
2585Sensors and Materials, Vol. 36, No. 6 (2024) 2585–2596
MYU Tokyo

S & M 3988

*Corresponding author: e-mail: hally888@gmail.com
https://doi.org/10.18494/SAM4828

ISSN 0914-4935 © MYU K.K.
https://myukk.org/

Improving the Scalability of Data Center Networking
with Protocol-independent Source Routing

Shih-Pang Tseng,1,2 Yang Yu,3 and Chien-Min Chen4,5*

1School of Information Science and Technology, Sanda University, Shanghai,
No. 2727 Jinhai Road, Pudong District, Shanghai, 201209 China

2School of Software and Big Data, Changzhou College of Information Technology, Changzhou,
No. 22, Mingxin Middle Road, Changzhou, Jiangsu, 213164 China

3Jiangsu University of Technology, No. 1801 Zhongwu Road, Changzhou, Jiangsu, 213001 China
4Quanzhou University of Information Engineering, 

No. 249, Bodong Road, Fengze District, Quanzhou, Fujian, 362000 China
5International School of Finance, Fudan University, No. 220, Handan Road, Shanghai, 200433 China

(Received December 18, 2023; accepted June 24, 2024)

Keywords:	 SDN, control plane, source routing, protocol-oblivious forwarding, table item

	 Sensor networks generate large volumes of data that require robust processing, storage, and 
analysis capabilities provided by data centers. Software-defined networking, as a new network 
technique for designing and building networks, provides new concepts and solutions for the 
current data center system construction. However, the software-defined networking (SDN) 
framework based on the OpenFlow protocol cannot support new protocols or actively add 
unknown protocols, since they cause the control plane protocol to become more bloated. It is 
difficult to solve the problem of network scalability because components are being continuously 
redesigned. Therefore, an optimized source routing technology is proposed in combination with 
the protocol-oblivious forwarding technology. Furthermore, a low-cost and extensible network 
switch is designed to realize the independent data forwarding mechanism that effectively 
reduces the amount of network control signaling. The experimental results show that the scheme 
can significantly reduce the scale of flow table items and improve the hardware forwarding rates 
as well as the flexibility of forwarding rules. Moreover, the design scheme has a good application 
prospect. 

1.	 Introduction

	 To gain more information for better awareness of the environment or to monitor system 
parameters, more sensors distributed over a geographic area are needed to construct a sensor 
network.(1) These sensors can detect physical phenomena such as temperature, humidity, light, 
pressure, motion, and sound. Sensor networks are used in various applications, including 
environmental monitoring, industrial automation, healthcare, and smart cities. The sensors 
transmit the collected data to a central node or gateway, which processes and transmits the 
information to a remote server or data center for further analysis and decision-making.

mailto:hally888@gmail.com
https://doi.org/10.18494/SAM4828
https://myukk.org/


2586	 Sensors and Materials, Vol. 36, No. 6 (2024)

	 A data center is a dedicated facility used to house computer systems and associated 
components, such as telecommunications and storage systems. It includes the physical 
infrastructure for computing, storage, and networking hardware, as well as the software and 
services required to support the critical applications and data. Data centers can manage huge 
amounts of data generated by sensor networks, enabling real-time analytics, data storage, and 
the implementation of various applications driven by sensor data.
	 The integration of sensor networks with data centers is crucial for leveraging the full 
potential of Internet of Things (IoT) applications. Sensor networks generate large volumes of 
data that require the robust processing, storage, and analysis capabilities provided by data 
centers. This integration supports real-time monitoring, predictive analytics, and efficient 
management of resources, leading to enhanced operational efficiency, informed decision-
making, and improved outcomes in various sectors. The data exchange efficiency of the data 
center has become the development bottleneck of the sensor network scalability.
	 Software-defined data centers (SDDC) have realized abstraction, pooling, and the automated 
deployment and management of all physical computing, storage, and network resources through 
virtualization and software to meet higher agility business demands and user experience.(2,3) 
Among these technologies, software-defined networking (SDN) architecture separates the 
control plane used for network decision from the data plane for data forwarding and provides 
network programmability to accelerate network innovation.(4,5) The application of SDN to build 
the data center can effectively simplify the network management and achieve precise scheduling 
of data flows, further enhancing the service carrying capacity.
	 At present, the processing mechanism and traffic characteristics of the flow table are limited 
in terms of flow table space and energy consumption in data centers. The OpenFlow switches 
usually use ternary content addressable memory (TCAM) devices for item storage,(6) yet the 
high cost and power consumption, along with the limited capacity, make the switch structure 
inflexible and inefficient, and it is prone to causing network delays and increasing hardware 
storage pressure. Meanwhile, the SDN architecture based on the OpenFlow protocol only 
supports the existing data forwarding rules. Therefore, new protocols cannot be added 
proactively as these protocols would make the OpenFlow protocol increasingly complicated 
because the device code is modified. To solve the problems above, the Open Networking 
Foundation (ONF) has proposed the protocol-independent forwarding (PIF) model(7) along with 
protocol-aware forwarding(8) and P4 technology,(9) which are applied to define the underlying 
original instruction set and to implement the packet handler. By using a uniform protocol-
independent instruction set, the protocols can achieve data plane matching forwarding without 
perception, which completely decouples the data plane and control plane, as well as support for 
any new network protocols. With the continuous expansion of the data center network and the 
diversification of service types, the longest matching algorithm based on IP address used in the 
traditional routing mechanism leads to the complexity of the forwarding unit and the expansion 
of the routing table. The network performance is degraded in addition to the serious consumption 
of the network bandwidth.(10)

