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 Estimating depth from 2D images is vital in various applications, such as object recognition, 
scene reconstruction, and navigation. It offers significant advantages in augmented reality, 
image refocusing, and segmentation. In this paper, we propose an optimized U-net network 
based on a transfer learning encoder and advanced decoder structures to estimate depth on a 
single 2D image. The encoder–decoder architecture is built from ResNet152v2 as the encoder 
and an improved U-Net-based decoder to achieve accurate depth predictions. The introduced 
ResNet152v2 network had been pretrained on the extensive ImageNet dataset, which possesses 
weights to extract rich and generalizable features for large-scale image classification. This 
proposed encoder can have prior knowledge to reduce training time and improve object position 
recognition. The proposed composite up-sampling block (CUB) designed in the decoder applied 
the 2x and 4x bilinear interpolation combined with the one-stride transpose convolution to 
expand the low-resolution feature maps obtained from the encoder, enabling the network to 
recover finer details. The skip connections are used to enhance the representation power of the 
decoder. The output of each up-sampling block is concatenated with the corresponding pooling 
layer. This fusion of features from different scales helps capture local and global context 
information, contributing to more accurate depth predictions. This method utilizes RGB images 
and depth maps as training inputs from the NYU Depth Dataset V2. The experimental results 
demonstrate that the transfer learning-based encoder, coupled with our proposed decoder and 
data augmentation techniques, enables the transformation of complex RGB images into accurate 
depth maps. The system accurately classifies different depth ranges based on depth data ranging 
from 0.4 to 10 m. By mapping different depths to corresponding colors using gradational color 
scales, precise depth classification can be performed on the 2D images.

mailto:pai@ncut.edu.tw
https://doi.org/10.18494/SAM4822
https://myukk.org/


2570 Sensors and Materials, Vol. 36, No. 6 (2024)

1. Introduction

 Many applications such as scene recognition, 3D image reconstruction, robotics, and 
navigation require depth images, also known as depth maps, to perform object depth 
classification and estimation from captured images. The depth image provides the distance 
information of the objects in the scene, which is the z-axis distance from the camera viewpoint. 
Depth maps can be obtained using a special 3D depth camera that includes two lenses and is 
combined with triangulation algorithms such as proactive or passive stereo vision, structured 
light, and time of flight. To realize the three-dimensional structure in the captured image, depth 
maps can provide the spatial layout information of the objects presented to achieve a visual solid 
geometry. However, 3D cameras are expensive, and monocular cameras take most pictures, 
which are more commonly used in daily activities. These types of 2D images are implemented 
to produce depth images that are more useful in various applications.
 The monocular depth estimation applies only a single 2D image and various image vision 
algorithms to estimate depth and reconstruct depth maps. The deep-learning-based methods are 
popular approaches to performing monocular depth estimation and have obtained notable 
outcomes lately. Eigen et al. used two convolutional neural networks (CNNs) to obtain coarse 
global prediction by the first one and another refined that locally.(1) Li et al. and Liu et al. applied 
a deep CNN combined with conditional random fields-based regularization to estimate depths 
from single monocular images.(2–4) They employed CNNs to learn the relationship knowledge 
between image pixels or super-pixels and depth. Iro et al. proposed end-to-end fully 
convolutional networks incorporating residual up-sampling blocks to tackle high-dimensional 
regression problems and efficiently train their model to obtain better depth maps.(5) There are 
some problems raised by this type of deep CNN, which needs many datasets to train the 
network, has slow convergence, and has intolerable low-resolution feature maps. Fu et al. 
proposed a deep ordinal regression network to redefine learning as an ordinal regression 
problem.(6) They used the regression loss to train the network for faster convergence and higher 
accuracy.(6) Su et al. used a piled residual CNN to generate class discriminative features of an 
input image and regress depth by a convolutional network.(7) However, these network models 
have complex hierarchical structures that increase training complications and costs.
 Recently, the generative adversarial network (GAN) has shown outstanding performance in 
data generation in reconstructing synthetic images realistically. This model is employed in 
image-to-image translation fields such as image semantic segmentation and painting generation 
or implemented for monocular image depth estimation. Jung et al. proposed a GAN-based 
supervised approach; they used the generator network to predict depth maps and applied a 
discriminator to estimate the loss value between the ground truth and prediction during the 
training stage.(8) Zheng et al. designed T2Net with two networks, including translation and task 
prediction parts with GAN loss to synthetic depth maps.(9) Bhatia applied a stacked conditional 
GAN with a multi-patch discriminator network for depth estimation and reduced the mean 
square error.(10) Kwak and Lee applied the unsupervised deep learning mode based on the cycle 
GAN to generate depth maps that use the paired left and right photos captured by the stereo 
camera as inputs to estimate a disparity map and predict objects distance.(11) Hendra and 
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Kanazawa proposed the conditional GAN architecture with three submodels that combine the 
global scene structure with local image information.(12) They also used a structured similarity as 
the loss function of the generator and refiner during the training stage to improve the 
prediction.(12) The GAN-based depth estimation demonstrated better outcomes in reconstructing 
the synthetic depth map image; nevertheless, their proposed network either needs a more 
complex network to train the generator and refine it or requires additional paired images to 
distinguish disparity. Some visual artifacts, such as blurring object contours or spurious 
blocking, should be solved in this model.
 To tackle some challenges presented in the above-mentioned methods, we propose a simple 
monocular image depth estimation architecture based on an optimized U-net with a composite 
decoder structure. Our approach applies an encoder–decoder architecture built from pretrained 
ResNet152v2 as the encoder and an improved U-Net-based decoder to be capable of generating a 
more accurate and visually appealing depth map. Figure 1 shows some samples predicted by our 
proposed method, which produces depth maps from a single RGB image.

