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 In this study, we applied 1D convolutional neural networks (1D-CNNs) to permanent magnet 
synchronous motor (PMSM) fault diagnosis on 12 common PMSM fault types, namely, normal 
motor (Class A), poor dynamic balance of rotor (Class B), bent shaft (Class C), magnet 
demagnetization (Class D), uneven air gap (Class E), rotor misalignment (Class F), stator coil 
three-phase imbalance (Class G), stator coil layer short circuit (Class H), poor lubrication of 
bearing (Class I), damaged inner ring of bearing (Class J), damaged bearing ball (Class K), and 
poor assembly (Class L). First, a vibration spectrum analyzer was used to measure and capture 
the vibration signals of a faulty motor. Then, the 1D-CNN was utilized to analyze and diagnose 
the captured data. The results showed that the proposed 1D-CNN method can identify 11 motor 
fault types with an accuracy of up to 99.7%, higher than the 96.1% accuracy of 2D convolutional 
neural networks (2D-CNNs). In addition, the fault diagnosis system developed in this study can 
perform a rapid motor fault diagnosis with a small amount of training data, significantly 
reducing the detection cost for PMSM fault diagnosis.

1. Introduction

 The permanent magnet synchronous motor (PMSM) has advantages of low noise, high 
efficiency, small size, and light weight. It is replacing traditional permanent magnet DC brushed 
and induction motors. It is widely used in national defense technology, aerospace, machine tools, 
industrial automation, and electric vehicles.(1,2) At present, instruments are used to identify 
motor fault types, which are then analyzed by professionals to identify the cause of the observed 
abnormality. Human evaluation results differ owing to differences in knowledge, experience, 
and analysis methods. This traditional troubleshooting method may lead to errors in judgment 
and unnecessary waste of human resources and time.(3) 

 The numerous and complex types of motor fault(4,5) can be divided into stator, rotor, and 
bearing faults. A bearing is an important part of rotating machinery. It supports mechanical 
rotation and has high precision requirements. A bearing fault is a common motor fault type, 
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often accompanied by sound and vibrations.(6–10) Once a bearing fault is detected and the 
bearing is not changed on time, the equipment may be damaged or even scrapped, causing heavy 
losses of property.(11,12)

 Guesmi et al. used the motor stator current waveform to diagnose fault types, such as uneven 
air gap, bearing fault, and induction motor rotor bar breakage.(13) Huang et al. used motor 
vibration signals as analytical data and an extension neural network (ENN) for induction motor 
fault diagnosis.(14) Convolutional neural networks (CNNs) have been extensively used owing to 
their strong ability to extract features from various types of complex information and 
outstanding characteristics. Related research involved face recognition,(15) target tracking,(16) 
target diagnosis,(17) and time-frequency analysis.(18) In a fault diagnosis system based on 
1D-CNN and multi-sensor information fusion,(19) the data from seven motor states were 
captured for training, testing, and verification. The results showed that the fault diagnosis 
accuracy of the model was 99.3%. Zhou et al. built a fault diagnosis model based on CNN.(20) 
They used speed signals of a faulty bearing at different rotational speeds for model training and 
testing. The accuracy of the model was as high as 98.7%. Özcan et al. proposed an enhanced 
bearing fault diagnosis system based on a multi-channel and multi-level 1D-CNN classifier.(21) 
The classifier processed the vibration data collected from multiple accelerometers mounted on 
test bench bearings and applied them to the intermediate shaft bearing vibration dataset of the 
inner ring and rolling element faults. A multi-head 1D-CNN method used two accelerometers 
measuring in different directions to detect and diagnose normal motors and six types of fault in 
electric motors.(22) The proposed method was verified by experiments involving seven types of 
induction fault and operating conditions. The results showed that the proposed architecture was 
accurate for vibration signal measurement data and multi-sensor fault detection using time 
series. 
 This study is based on the real fault data of 12 types of motor, namely, normal motor (Class 
A) and 11 fault types (Classes B to L). With vibration signal measurement data using time series, 
training and validation models were built using 1D-CNN. These models can be applied to front-
line work sites without building an online monitoring system. This simple model covers a wide 
range of faults with an accuracy of 99.7%.