	 To summarize, in this paper, we present a new solution based on the protocol-oblivious 
forwarding technique, termed source routing protocol-oblivious forwarding (SRPOF). The data 
plane forwarding device does not have any perception of the routing protocol and forwarding 



Sensors and Materials, Vol. 36, No. 6 (2024)	 2587

process owing to a more streamlined source routing mechanism. Allied with the unification of 
the source address instruction tag, the strategy can support any forwarding protocol and packet 
data format. Furthermore, the network behavior is completely defined by the control plane that 
can solve the scalability problems for data centers effectively. We apply the self-developed and 
programmable network switch for data plane forwarding. Moreover, the flow-table-independent 
packet forwarding operation is realized by identifying the address instruction set controlled by 
the source side so as to ensure the hardware forwarding rate and improve the flexibility of the 
identification and forwarding rules. 

2.	 Related Works

	 The data center network (DCN) architecture connects computing and storage resources for 
providing data access capabilities to users in the form of services. With the rise of XaaS service 
providers and the continuous virtualization of data centers, data center networks are developing 
rapidly. Traditional TCP/IP-based network systems cannot meet the commands of rapid internet 
development owing to problems such as complex management and low utilization. Therefore, 
operation and maintenance teams of the network architecture have begun to study high-
performance and highly reliable network systems.(11) The introduction of SDN technology to 
build data center networks can effectively realize the automated management of programmable 
infrastructure.(12) The OpenFlow protocol, as its core technology,(13) separates the control plane 
and the data plane to achieve the flexible control of network traffic. However, its processing 
mechanism for storing and forwarding data information relies on the flow table. This approach 
is limited by the table flow space and energy consumption of the network switches. The 
scalability problems in the data plane are difficult to solve. In addition, the OpenFlow protocol 
cannot support the new protocols; thus, the only way to increase the support of the new protocol 
is to modify the switch hardware structure and device code, which makes the protocol 
increasingly complicated and limits the programmable features and flexibility in SDN 
architecture.(14) Huawei Company proposed a solution named protocol-oblivious forwarding 
(POF) technology, which is an improvement of the OpenFlow protocol to resolve the issues.(15–17) 
The data plane uses the triplet form such as {type, offset, length} to identify the protocol field, 
which does not need to grasp the format or content of the specific protocol. Meanwhile, complete 
decoupling between the control plane and the data plane is realized by using the unified protocol-
independent instruction set so that any new protocol can be supported without modifying the 
data plane.
	 The source routing technology means that the network host adds routing information through 
the packet header to specify some or all of the forwarding devices that the data packet passes 
through, that is, the forwarding path is planned for it beforehand. There are many technological 
schemes of source routing based on the OpenFlow protocol.(18–20) The typical algorithm based 
on the source routing mechanism is the MPLS protocol.(21) Each MPLS label represents one-hop 
routing information. However, the limiting factor is that the number of MPLS labels supported 
by the data plane is limited. Thus, it is not applicable or scalable in large-scale networks. In Ref. 
22, Ventre et al. adopted a mask that supports arbitrary bit lengths to implement field matching 
operations and Apple IPv6 fields to store per-hop routing information. However, the redundant 