2. Proposed Method

 In this section, we introduce the optimized U-net with a composite fusion decoder structure 
proposed in this paper. The corresponding transfer-learning-based encoder and fusion decoder, 
loss function, training dataset, and augmentation strategies are also explained. The NYU dataset 
is utilized to train the network and evaluate the performance of tackling the challenging task of 
estimating accurate depth maps from RGB images. The NYU dataset provides a diverse range of 
indoor scenes with corresponding depth ground truth, all evaluated and validated using the 
NYU dataset. 

2.1 System framework

 The overall system framework is shown in Fig. 2. We propose an encoder–decoder U-net 
structure incorporating a transfer-learning mode to perform precise depth classification on the 

Fig. 1. (Color online) Depth maps estimated by our method.
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2D images. This U-net includes a ResNet152V2-based encoder pretrained on the ImageNet 
database, which increases object recognition and feature extraction capabilities and follows an 
advanced decoder combined with the composite up-sampling block (CUB) structure and fusion 
convolution. The grayscale depth map of the prediction result applies the coloring module to 
map gradational color scales to different depths, allowing for an intuitive understanding of 
relative distance from the central viewpoint and enriching the visual representation.

2.2 Dataset

 The NYU Depth v2 dataset is an invaluable resource, offering a vast collection of images and 
accompanying depth maps meticulously captured using cutting-edge depth cameras. Specifically 
designed for indoor scenes, this dataset presents a rich and diverse array of visual information, 
opening doors to many applications and research possibilities. This dataset holds significant 
potential for applications such as indoor obstacle avoidance for blind people. 
 This dataset has 120000 training samples and 654 testing samples; it offers essential data to 
train and evaluate models. For our proposed method, we specifically train on a subset of 50000 
samples that have been inpainted to address missing depth values from the NYU Depth v2 
dataset to help reconstruct the depth maps and ensure a complete representation of the 
environment captured by the depth camera. The depth maps with an upper bound of 10 m 
provide crucial geometric information about the scene. By utilizing this depth information, we 
can infer the distances of objects relative to the camera.
 Throughout the training process, we employ the native resolution of the input images 
obtained from datasets, enabling us to preserve the crucial fine details because of keeping the 
original data structure without resizing. However, we down-sample the ground truth depths to 