2. Overall System Architecture

2.1 Test platform

 The vibration spectrum analyzer converts physical quantities such as displacement, speed, 
and acceleration of machine vibration into voltage, charge, and current signals. Afterwards, 
these signals are amplified, and fast Fourier transform (FFT) is used to analyze the obtained 
spectra. In this study, the HJ-4250S vibration spectrum analyzer (G-Tech Corp) was utilized(23) 
as the testing equipment. In Fig. 1, the test platform is shown to include a dynamic signal FFT 
analyzer, an optical tachometer, a high-sensitivity force gauge, a vibration sensor, PMSM, and a 
frequency converter to drive the motor.
 The design specifications of the PMSM used in this study are shown in Table 1. The same 
frequency converter was used to drive all test motors to eliminate the possible effects of different 
driving controllers.
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2.2 Motor fault types

 The motor manufacturing process consists of multiple procedures. In this study, 11 common 
motor fault types were proposed and divided into four major classes, namely, rotor, stator, 
bearing, and assembly. The assembly fault is a motor abnormality type most likely to be ignored 
in practice. When all parts are normal, motor abnormalities may occur owing to differences in 
assembly sequence and technique used. This type of motor fault was added to improve the motor 
fault identification system. The rotor, stator, and bearing faults are detailed below.

2.2.1 Rotor faults

2.2.1.1 Poor dynamic balance of rotor

 The rotor goes through a dynamic balancing process in the motor manufacturing process. 
The dynamic balancing methods include deweighting and weighting methods, and the weighting 

Table 1
Prototype design specifications.
Item Specification
Motor type IPM-BLDC Motor
Poles/slots 4 Poles/24 Slots
Rated voltage 311 VDC
Rated rpm 2500 rpm
Rated power 600 W
Phase Three-phase
Construction of winding/connection Single layer concentric winding/Y-connection

Fig. 1. (Color online) Photograph of frequency spectrum analyzer and related equipment.
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method was adopted in this study. As shown in Fig. 2(a), the rotor of a normal motor is on the 
rotor silicon steel sheet, not exceeding the outer diameter range of the rotor. It is balanced by 
filling clay or glue. Figure 2(b) shows the poor dynamic balance of the motor’s rotor, and there is 
no dynamic balance processing on both sides of the rotor.

2.2.1.2 Bent shaft

 The fault of rotating shaft bending is mostly induced by external force. In this study, we used 
a certified vernier caliper to measure the distance between the rotating shaft’s top plane and the 
motor’s front cover. The H class test standard of the International Organization for 
Standardization (No. ISO 2768-1, 2:1989) suggests/mandates that the measurement data must be 
50 mm and the tolerance is ±0.05 mm.(24) In Fig. 3(a), if the distances on both sides are the same 
and within the tolerance, it is a normal motor, whereas in Fig. 3(b), if the shaft is bent, the 
distance from different positions on the front plane to the front end of the shaft will be 
significantly different.

2.2.1.3 Magnet demagnetization

 The partial demagnetization abnormality of the magnet may be induced by high-temperature 
demagnetization, instant strong magnetic field impact, external impact, and material problems 
during magnet production. In this study, the Gauss meter tester (American Sypris Corp. F.W. 
BELL Model 6010) was used as the inspection equipment.(25) According to the inspection 
standards provided by the magnet manufacturer, when measuring 360° of the magnets attached 
to the rotor, the maximum magnetic flux should be 4000 (Gs) and the minimum value should be 
2000 (Gs) with an error of ±5%. Figures 4(a) and 4(b) show the magnetic flux measurement 

Fig. 2. (Color online) Photographs of (a) 
normal rotor with dynamic balance and (b) 
abnormal rotor with poor dynamic 
balance.

Fig. 3. (Color online) Photographs of (a) normal motor and (b) 
motor with bent shaft.
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results of a normal motor and a faulty motor with partial demagnetization, respectively. The 
minimum value is only 1137 (Gs), which is identified as the partial demagnetization of the 
magnet.