2588	 Sensors and Materials, Vol. 36, No. 6 (2024)

field of the scheme increases the protocol length, that is, if the number of ports of a switch is 256, 
the 128-bit source IP address can only support 16-hop data forwarding operations. Thus, the 
network scalability problem is still difficult to solve. Sourcey,(23) as a typical source routing 
protocol in a data center network, provides topology discovery policies based on the network 
host. However, all hosts need to detect and master global network topology information. Such a 
solution causes a large number of redundant detection packets along with the serious reduction 
of network performance.

3.	 Routing Mechanism Based on POF in Data Center Networks

3.1	 Data center network architecture based on POF

	 The POF protocol implements data matching and corresponding operations through two 
parameters: offset and length. The content of the related protocol is written by the controller. 
Thus, the switch does not need to append any entries or searching cost. The protocol-independent 
data forwarding process can be completed by applying the unified instruction set. The specific 
POF-based data center network architecture is shown in Fig. 1. The switch can complete the data 
processing procedure without interpreting the protocol content. That is, there is no need to 
upgrade the network switch or replace it with the new device when a new protocol is appended. 
The control plane controls the forwarding behavior of the network switch through the flow table 
of the extended OpenFlow protocol that expedites the network innovation proceedings.

Fig. 1.	 POF forwarding model.



Sensors and Materials, Vol. 36, No. 6 (2024)	 2589

	 In the POF-based data center network architecture, the control plane mainly includes modules 
such as the MAC address learning, topology discovery, and communication engines; these 
modules are used to implement packet parsing and routing protocols. The processing of data 
packets includes the insertion, deletion, and modification of the bit string at a specific position of 
the message. Thus, the network forwarding device does not need to be aware of any knowledge 
related to a specific protocol; it only needs to perform a simple atomic operation function to 
efficiently perform stream instruction forwarding. All protocol-related processing flows are 
defined by the network controller. Users write a network algorithm to invoke the API provided 
by the POF network environment to obtain the network topology and data packets. The entire 
process has no further use for interaction with underlying concepts such as messages and flow 
tables.

3.2	 Source routing and forwarding mechanism based on POF

	 The fundamental cause of the complexity of the source routing technology based on 
OpenFlow is that it cannot support a custom network protocol. In this paper, a source routing 
scheme based on the POF mechanism (SRPOF) is proposed. The source control idea is applied to 
make the forwarding hardware device have no perception of the network protocol and the 
forwarding procedure. The network behavior is completely defined and supported by the control 
plane that can support an arbitrary forwarding protocol and packet data format. The specific 
forwarding process design is shown in Fig. 2. The switch pre-allocates a local serial value (port 
index, PI) for all its ports. Thus, the sequence formed by sequentially combining the local port 
numbers of the switches on the communication path forms a source address instruction set. The 
instruction set uses a relative address coding method.

Fig. 2.	 (Color online) Source routing forwarding model.



2590	 Sensors and Materials, Vol. 36, No. 6 (2024)

	 In the data forwarding procedure above, it is assumed that the communication path calculated 
from the end system A to D is A → E → F → G → H → D, and the output port numbers 
correspond sequentially to E: 3, F: 2, G: 3, H: 1. Thus, the sequence obtained by combining these 
port numbers sequentially is the source address instruction set from A to D, where the specific 
numerical list is 3231, and we named it Pathad. The above sequence can be expressed in binary 
code as {11, 10, 11, 1} and further integrated into {1110111}. This address instruction 
independently and completely identifies a communication path from A to D, and we regard 
Pathad as routing information from A to D. The number of address bits of each switch is 
configured in accordance with the number of local ports. The source routing and forwarding 
scheme based on the POF technology proposed in this paper is the packet switching process with 
the above source address instruction set as the data forwarding address. The protocol format of 
the source routing scheme studied in this paper and the existing source routing protocol are 
shown in Fig. 3.
	 The data packets required for traditional source routing are shown in Fig. 3(a). The IPv4 
Options field contains five complete IP addresses on the communication path. Figure 3(b) shows 
the data packet of the component when using OpenFlow source routing. Host A writes all the 
routing ports in different bits of the source address of the IPv6 protocol, and each hop route on 
the planned path matches different bits in the field. As shown in Fig. 3(c), in the source routing 
scheme designed in this study, host A does not need any redundant protocols or fields. The 
forwarding device on the path only needs to read the current address component in accordance 
with the pre-assigned local port number and to perform matching and forwarding data packets in 
accordance with the source address instruction set. The POF-based source routing scheme can 
support the characteristics of any protocol and implement a simple source routing mechanism.