Fig. 2. (Color online) System framework of the proposed U-Net network.
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320 × 240 size to match the output resolution, ensuring compatibility between the depth maps 
and the predictions made by our system. We calculate the depth map estimate for the entire test 
image set during the testing phase. Subsequently, we upscale the estimated depth map by a factor 
of 2 to align it with the resolution of the ground truth and evaluate the accuracy.

2.3 Proposed network

 The network architecture of the proposed optimized U-net in this paper is illustrated in Fig. 3. 
The proposed approach commences by encoding the input RGB image into a comprehensive set 
of features using the ResNet152V2 network, which has undergone pretraining on the extensive 
ImageNet dataset. This strategic choice empowers our network to leverage the rich and 
generalizable features learned from a large-scale image classification task. The encoded 
representations are then up-sampled through a series of layers to generate the final depth map at 
half the input resolution. This up-sampling process, accompanied by skip connections, forms the 
decoder component. Notably, our decoder does not include advanced layers, such as the batch 
normalization layer, because these configurations cannot improve learning convergence but 
increase network complication in our experiments, despite their recommendation in recent 
cutting-edge technology methods. 
 The exceptional performance achieved by our relatively simple architecture raises questions 
regarding the individual contributions of different components in producing high-quality depth 
maps. To investigate this, we conducted experiments with various cutting-edge technology 

Fig. 3. (Color online) Architecture of the proposed optimized U-Net network.
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encoders, including ResNet152V2 and DenseNet-169, as well as different decoder types. Our 
experiments demonstrate that a simpler decoder configuration can achieve outstanding results. 
In particular, we employ a straightforward decoder with the proposed CUB structure that 
performs a 2× and 4× bilinear up-sampling operation combined with transpose convolution, and 
the subsequent process involves applying two conventional convolutional layers. This minimalist 
design proves to be highly effective in generating accurate depth estimations.
 In the encoding phase, the ResNet152V2 network is utilized as the backbone. The top layers 
initially designed for the ImageNet classification task are removed to adapt them for our depth 
prediction task. This modification allows us to focus solely on depth estimation. To ensure 
compatibility with the truncated encoder output in the decoder part, a 1 × 1 convolutional layer 
is applied to change the input shape that aligns with the corresponding output channels. This 
layer serves as the bridge between the encoded features and the subsequent up-sampling blocks. 
Each block consists of a 2× and 4× bilinear up-sampling operation with a transpose convolution 
in the CUB part and an additional design of two 3 × 3 convolutional layers in every decoder 
block. The output filters in these convolutional layers are set to half the number of input filters. 
This design choice helps to manage the complexity of the network while retaining the necessary 
information for accurate depth prediction.
 Notably, the CUB structure is a pivotal element in the proposed U-net architecture, as shown 
in Fig. 4. This specialized block comprises bilinear up-sampling and one-step transpose 
convolution, serving as a critical innovation in this depth estimation network. In the proposed 
CUB structure, the initial 2× and 4× bilinear up-sampling step is pivotal in expanding the low-
resolution feature maps obtained from the encoder, enabling the network to recover finer details 
during the depth estimation process. This up-sampling technique leverages interpolation to fill 
in the gaps and increase the spatial resolution of the feature maps, laying the foundation for 
subsequent refinement. However, the bilinear interpolation up-sampling lacks adaptability to the 
environment due to a fixed formula that limits performance. The additional transpose 
convolution has a learning capacity to follow behind the bilinear operation. It is used to optimize 
up-sampling actions, which allows intelligent adjustments based on varying environmental 

Fig. 4. (Color online) CUB structure.

