2D ED images of corneocytes and the transepidermal 
water loss (TEWL) values or water contents that are obtained at the same time as corneocyte 
collection and are often used as indicators of the skin barrier function.(10,21–24) Furthermore, we 
compared the results of models using 1D ED profiles and those using 2D ED images to examine 
if the spatial structure is important for the SC function.
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2. Materials and Methods

2.1 Data collection

 ED images of human skin corneocytes collected from 13 healthy female and male donors in 
the age range of 22–45 years were obtained with a transmission electron microscopy (TEM) 
device (JEM1010, JEOL, Tokyo). After obtaining informed consent, TEWL and water content 
were measured with Vapo Meter (Delfin, Finland) and Mobile Moisture (HP23-M, 
Courage+Khazaka, Germany), respectively. A layer of corneocytes with intercellular lipids was 
collected onto a copper grid (HH600 mesh for electron microscopy) covered with glue 
(POLYTHICK, Sanyo Chemical) according to the grid-stripping method.(6,11,16) These 
experiments were approved by the Ethics Committee for Epidemiological Research and Life 
Science Experiments at Kwansei Gakuin University (ethics approval code KG-IRB-21-04). 
 The details of the ED method for the structural analysis of corneocytes were described in 
previous studies.(6,11) Briefly, 24 ED patterns of the corneocytes collected from forearm SC per 
donor were obtained by TEM with an acceleration voltage of 100 kV at room temperature. A 
highly sensitive digital CCD camera (ES500W Erlangshen, Gatan, USA) was used as the ED 
detector. The 2D ED patterns were obtained directly from the digital camera output, and 1D ED 
profiles as a function of the scattering vector were translated from the 2D ED patterns by 
integrating the intensity along the azimuthal direction, as described later. Only about 40% of the 
diffraction images obtained with sufficient electron intensity were selected and subjected to the 
subsequent analysis. After the selection, 124 images were used in this study. The training and 
test data were randomly divided at a ratio of 8:2. We used 99 images as the training data and 25 
images as the test data. Figure 1 shows the number distribution of TEWL and water content 
values for the selected data.

Fig. 1. (Color online) Histograms of (a) TEWL and (b) water content data variations.

(a) (b)
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2.2 One-dimensionalization of ED image

 We describe the detailed process of how the ED images were converted to 1D profiles in this 
section. Because the position of the beam center in an ED image differs slightly for each 
measurement, the beam center was first determined from the center of gravity of the intensity 
structure. The ED profile showed that the high-intensity region circularly extends from the beam 
center. We created a binarized mask image by setting 1 for pixels whose intensity values are 
above the threshold value and 0 for pixels below it. We employed 33,500 data number (DN), 
which is the median value of the high-intensity region, as the threshold value for masking, which 
is the median value of the high-luminance region. Then, the beam center (x̅, y̅ ) is given by Eq. 
(1) using the masked image, which is the median value of the high-luminance region.

 10 01

00 00

,m mx y
m m

= =  (1)

Here, m00 is the sum of the intensity values over the image, m10 is the sum of the intensity values 
multiplied by the x-coordinate, and m10 is the sum of the intensity values multiplied by the 
y-coordinate.
 Next, concentric pixel positions were extracted from the beam center, and the intensity values 
of pixels were averaged by the distance from the beam center to create a 1D profile. For position 
discretization, the distances from the beam center were calculated for all pixels over the image, 
and the average intensity value was obtained with the binning size of one pixel. Finally, the value 
was normalized with a maximum of 33000 DN. The maximum value of 33000 DN was employed 
to exclude the epidermis near the beam center, as it is not the target of analysis in this study.
 Figure 2 shows examples of the ED images and the corresponding 1D profiles. The slightly 
up convex region between 100 and 120 pixel distances in the 1D profiles corresponds to the 
keratin region, the steep up convex region between 120 and 140 pixel distances to the Hex 
region, and the slightly convex region between 140 and 160 pixel distances to the Ort region. 
Measurement results such as X-ray scattering and infrared spectroscopy results of human SC 
were also applied to this peak identification. Visually, the ED image spreads roughly in 
concentric circles, but there is a nonconcentric pattern, which is particularly seen in Fig. 2(a). 
Our analysis determined whether these anisotropic patterns correlate with the skin parameters, 
TEWL, and water content.