3.3	 Design of POF switch

	 To support the above source routing and forwarding strategy, we modify the hardware 
structure of the switch and append the parsing of the source address instruction set. The specific 

Fig. 3.	 Source routing packet with different formats.



Sensors and Materials, Vol. 36, No. 6 (2024)	 2591

workflow is shown in Fig. 4. After receiving a new data packet, we first analyze the ethernet 
header and source address data in accordance with the source routing address parsing protocol. 
When sending data packets on the output port, the ethernet header is encapsulated in the data in 
accordance with the address resolution protocol.
	 The above operation facilitates retaining the existing ethernet switches applied to the 
protocol-oblivious source routing and forwarding protocol. When a switch receives a data 
packet, it resolves first the packet header, which includes identifying the code of the frame 
preamble, and then the delimiter of the start and the end of the frame, and subsequently matches 
the MAC address of the destination node and packet type so as to transfer the data packet to the 
corresponding operation module. Considering these tasks, we design and implement the POF 
switch on the NetFPGA experimental platform, which can realize the data exchange function of 
four gigabit interfaces. The specific design of the hardware structure is shown in Fig. 5.
	 When the physical network port receives the data packet, it first performs a packet header 
parsing operation to extract the current corresponding to the PI component in the switching 
device, then the scheduling mechanism implements switching array scheduling in accordance 
with the current PI component prompt. After processing is completed, data packets are 
respectively entered into the buffering queue (0–3) implemented by the on-chip broadcast 
recognition access method (BRAM).(24) BRAM is an access protocol designed for regulating 
internode communication in either a wired or wireless channel-based network system. Thus, the 
switching device no longer uses static random access memory (SRAM) or off-chip dynamic 
random access memory (DRAM), effectively reducing the resource overhead of off-chip storage 
and the cost. 

Fig. 4.	 Switch forwarding procedure. 



2592	 Sensors and Materials, Vol. 36, No. 6 (2024)

4.	 Experiment and Verification

	 We implement Mininet(25) to design and deploy a data center network architecture based on 
POF and source routing mechanisms. The network is deployed by using a POF controller(26) and 
a self-developed programmable POF switch. From the results of the experiment, we can mainly 
verify the following three points: (1) the proposed POF-based source routing scheme can 
effectively reduce the number of data plane flow entries; (2) the network redundancy for 
detecting the packet has been considerably decreased during the flow table update phase; (3) the 
resource consumption and manufacturing costs for switch hardware can be reduced significantly.

4.1	 Experimental statistics for the size of flow table 

	 In the test described in this section, we build the Fat-tree(27) network topology and implement 
the SRPOF. The script is coded for the network host to append the source routing protocol 
header to the data packet. We set k = 4 (pods) for counting the number of flow entries of each 
switch in each layer of the network. Meanwhile, we also compare the number of flow entries 
generated by paired unicast routing with OpenFlow v1.0 protocol.
	 The number of required flow entries at each level is shown in Table 1. Table 1 shows that the 
SRPOF scheme can effectively reduce the number of flow entries. Consequently, the SRPOF 
only needs to match the fields of the source address header, while the paired unicast protocol 
demands to match multiple protocol fields such as the source address, destination address, and 
MAC address.

Fig. 5.	 Design of POF switch.



Sensors and Materials, Vol. 36, No. 6 (2024)	 2593

	 The SRPOF strategy proposed herein can effectively reduce the data processing time by 
simplifying the forwarding processing logic and the number of flow table entries. The data plane 
is satisfactory to complete the forwarding operation of the data packet through the unified 
source address instruction label, effectively simplifying the data processing logic and reducing 
the size of the flow table and thus further improving the network utilization efficiency.