2.2.1.4 Uneven air gap

 If the outer diameter of the rotor is processed without positive attention, it may induce the 
motor abnormality of an uneven air gap. In Fig. 5(a), in the same rotor, the outer diameter of the 
rotor silicon steel sheet is shown to be ψ54 mm, which is characteristic of a normal motor. In Fig. 
5(b), the outer diameters of the upper red and lower yellow areas are ψ54 and ψ53 mm, 
respectively. The air gap after assembly has a difference of 0.5 mm, which is an uneven rotor air 
gap type.

2.2.1.5 Rotor misalignment

 The rotor misalignment mainly resulted from the poor positioning of the rotor silicon steel 
sheet during press-fitting, which induced the rotor and stator misalignment inside the motor. In 
Fig. 6, the one on the left is the rotor of the faulty motor and the one on the right is the normal 
motor rotor. The rotor position deviation between them is 4.5 mm.

2.2.2 Stator faults

2.2.2.1 Stator coil three-phase imbalance

 The faults often occur in the manufacturing of the finished stator. Owing to the inconsistent 
number of turns or wire diameters of the three sets of coils with different phases, the line 

Fig. 4. (Color online) Magnetic flux measurement results of (a) normal motor and (b) faulty motor with partial 
demagnetization.
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resistance among the three phases is unbalanced. In this study, we used the RM3544-01 micro-
ohmmeter tester (Japan HIOKI Corp.) as the inspection equipment.(26) The inspection standard 
is to measure the motor’s line resistance in the same environment. According to the inspection 
standards in the Electrical Equipment Engineering Management Practice of the Public 
Construction Committee of the Executive Yuan of the Republic of China, the difference in line 
resistance between different sets of coils in the same motor should be less than 3%;(27) otherwise, 
it is identified as a fault. Figures 7(a) and 7(b) show the same motor, and the line resistances 
(U–V and U–W phases) are similar. The stator coil three-phase balance is determined if the two 
values are similar. Figures 7(c) and 7(d) show the same faulty motor, but the line resistances 
(U–V and U–W phases) are different. If the difference between the two values is greater than 
3%, it is identified as the abnormality of stator coil three-phase unbalance.

2.2.2.2 Stator coil layer short circuit

 The short circuit of the stator coil layer is an abnormal condition that is difficult to find. It 
occurs mainly because the insulation layer between coils is damaged during production. We 
used the DWX-05A pulse coil tester (Japan KOKUSAI Corp.) as the inspection equipment.(28) 
The detection method measures the normal motor’s current waveform and then compares it with 
the current waveform of the motor to be tested. It makes a judgment based on the waveform area 
ratio and waveform area difference ratio. As shown in Figs. 8(a) and 8(b), the criterion of 
waveform area ratio is 10%. The waveform area difference ratio (Dif-A) is 10%, and the test 
values in Fig. 8(a) are within the range. Therefore, the motor in Fig. 8(a) is identified as a normal 
motor. In Fig. 8(b), the waveform area difference ratio is 31.1%, which exceeds the standard 
range and is identified as the motor abnormality of the stator coil layer’s short circuit.

Fig. 5. (Color online) Photographs of (a) normal rotor with 
even air gap and (b) abnormal rotor with uneven air gap.

Fig. 6. (Color online) Comparison photos of 
faulty and normal rotosr in terms of rotor 
misalignment.
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2.2.3 Bearing faults

 There are many possibilities of bearing damage, such as abnormal assembly dimensions, 
which induce wear and extrusion, very high operating temperature, incorrect bearing material 
specifications selected, and foreign matter infiltration. In Fig. 9, (a) is a normal bearing, (b) is a 
bearing with poor lubrication, (c) is a bearing with a 3 mm inner ring damage shown in the red 
circle, and (d) is the extrusion damage to the ball (red circle) resulting from the damaged cover of 
the ball bearing.

3. Proposed Methods

 CNN is a type of supervised learning. In recent years, it has been widely used in signal 
processing and image classification, such as face recognition, imaging medicine, and fault 
diagnosis. The model design of CNN varies with the characteristic structure of data and its 
composition architecture. The structure of CNN consists of several convolutions, pooling, and 
fully connected layers. An activation function is appropriately added to each node in the layers. 
The CNN architecture proposed in this paper is shown in Fig. 10. The measured signals go 
through an input layer, two convolution layers with tanh activation function, a pooling layer, and 
a fully connected layer to identify the motor fault class.