2.3 Deep learning models

2.3.1 Multilayer perceptron model

 The MLP model is used to predict TEWL and water content from the 1D ED profile. Figure 3 
shows the architecture of the MLP model in this study. The model consists of five layers with 
1024, 512, 256, 128, and 64 units. Mean squared error was used as the loss function during the 
learning step. The rectified linear unit (ReLU) function was employed for the intermediate 
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layers and the linear function for the output layer as activation functions. We used Adam(25) for 
the optimization of the model parameters. The learning epoch was set to 800. A learning rate of 
0.001 was used at the beginning, decreasing to 0.0005 at 400 epochs and to 0.0001 at 600 
epochs. The model with the lowest loss value during the whole epoch was selected. We selected 
the model before overfitting with the lowest loss value throughout the epoch because the 
overfitting occurs when using MLP for a 1D profile.

Fig. 2. (Color online) (a) Recruitment data, (b) 1D data of recruitment data, (c) excluded data, and (d) 1D data of 
excluded data.

(a) (b)

(c) (d)

Fig. 3. (Color online) Architecture of an MLP model in this study.
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2.3.2 CNN model

 CNN was used for the prediction model from the 2D ED images to investigate the spatial 
anisotropy that can be seen in ED images [see Fig. 2(a)]. The input image was resized to 256 × 
256 pixels from the original size. The filter size of each convolutional layer was set to 3 × 3. Two 
sets of two convolutional layers and one 2 × 2 max-pooling layer were used for the feature 
transformation of the input image. The numbers of filters used were 32 for the first set of 
convolutional layers and 64 for the second set. The ReLU function was used for all the 
intermediate layers, and the linear function was used for the output layer as an activation 
function. The overall model architecture is shown in Fig. 4. The Adam optimizer was used again 
during the learning phase. The number of epochs was set to 100, which is shorter than that in the 
MLP model, because the convergence of learning was faster in the CNN model than in the MLP 
model in this study. The learning rate was initially set to 0.0001, then to 0.00005 at 40 epochs, 
and to 0.00001 at 80 epochs. The model with the lowest loss value was employed.

3. Results

 In the following Sects. 3.1–3.3, we show the results of the MLP models for 1D profiles. 
Section 3.1 shows the results for 1D profiles, Sect. 3.2 shows those when we use the 1D profiles 
divided by the regions corresponding to the keratin fibers and intercellular lipids, and Sect. 3.3 
shows the results with background component removal. The prediction results obtained using 2D 
ED images are shown in Sect. 3.4. 
 The root mean squared error (RMSE) and error rate defined by the following Eqs. (2) and (3) 
were used to evaluate the model.

 ( )2
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Fig. 4. Architecture of a CNN model in this study.
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Here, ŷi is the ground truth value, e.g., the measured TEWL and water content values, and yi is 
the value predicted using the models.

3.1	 Experiment	1-1:	Prediction	from	1D	profile	

 MLP models were constructed using the 1D profiles of the ED images. The results of the 
model prediction are shown in Table 1. The mean and standard deviation of the prediction 
accuracy are also shown with three runs of random data splitting. The RMSEs are 2.15 ± 0.06 g/
m2 h for TEWL and 6.44 ± 0.21% for water content. The error rates are 39.45 ± 2.82% for TEWL 
and 17.17 ± 0.82% for moisture content. These results were insufficient considering the dynamic 
range of data used in this study. One of the reasons for the difficulty is that the 1D profiles have 
a wide intensity range. The wide dynamic range makes it difficult for the model to learn because 
the data value of the target structure is numerically smaller than those of the nontarget regions. 
Therefore, in Experiment 1-2, the profiles were divided into the regions corresponding to Ort, 
Hex, and keratin fibers and used as input data for learning.