4.2	 Routing comparison

	 In this section, we analyze the statistics of the number of probe packets consumed in different 
network sizes under the conditions of the same routing information and network topology. It is 
assumed that the data flows are transmitted through N network nodes.
	 In the OpenFlow network environment, the number of signals required for the first OpenFlow 
switch is three during the routing procedure: a PACKET-IN routing request signal sent to the 
controller, a Modify State Message signal returned by the routing result, and a PACKET-OUT 
signal sent to itself to trigger the data transmission process. The other n − 1 forwarding devices 
each require one Modify State Message signal. Thus, the total number of probe packets required 
is n + 2. The number of switches is linearly proportional to the number of hops N on the 
communication path.
	 In the SRPOF scheme, the data stream transmission routine is determined by the source 
instruction tag. The source routing address is obtained by the edge gateway which sends a 
PACKET-IN routing request to the controller and accepts the PACKET-OUT message. The 
intermediate node on the communication path can accomplish the forwarding procedure without 
adding a flow entry. Thus, the number of probe packets required is four. The specific trends for 
the number of probe packets when the number of network nodes changes in the two routing 
mechanisms are shown in Fig. 6. It can be seen from the figure that as the number of switches 
increases, the SRPOF scheme proposed in the paper generates far fewer probe packets than the 
OpenFlow protocol in the same environment. Meanwhile, the routing and flow table updating 
procedure has been significantly simplified. 

4.3	 Switch performance test

	 NetFPGA is a reconfigurable and low-cost hardware platform developed by Stanford 
University for network researchers. Researchers can apply the platform to build diverse network 
prototypes and stable network test environments.(28) The core part of the NetFPGA hardware 
mainly consists of two FPGAs running synchronously at a clock frequency of 125 MHz, where 

Table 1
Number of flow table items in each scheme.

SRPOF OpenFlow v1.0
Core 4 82
Aggregation 4 48
Edge 4 56



2594	 Sensors and Materials, Vol. 36, No. 6 (2024)

one has a Virtex-II Pro series chip added as the main processing chip and the other has a Spartan 
II series XC2S200-FG456C chip. The onboard resources include the SRAM and a general-
purpose JTAG test port. In Ref. 29, Chu et al. proposed the implementation of OpenFlow 
switches on the NetFPGA platform, which utilizes two flow table memory structures including 
the accurate table lookup strategy based on SRAM and the TCAM-based wildcard table lookup. 
Meanwhile, NetFPGA developers have also devised two sets of hardware architecture solutions 
for gigabit Ethernet switches and IPv4 routers. In this section, we analyze the hardware resource 
consumption statistics of the designed POF switch, including the parameters Slices, LUTs, and 
BRAMs, and compare them with reference designs such as those of ethernet switches, IPV4 
routers, and OpenFlow switches. The specific hardware resource consumption results are shown 
in Table 2. The POF switch calculates the resources consumed by all modules, while for the 
other types of switches, only the resources consumed by the lookup module of the output port 
are considered.
	 It can be concluded that the POF switch designed in this paper to support the source routing 
mechanism has no further need for off-chip storage SRAM, while the OpenFlow switch uses 
SRAM as the flow table memory and requires PCI bus support, whereby each new flow entry 
consumes at least 12 μs of processing time, severely hindering the rate of flow table updating. At 
the same time, the POF packet buffer is only 40 kB, which is realized by using an off-chip 
BRAM, which is different from the off-chip DRAM packet buffer used by OpenFlow switches. 
Finally, the consumption of hardware resources, such as LUT and DFF, is about 63% less than 
that of the OpenFlow switches.

Fig. 6.	 (Color online) Experimental results on the number of network signals.



Sensors and Materials, Vol. 36, No. 6 (2024)	 2595

5.	 Conclusions

	 We combined POF and source routing mechanism and proposed two key technologies applied 
in data center networks. Firstly, we put forward the SRPOF scheme based on simple instructions 
for data forwarding. It supports arbitrary forwarding protocols and data format through the 
unification of source address instruction labels, effectively reducing the redundancy of network 
probe packets and the size of flow entries. Secondly, we developed low-cost and scalable POF 
switches that can implement f low-table-independent packet forwarding operations and 
effectively improve the f lexibility of forwarding rules. Finally, a data center network 
environment was built on the Mininet platform for testing and comparing related technologies. 
The experimental results showed that the proposed solution can significantly improve the 
utilization of the data center network along with providing good flexibility and scalability. The 
future research contents and directions will be to explore how to optimize the network topology 
management mechanism and improve the performance of the POF controller.