Transpose convolution
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conditions. The transpose convolutional layer with only one stride setting in the CUB can also 
help to promote network training convergence and smooth the up-scaled feature maps. 
 Skip connections are employed to enhance the representation power of the decoder. Each 
CUB and decoder block output is concatenated with the corresponding pooling layer output 
from the encoder, both involving the same image dimensions. This fusion of features from 
different scales helps capture local and global context information, contributing to more accurate 
depth predictions. Throughout the decoder, except for the last up-sampling block, we apply a 
Leaky ReLU activation function with α = 0.2. This setting can allow a small, nonzero gradient 
for negative inputs, encouraging the flow of information even for negative activations. This 
activation function introduces nonlinearity and helps to alleviate the vanishing gradient problem 
during training. This preserves the visual information and allows the proposed model to leverage 
color cues for depth estimation. As for the target depth maps, we clip them to the range of 
[0.4, 10] m.

2.4 Loss functions

 Selecting an appropriate loss function holds significant importance in depth regression 
problems, as it directly affects the training speed and the overall effectiveness of the depth 
estimation network. In our approach, we focus on designing a loss function that effectively 
captures two essential aspects: accurately reconstructing depth images and preserving intricate 
patterns and fine-grained information within the image representation of the depth map.
 To achieve accurate depth reconstruction, our loss function minimizes the difference 
between the predicted depth map (denoted as  ŷ) and the ground truth depth map (denoted as y). 
This ensures that our model learns to generate depth predictions that closely resemble the true 
depths of the scene. However, solely focusing on minimizing the difference between  ŷ and y 
may lead to overly smooth depth predictions that lack high-frequency details. To address this, a 
penalty term is introduced in the loss function to discourage distortions of these fine-grained 
intricate nuances and subtle intricacies present in the depth map. By penalizing such distortions, 
we encourage our model to preserve the detailed features and edges in the depth map, resulting 
in more visually accurate representations.
 By carefully balancing the reconstruction accuracy and preservation of high-frequency 
details, our loss function guides the training process to find an optimal solution that produces 
depth predictions with accuracy and fine-grained detail preservation. This balanced approach 
ensures that our model learns to estimate depths accurately while retaining the intricate visual 
characteristics of the scene, ultimately improving the overall quality of the depth predictions.
 A critical consideration in our loss function design is preserving high-frequency details, 
particularly the boundaries of objects in the scene. These details contribute to the perceptual 
quality and visual fidelity of the depth map, and keeping them is essential for generating 
accurate depth estimations. By penalizing distortions of these high-frequency details, we ensure 
that the network focuses on capturing fine-grained structural information and avoids the over-
smoothing or blurring of the depth map. Additionally, a regularization term is incorporated into 
the loss function to encourage the smoothness of the depth map. This regularization term helps 
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to alleviate potential noise or inconsistencies in the predicted depth values, promoting a more 
coherent and visually pleasing depth estimation.
 Considering these factors in our loss function design and network training, we construct a 
loss function comprising a weighted combination of three distinct loss components. The first 
loss component focuses on depth regression and quantifies the disparity between the predicted 
depth map  ŷ and the ground truth depth map y. Equation (1), which represents Ldepth, is 
formulated as the point-wise L1 loss, quantifying the discrepancy between the predicted and 
ground truth depth values.(13) This loss term focuses on capturing the differences in depth 
measurements at each pixel location.