Fig. 7. (Color online) Photographs of (a) U–V line resistance measurement results of normal stator, (b) U–W line 
resistance measurement results of normal stator, (c) U–V line resistance measurement results of abnormal stator, and 
(d) U–W line resistance measurement results of abnormal stator.

Fig. 8. (Color online) Photographs of layer short circuit measurement results of (a) normal and (b) abnormal stator 
coils.
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3.1 1D-CNN

 The CNN can be divided into three types: 1D, 2D, and 3D. These dimensions refer to the 
dimensions of the feature detector sliding between the data. 1D-CNN is often used in processing 
time series data and natural language processing. 2D-CNN is often used in computer vision and 
image processing. 3D-CNN is often used in the medical field and video processing. In this 
study, 1D-CNN is the model architecture. Figure 11 shows the basic principle of 1D-CNN, that 
is, to extract and combine the features in the sequence data through convolution operations and 
nonlinear activation functions. 1D-CNN performs convolution operations for the input sequence 
by sliding the convolution kernel, calculating a new feature map, and adjusting the convolution 
kernel size to capture the features of different scales.
 By applying several convolution kernels to the input time series data, 1D-CNN can capture 
different local patterns and extract high-level features. The main steps are described below. 
Step 1:  Use the original time series data as input data for the model.
Step 2:  Perform convolution operations on the input data and generate a new feature map by 

sliding the convolution kernel.
Step 3:  Reduce the dimensions of the feature map and extract data by reducing sampling 

operations to prevent overfitting. Common pooling methods include max pooling and 
average pooling.

Step 4:  Include the flatten, connection, and output layers. They are responsible for converting 
the pooling layer into vectors and performing tasks such as classification or regression 
through the fully connected layer. The fully connected layer is called the dense layer in 
TensorFlow.

Fig. 9. (Color online) Photographs of (a) normal bearing, (b) bearing with poor lubrication, (c) bearing with inner 
ring damage, and (d) bearing with ball damage.

Fig. 10. (Color online) CNN architecture diagram.
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3.2 Convolution layer

 The main task of the convolution layer in CNN is feature capture. The convolution kernels or 
filters of different sizes perform convolution operations. The spatial filtering concept performs 
the image feature extraction or feature enhancement. The size of the convolution kernel affects 
the performance of feature detection. An overly small convolution kernel results in poor 
recognition performance, whereas an overly large convolution kernel is time-consuming and 
expensive. In this study, a 3 × 1 filter was used for the convolution operation of 7 × 1 data with a 
stride of one until all pixels of the original input image were completed by the masking operation 
(inner product). The feature map can be obtained. Figure 12 shows the schematic diagram of the 
convolution operation.
 The 1D convolution layer uses the tanh (hyperbolic tangent) activation function. As shown in 
Eq. (1), x is the value of the input data and y is the output value calculated using the tanh 
function. The tanh function takes the actual value, normalized into the interval between −1 and 
1. The output of the tanh function is centered on zero because the interval is between −1 and 1. 
The function is shown in Fig. 13.

 ( ) ( ) ( )
2

2
1tan 1,1
1

x x x

x x x
e e ey f x h x
e e e

− −

− −

− −
= = = = ∈ −

+ +
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3.3 Pooling layer

 An extracted feature image is obtained after the data passes through the convolution layer. To 
reduce the size of the features and maintain the feature invariance, a pooling layer is added after 
extracting the features using convolution. This reduces the operational complexity of the 
network and maintains consistent features of the image. The common pooling layer methods are 
divided into Max pooling and Average pooling. As shown in Eq. (2), R is the pooling filter and 

( )ixjR  is the specification size of the pooling filter, which means that R is a matrix with i columns 

Fig. 11. (Color online) Schematic diagram of 1D convolutional layer extracting features.
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and j rows. k is the k-th feature map and p and q respectively denote the p-th column and q-th 
row in the matrix. X is the feature extracted from the feature map by the pooling filter; thus, 