3.2	 Experiment	1-2:	Prediction	from	narrowed	1D	profile

 We divided the 1D profiles into the regions corresponding to Ort, Hex, and keratin fibers in 
this experiment. As can be seen from the 1D profile in Fig. 2, the profile at 100–120 pixel 
distance corresponds to the keratin fibers, the profile at 120–140 pixel distance to the Hex 
region, and the profile at 140–160 pixel distance to the Ort region. A total of six data sets were 
created by combining these three profiles in addition to the profiles cut out for each region. The 
results of model prediction are shown in Table 2. The mean and standard deviation of the 
prediction accuracy are shown with three runs of random data splitting. As expected, it showed 
that the use of the narrowed 1D profile corresponding to the target regions improved the 
prediction accuracy compared with Experiment 1-1. In particular, when using the keratin and 
liquid phase area and the Hex area, including part of the Ort region, the model achieved error 
rates of 35.25 ± 4.33 for TEWL prediction and 15.34 ± 0.72 for water content prediction. Although 
there was a significant difference in predicted water content, there was no significant difference 
in predicted TEWL in all the cases, and the prediction accuracies for TEWL are not good enough. 
To this end, we concluded that using the narrowed 1D profile works well for the prediction of 
water content, but not for the prediction of TEWL.

Table 1
Results of Experiment 1-1.

RMSE Error rate (%)
TEWL (g/m2 h) 2.15 ± 0.06 39.45 ± 2.82
Water content (%) 6.44 ± 0.21 17.17 ± 0.82 
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3.3	 Experiment	1-3:	Prediction	from	1D	profile	with	background	removal

 To make it easier to learn the structure of interest, we removed the background signals other 
than the target structure from the original 1D profile of the ED image. The background 
component is obtained by least-squares fitting with an exponential function shown as

 ( ) bxf x ae= . (4)

 Although the function form of the background component is not derived in the physical 
viewpoint, we used the exponential function as the background component following a previous 
research.(16)

 Figure 5 shows an example of the original 1D profile, the result of fitting the background 
component, and the profile after background removal. We performed least-squares fitting to the 
original profile at 0–30 and 130–200 pixel distances from the beam center. Furthermore, as seen 
in Fig. 5, an artificial clump was formed near the beam center. Hence, we excluded the beam 
center area and used the profile from the 25–125 pixel distance.
 Table 3 shows the prediction results from the 1D profile with background removal. The mean 
and standard deviation of the prediction accuracy are shown with three runs of random data 
splitting, which is the same as in the previous experiments. The mean and standard deviation of 
model accuracy were calculated for three runs of random data splitting to train and test data. It 
can be seen that subtracting the background further improves the prediction accuracy for both 
TEWL and water content compared with Experiment 1-1. We achieved error rates of 38.22 ± 6.76 
g/m2h for TEWL prediction and 16.18 ± 2.04% for water content prediction. Figure 6 shows an 
example of a scatter plot of the model prediction and ground truths for TEWL and water content.
 With the removal of the background component, the prediction accuracy was improved. This 
suggests that the extracted features, keratin, Hex, and Ort structures are important for TEWL 
and water content, as determined by background processing. This is consistent with previous 
studies showing a correlation between TEWL and the amount of Ort structures.(16)

Table 2
Results of Experiment 1-2.

TEWL (g/m2 h) Water content (%)

Keratin and fluid phase area RMSE: 2.25 ± 0.08
Error rate: 41.69 ± 2.67

RMSE: 6.70 ± 0.70
Error rate: 18.21 ± 2.64

Hex area (including some Ort) RMSE: 2.14 ± 0.10
Error rate: 38.88 ± 4.70

RMSE: 6.48 ± 0.07
Error rate: 16.81 ± 1.06

Mainly Ort area RMSE: 2.23 ± 0.10
Error rate: 41.70 ± 2.71

RMSE: 6.30 ± 0.25
Error rate: 17.20 ± 1.09

Keratin and fluid phase area
+ Hex area (including some Ort)
+Ort area

RMSE: 2.21 ± 0.09
Error rate: 40.70 ± 3.41

RMSE: 6.28 ± 0.25
Error rate: 16.88 ± 1.52

Keratin and fluid phase area
+ Hex area (including some Ort)