References

	 1	 D. Kandris, C. Nakas, D. Vomvas, and G. Koulouras: Appl. Syst. Innov. 3 (2020) 14. https://doi.org/10.3390/
asi3010014 

	 2	 W. Lin, Y. Wu, and N. Jiao: Mob. Inf. Syst. 2022 (2022) 9139257. https://doi.org/10.1155/2022/9139257
	 3	 L. A. Barroso and J. Clidaras: The datacenter as a computer: An introduction to the design of warehouse-scale 

machines, (Springer Nature, 2022).
	 4	 M. Karakus and A. Durresi: Comput. Networks 112 (2017) 279. https://doi.org/10.1016/j.comnet.2016.11.017
	 5	 S. Ahmad and A. Hussain: J. Netw. Syst. Manage. 29 (2021) 1. https://doi.org/10.1007/s10922-020-09575-4
	 6	 M. Shahbaz, S. Choi, B. Pfaff, C. Kim, N. Feamster, N. McKeown, and J. Rexford: Proc. 2016 ACM SIGCOMM 

Conf. (2016) 525–538.
	 7	 D. Hu, S. Li, N. Xue, C. Chen, S. Ma, W. Fang, and Z. Zhu: Proc. 2015 IEEE Global Communications Conf. 

(IEEE, 2015) 1–6.
	 8	 C. Yoon, T. Park, S. Lee, H. Kang, S. Shin, and Z. Zhang: Comput. Networks 85 (2015) 19. https://doi.

org/10.1016/j.comnet.2015.05.005
	 9	 B. Dai, G. Xu, B. Huang, P. Qin, and Y. Xu: J. Netw. Comput. Appl. 94 (2017) 33. https://doi.org/10.1016/j.

jnca.2017.07.004
	10	 O. Rottenstreich and J. Tapolcai: IEEE/ACM Trans. Networking 25 (2017) 864. https://doi.org/10.1109/

TNET.2016.2611482
	11	 C. C. Udeze, K. C. Okafor, C. C. Okezie, I. O. Okeke, and C. G. Ezekwe: Proc. 2014 IEEE 6th Int. Conf. 

Adaptive Science and Technology (IEEE, 2014) 1–12.
	12	 Y. Zhao, R. He, H. Chen, J. Zhang, Y. Ji, H. Zheng, Y. Lin, and X. Wang: Opt. Express 22 (2014) 9538. https://

doi.org/10.1364/OE.22.009538
	13	 K. Sharma and R. N. Yadav: Comput. Networks 175 (2020) 107235. https://doi.org/10.1016/j.

comnet.2020.107235

Table 2
Statistics of hardware resource consumption for switches based on the NetFPGA.

POF Switch Ethernet Switch IPv4 Router OpenFlow Switch
Slices 1896 — — 5878
LUTs 2680 3920 14086 10368
DFFs 2026 1174 3358 6671
BRAMs 26 96 15 14
Off-chip storage None — DRAM, SRAM DRAM, SRAM

https://doi.org/10.3390/asi3010014
https://doi.org/10.3390/asi3010014
https://doi.org/10.1155/2022/9139257
https://doi.org/10.1016/j.comnet.2016.11.017
https://doi.org/10.1007/s10922-020-09575-4
https://doi.org/10.1016/j.comnet.2015.05.005
https://doi.org/10.1016/j.comnet.2015.05.005
https://doi.org/10.1016/j.jnca.2017.07.004
https://doi.org/10.1016/j.jnca.2017.07.004
https://doi.org/10.1109/TNET.2016.2611482
https://doi.org/10.1109/TNET.2016.2611482
https://doi.org/10.1364/OE.22.009538
https://doi.org/10.1364/OE.22.009538
https://doi.org/10.1016/j.comnet.2020.107235
https://doi.org/10.1016/j.comnet.2020.107235