 ( )
1

1, ˆ̂  
n

depth P P
p

L y y y y
n =

= −∑  (1)

Here, Ldepth represents the pointwise L1 loss, quantifying pixel-level differences between the 
predicted and ground truth depth values. n denotes the total number of pixels, and p is an 
individual pixel in the depth map. 
 The second loss component emphasizes preserving structural details and boundaries within 
the depth map. A perceptual loss function is incorporated to penalize distortions in high-
frequency information. Equation (2) represents Lgrad, computed as the L1 loss applied to the 
image gradient of the depth image.(13) This loss term emphasizes preserving gradient information 
in the depth estimation.
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In Eq. (2), gx and gy represent the gradients of each pixel in the image, where x and y denote the 
horizontal and vertical spatial coordinates, respectively. gx signifies the horizontal intensity 
change rate, while gy represents each pixel vertical intensity change rate. These gradients are 
essential for capturing intensity variations, aiding tasks such as edge detection and feature 
extraction.
 The structural similarity (SSIM) is incorporated into the loss function represented in Eq. (3). 
The SSIM is a well-established metric for image reconstruction tasks. It effectively evaluates 
depth map differences, including results of brightness, contrast, and structure comparisons, with 
values ranging from −1 to 1.(13) The third loss component introduces a smoothness regularization 
term, which promotes coherence and consistency in the predicted depth map. It measures the 
dissimilarity between the predicted and ground truth images based on their structure, with 
higher SSIM values indicating more accurate predictions and a closer match to the actual scene. 
The loss function combined with SSIM can enhance the model ability to generate depth maps 
resembling the true scene structure. As SSIM has a maximum value of one, we define LSSIM as a 
loss term that measures the dissimilarity between the predicted depth image  ŷ and the ground 
truth depth image y.
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 SSIM(y,  ŷ) = [l(y,  ŷ)]α * [c(y,  ŷ)]β * [s(y,  ŷ)]γ 

Here, l, c, and s are the comparison measurements between the ground truth (y) and predicted 
( ŷ) depth map for luminance, contrast, and structure elements. α, β, and γ are the weight 
coefficients used to set each comparative item weightiness and all adjust to 1 to reduce this 
formula.
 Appropriate weights are assigned to each loss component to achieve a balanced optimization 
process. By combining these three loss functions in a weighted manner, Eq. (4) is used in 
network training and tuning to estimate depth effectively while preserving critical visual details.

 L(y,  ŷ) = λLdepth(y,  ŷ) + Lgrad(y,  ŷ) + LSSIM(y,  ŷ) (4)

 In the depth estimation task, we choose to limit the weighting factor λ to a range of 0 to 1. To 
maintain the stability and performance of the model, this range is selected based on generally 
established standards to guarantee that the weights of each loss component are neither too large 
nor too small. Our comprehensive analysis and empirical findings led us to limit the depth loss 
Ldepth weighting factor λ to a range of 0.1 to 0.2. The values of λ within this range are generally 
considered appropriate and frequent selections, resulting in faster convergence and better 
performance during training.

2.5 Augmentation strategies

 Data augmentation is an essential technique in deep learning to combat model overfitting and 
enhance network generalization capabilities. In depth estimation, where our network aims to 
predict depth maps for complete images, careful consideration is necessary when choosing 
suitable geometric and photometric transformations. While image rotation is a commonly used 
augmentation strategy, we exclude it from our approach owing to the introduction of invalid 
depth data that does not correspond to the ground truth depth. Therefore, we limit our geometric 
augmentation to horizontal flipping with a probability of 0.5 to ensure a balanced distribution of 
the original and flipped images during training. This promotes the unbiased learning of object 
orientations and maintains semantic consistency in the scene. 
 Photometric augmentations such as brightness, contrast, and sharpness adjustments can 
further enrich the training dataset and enhance the network performance to handle variations in 
lighting conditions and image quality. Two image processing techniques, sharpening and 
brightening, were employed to improve the training process for our images. Sharpening 
highlights high-frequency details in the pictures by applying sharpening filters, which 
accentuate the differences between pixels and their surrounding pixels, thereby increasing the 
contrast and clarity of the images. On the other hand, brightening involves increasing the 
brightness of images to improve their quality, aiding in handling images under various lighting 
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conditions while enhancing their details and contrast. By applying these techniques, our model 
is better equipped to handle images with different contrasts and lighting conditions during 
training, improving its performance and generalization capability for real-world applications. 
Figure 5 shows examples of the image data augmentation used in our training stage.