RMSE: 2.05 ±0.12
Error rate: 35.25 ±4.33

RMSE: 5.78 ± 0.46
Error rate: 15.34 ±0.72

Hex area (including some Ort)
+ Ort area

RMSE: 2.18 ± 0.11
Error rate: 40.56 ± 3.34

RMSE: 6.22 ± 0.15
Error rate: 16.02 ± 1.41
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3.4 Experiment 2: Prediction from ED image

 Table 4 shows the prediction results of TEWL and water content obtained using a CNN and 
the ED images. The mean and standard deviation of the prediction accuracy are also shown with 
three runs of random data splitting to train and test data. Scatter plots for the prediction and 
ground truth are shown in Fig. 7.

Fig. 5. (Color online) Example of original profile, background profile, and profile after the removal of background 
component.

Table 3
Results of Experiment 1-3.

RMSE Error rate (%)
TEWL (g/m2h) 2.06 ± 0.10 38.22 ± 6.76
Water content (%) 5.90 ± 0.02 16.18 ± 2.04

Fig. 6. (Color online) Scatter plots of (a) TEWL and (b) water content predictions.

(a) (b)
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 The prediction of water content achieved an error rate of 13.92 ± 0.57%. This is a higher 
prediction accuracy than that obtained using a 1D profile. The scatter plot in Fig. 7(b) also shows 
an improvement in prediction accuracy in the range of 20–30% in water content compared with 
that in Fig. 6(b). This result suggests that spatial anisotropy in the ED image, which is not 
included in the 1D profile, contributes to the water content.
 On the other hand, TEWL has an error rate of 37.58 ± 1.80 %, which is lower than that with 
the 1D profile. This result suggests that the relationship between TEWL and ED is related to the 
overall structure of Ort and Hex structures rather than to the fine spatial features of the ED 
image. However, Fig. 7(a) also shows that some prediction results from 6 to 9 g/m2h are relatively 
accurate. Since the amount of training data is not very large in this study, there is a possibility 
that the larger amount of training data improved the prediction accuracy, which will be a good 
topic for future study.

4. Conclusions

 In this study, we applied deep learning modeling to examine the relationship between the 2D 
ED images of corneocytes and the TEWL or water content values that are often used as indicators 
of the skin barrier function, which has been difficult using human rule-based analysis. We want 
to emphasize that this study can be performed because of the recent development of the sensor 

Table 4
Results of Experiment 2.

RMSE Error rate (%)
TEWL (g/m2h) 2.17 ± 0.08 37.58 ± 1.80
Water content (%) 5.28 ± 0.15 13.92± 0.57

Fig. 7. (Color online) Scatter plots of (a) TEWL and (b) water content predictions using CNN models.

(a) (b)
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technology. In Experiment 1-1, we trained the multilayer perceptron model using the 1D profile 
obtained by azimuthally averaging the ED images. Moreover, we trained the MLP model with 
the divided profiles corresponding to the structures of interest in Experiment 1-2, and we further 
trained the MLP model on the background-removed data in Experiment 1-3. In Experiment 2, 
the CNN model was trained with the original 2D ED images. Although we used the simple MLP 
and CNN in the modeling, a significant correlation between the 2D ED images of the 
corneocytes and the water content values was found in this study. As future prospects, it is 
possible to use the more developed models such as LightGBM to achieve a higher prediction 
accuracy.
 As a result of this study, the MLP model trained on a 1D profile divided into regions of 
keratin and liquid phase area and Hex region, which includes some Ort regions, achieved the 
highest prediction error in this study of 35.25 ± 4.33% for TEWL. This suggests that TEWL is 
determined with the averaged Hex and keratin, rather than with the fine features of these 
structures. On the other hand, the highest prediction accuracy of 13.92 ± 0.57% for water content 
was achieved with the CNN model trained using the 2D ED images, which is newly found in this 
study. The result indicates that spatial anisotropy in the ED image, which was not included in the 
1D profile, contributes to the determination of the water content in the skin. 
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