2596	 Sensors and Materials, Vol. 36, No. 6 (2024)

	14	 S. A. Rofie, I. Ramli, K. N. Redzwan, S. M. Hassan, and M. S. B. Ibrahim: Adv. Sci. Lett. 24 (2018) 1210. 
https://doi.org/10.1166/asl.2018.10718

	15	 H. Song: Proc. 2013 ACM SIGCOMM Conf. (2013) 127–132.
	16	 X. Tang, X. Zeng, and L. Song: IEEE Trans. Network and Service Manage. 20 (2022) 578. https://doi.

org/10.1109/TNSM.2022.3207227
	17	 Q. Zhang, A. Ansari, and Z. Zhu: IEEE Internet of Things J. 10 (2022) 7303. https://doi.org/10.1109/

JIOT.2022.3228796
	18	 R. M. Ramos, M. Martinello, and C. E. Rothenberg: Proc. 2013 IEEE Local Computer Networks (IEEE, 2013) 

606–613.
	19	 A. Ishimori, E. Cerqueira, and A. Abelém: Proc. 2017 IFIP/IEEE Symp. Integrated Network and Service 

Manage. (IEEE, 2017) 923–928.
	20	 S. Li, K. Han, N. Ansari, Q. Bao, D. Hu, J. Liu, S. Yu, and Z. Zhu: IEEE Trans. Network and Service Manage. 

15 (2017) 275. https://doi.org/10.1109/TNSM.2017.2766159 
	21	 L. Huang, Q. Shen, F. Zhou, W. Shao, and X. Cui: Trans. Emerging Telecommun. Technol. 29 (2018) e3286. 

https://doi.org/10.1002/ett.3286
	22	 P. L. Ventre, M. M. Tajiki, S. Salsano, and C. Filsfils: IEEE Trans. Network Serv. Manage. 15 (2018) 1378. 

https://doi.org/10.1109/TNSM.2018.2876251
	23	 Y. Zhang, D. Li, Z. Sun, F. Zhao, J. Su, and X. Lu: IEEE Trans. Cloud Comput. 6 (2018) 464. https://doi.

org/10.1109/TCC.2015.2440242
	24	 I. Chlamtac, W. R. Franta, and K. D. Levin: IEEE Trans. Commun. 27 (1979) 1183. https://doi.org/10.1109/

TCOM.1979.1094529
	25	 Q. Li, X. Zou, Q. Huang, J. Zheng, and P. P. Lee: IEEE Trans. Dependable Secure Comput. 16 (2019) 915. 

https://doi.org/10.1109/TDSC.2018.2810880
	26	 P. S. Priya and B. Bandyopadhyay: Eur. J. Control 33 (2017) 52. https://doi.org/10.1016/j.ejcon.2016.08.001
	27	 Z. Guo, J. Duan, and Y. Yang: Proc. 2013 IEEE 27th Int. Symp. Parallel and Distributed Processing (IEEE, 

2013) 589–600.
	28	 N. Zilberman, Y. Audzevich, G. A. Covington, and A. W. Moore: IEEE Micro 34 (2014) 32. https://doi.

org/10.1109/MM.2014.61
	29	 T. W. Chu, C. A. Shen, C. W. Wu: Multimedia Tools Appl. 77 (2017) 1. https://doi.org/10.1007/s11042-017-4806-

7

https://doi.org/10.1166/asl.2018.10718
https://doi.org/10.1109/TNSM.2022.3207227
https://doi.org/10.1109/TNSM.2022.3207227
https://doi.org/10.1109/JIOT.2022.3228796
https://doi.org/10.1109/JIOT.2022.3228796
https://doi.org/10.1109/TNSM.2017.2766159
https://doi.org/10.1002/ett.3286
https://doi.org/10.1109/TNSM.2018.2876251
https://doi.org/10.1109/TCC.2015.2440242
https://doi.org/10.1109/TCC.2015.2440242
https://doi.org/10.1109/TCOM.1979.1094529
https://doi.org/10.1109/TCOM.1979.1094529
https://doi.org/10.1109/TDSC.2018.2810880
https://doi.org/10.1016/j.ejcon.2016.08.001
https://doi.org/10.1109/MM.2014.61
https://doi.org/10.1109/MM.2014.61
https://doi.org/10.1007/s11042-017-4806-7
https://doi.org/10.1007/s11042-017-4806-7