3. Experimental Results and Discussion

 The experimental results and analysis are demonstrated in this section, highlighting the 
exceptional performance of our proposed method compared with other methods. To further 
investigate and explore the effectiveness of our network model, we also conduct ablation studies 
that dissect the individual components and evaluate their effects, along with evaluation metric 
comparisons.

3.1 Evaluation metrics

 We employ the standard set of six evaluation metrics widely utilized in previous studies to 
compare our proposed method and other approaches quantitatively.(1) These error metrics are 
well-established and provide a comprehensive evaluation framework. Equation (8) has three 
evaluation metrics by different thresholds. 
1) Average relative error (REL) in Eq. (5):

 
1

1  / ˆn
p p pp

y y y
n =

−∑ . (5)

Fig. 5. (Color online) Image data augmentation. (a) Original and (b) horizontal flipped images, (c) original and (d) 
sharpened images, and (e) original and (f) brightened images.

(a) (b) (c) (d)

(e) (f)
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2) Root mean squared error (RMS) in Eq. (6):
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3) Average (Log10) error in Eq. (7):
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4) Threshold accuracy (δ) in Eq. (8):

   

2 3.

percentage (%) of  s.t. ax ,

1, y

ˆ
M

2,3,  is correspondingl 2 set to 1.25,1

ˆ

,1. 5,25

p p
p i

p p

i thr

y y
y thr

y y
δ

 
= <  

 
=

 (8)

 When evaluating depth estimation results, the notation is as follows: yp is the ground truth 
depth image y corresponding to pixel p, ˆ py  is the predicted depth image ŷ corresponding to pixel 
p, and n means the total number of pixels in each depth image. This notation facilitates a precise 
comparison and analysis of depth estimation accuracy across the entire image.

3.2 Experimental results

 Figure 6 shows a collection of depth estimation outcomes achieved through our proposed 
methodology juxtaposed with the results obtained from other approaches. The initial column 
exhibits the RGB input images utilized as the network input. The subsequent column depicts the 
ground truth depth image. The third column showcases the outcomes achieved by Fu et al.,(6) 
and the fourth column shows the results produced by Alhashim and Wonka.(13) Finally, in the 
fifth column, the depth maps generated by our method are trained using the proposed approach.
 By carefully examining the comparisons, the results of other methods show that their 
contours lack distinctiveness, and the depth coloration appears blurry and fragmented. The 
prediction outputs of our approach are better than those of others, particularly regarding the 
fully connected variant of ResNet. While this variant demonstrates enhanced accuracy, its 
predictions remain limited to coarse estimations. In contrast, our proposed fully convolutional 
model in the decoder block significantly enhances the quality of depth maps by improving edge 
precision and structure definition. These visualizations vividly demonstrate that our method 
produces depth estimations of superior quality, exhibiting better alignment with the ground truth 
depth edges and displaying considerably fewer artifacts.
 The superior performance of our method can be attributed to incorporating advanced 
architectural elements and training techniques. The proposed CUB structure applies the 
advantages of bilinear interpolation to capture and interpolate spatial features efficiently. The 
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subsequent application of transpose convolution smooths the up-scaled features and aids in the 
recovery of details lost during the down-sampling process by intelligent learning. The fully 
convolutional model effectively captures fine-grained details and spatial dependences, leading 
to more accurate depth predictions. The improved edge quality and reduced presence of artifacts 
contribute to a more visually pleasing and precise depiction of the scene depth structure.

3.3 Results compared with other methods

 Table 1 shows the performance comparisons between our proposed network model and other 
methods depending on the NYU Depth v2 dataset. Our model exhibits superior performance 
across most evaluation metrics; it showcases a remarkable advantage over the most compared 

Fig. 6. Comparison of depth maps obtained by different methods on the NYU Depth v2 dataset. (a) RGB images, 
(b) ground truth, (c) results of model by Fu et al.,(6) (d) results of model by Alhashim and Wonka,(13) and (e) our 
predicted depth maps. 

(a) (b) (c) (d) (e)



Sensors and Materials, Vol. 36, No. 6 (2024) 2581

approaches, with a reduced network parameter count of 67 million compared with other 
methods, which have more than 110 million. Moreover, our network demands fewer training 
iterations, 2 million instead of 3 million. It successfully achieves competitive results even with a 
smaller training dataset comprising 50000 samples, whereas other methods rely on 120000 
samples. The outperformance is ascribed to the proposed CUB structure, which reduces training 
time and network parameters and overcomes the challenge of problematic convergence.
 Achieving accurate absolute scale estimation in single image depth estimation networks is 
frequently formidable. We introduce a corrective strategy to address this challenge by rescaling 
the predicted depths using a scalar factor that aligns the median value with the ground truth. 
Lower values of REL, RMS, and Log10 error indicate improved performance, whereas higher 
values of δ1, δ2, and δ3 imply higher accuracy in depth estimation. Our approach showcases 
efficiency, precision, and innovation in depth estimation, offering superior performance with 
fewer parameters and a more efficient training process.

3.4 Ablation studies and discussion

 In our depth estimation model, the pretrained ResNet152V2 network is selected as the 
backbone network in the encoder of U-net. Moving into the decoding phase, the CUBs are 
considered a crucial decoder component. Each block includes 2× and 4× bilinear interpolation 
up-sampling and transpose convolution, accompanied by two 3 × 3 convolutional layers. The 
skip connection, which provides a direct way in conjunction with the corresponding encoder 
output, enhances the decoder representation capability. 
 Some ablation studies have been performed to find a better solution for depth estimation. The 
results of the individual ablation studies are presented in Table 2 for comparison. The bicubic 
interpolation method is used instead of the bilinear interpolation up-sampling; however, the 
results are almost the same as the performance of the original bilinear approach but with 
increased training time. We also try to apply pure transpose convolution or only the first two 
decoder blocks used for the up-sampling operation. The experimental results are average in 
performance and could be more satisfactory. Subsequently, the structure used one-stride 
transpose convolution after the bilinear up-sampling layer, followed by the original convolutional 
layers, to obtain further improvement in network performance. These adjustments and 
experiments from the ablation studies contribute to the enhanced performance and 
generalizability of our depth estimation network.

Table 1
Comparisons of different methods on the NYU Depth v2 dataset.
Method δ1↑ δ2↑ δ3↑ REL↓ RMS↓ Log10↓
Li et al.(2) 0.621 0.886 0.968 0.232 0.821 0.094
Wang et al.(14) 0.605 0.890 0.970 0.220 0.745 0.094
Li et al.(15) 0.788 0.958 0.991 0.143 0.635 0.063
Iro et al.(5) 0.811 0.953 0.988 0.127 0.573 0.055
Xu et al.(16) 0.811 0.954 0.987 0.121 0.586 0.052
Fu et al.(6) 0.828 0.965 0.992 0.115 0.509 0.051
Hendra and Kanazawa(12) 0.819 0.960 0.989 0.143 0.509 0.060
Our method 0.8266 0.9672 0.9926 0.1345 0.5800 0.0573
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4. Conclusions

 In this paper, we proposed an optimized U-net network that applies the ResNet152v2-based 
encoder with transfer learning mode and advanced decoder structures to estimate depth on a 
single 2D image. The optimized U-net combined with the proposed CUB in the advanced 
decoder and data augmentation techniques improves the training convergence, recovers the lost 
details, and smooths the up-scaled feature maps. Moreover, our system enables the accurate 
classification of different depth ranges, covering depths from 0.4 to 10 m. This classification is 
achieved by mapping various depths to corresponding colors using gradational color scales. The 
experimental results demonstrate superior performance that successfully transforms complex 
RGB images into precise depth maps.
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