( ),k p qX  refers to the feature of the p-th column and q-th row extracted from the k-th feature map 
by the pooling filter. ( )k ixjy  is the output value obtained by the selected operation method.
 The Max pooling operation method can be expressed as 

 ( ) ( ) ( )
( ),,

max
ixj

k ixj k p qp q R
y X

∈
= . (2)

 The Average pooling operation method can be expressed as 

 ( )
( )

( ) ( )
( ),,

1 
ixj

k ixj k p qp q R
ixj

y X
R ∈

= ∑ . (3)

 Figure 14 demonstrates the operation mode of the pooling layer. Max pooling can be obtained 
by taking the maximum value in unit of one color block. The Average pooling method is similar 
to Max pooling, where Average pooling is calculated in unit of one color block. The Max pooling 
operation is adopted in this paper. 

Fig. 12. (Color online) Schematic diagram of convolution operation.

Fig. 13. (Color online) Graph of tanh function.
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3.4 Fully connected layer

 The fully connected layer consists of three structures: flatten, dense, and output layers. It is 
in the neural network model at the end of CNN. Its main function is to convert the eigenmatrix 
exported from the convolution and pooling layers into a 1D vector through the flatten layer. 
Afterward, the error between the input and the output is adjusted by adjusting the weight and 
backpropagation in the dense layer before classification. The results are then displayed in the 
output layer. Figure 15 shows the composition diagram of the fully connected layer.
 In the fully connected layer, the Softmax activation function for multi-class classification 
problems is used in this paper. If there are N classes to be predicted, Softmaxx forces the sum of 
all N output values   in the neural network to be 1. Therefore, the output value represents the 
probability of occurrence of each N class as the prediction result. As shown in Eq. (4), N is the 
total number of classes, yi is the output value of the i-th class, 

1

N yj
j

e
=∑  is the sum of N output 

values, and the total value is 1. ( )iSoftmax y  denotes the probability distribution between 0 and 1 
of the output value of the i-th class.

 ( ) [ ]
1

0,1
yi

Ni yj
j

eSoftmax y
e

=

= ∈
∑  (4)

4. Experimental Results

4.1 Motor fault measurement signal

 Various motor vibration signals captured by the vibration spectrum analyzer are shown in 
Fig. 16. The x-axis is time (s) and the y-axis is vibration unit (G). The measurement settings are 
as follows: the bandwidth is 1578.5 Hz, the number of analysis items is 51200, and the data 
capture time is 32.4 s. Figure 16(a) represents the vibration measurement signals of a normal 
motor (Class A), and Figs. 16(b)–16(l) represent the vibration measurement signals of 11 motor 

Fig. 14. (Color online) Schematic diagram of pooling layer operation.
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Fig. 15. (Color online) Schematic diagram of fully connected layer architecture.

Fig. 16. (Color online) Vibration measurement signal diagram of (a) normal motor (Class A) and (b to l) 11 types of 
motor fault (Classes B–L).

fault types (Classes B to L). It can be seen that each type of motor signal has its features. The 
identification model built using the proposed method is used for feature extraction and 
recognition.
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4.2	 1D-CNN	fault	identification	results

 As shown in Fig. 17, the 1D-CNN recognition model used in this study has two convolution 
layers, the activation function is tanh, and there is one pooling layer. The pooling layer filter 
uses Max pooling, and the fully connected layer has one flatten layer, two dense layers, and one 
output layer. The activation function of the second dense layer is Softmax. Table 2 shows the 
parameters used in each layer and a brief introduction, with the final parameters using a filter 
size of 50 and a kernel size of 20. The model building environment is Python 3.7.16, the Jupyter 
Notebook version is 6.5.5, and the TensorFlow version is TensorFlow-gpu2.3. The test 
environment consists of Intel(R) Core™ i7-8750H CPU @ 2.20 GHz processor, Nvidia GeForce 
RTX 2060 display adapter, and Windows 10 64-bit operating system.
 The motors are divided into 12 classes, namely, normal motor (Class A) and 11 fault types 
(Classes B to L). In this study, the data enhancement method was adopted, and 49080 vibration 
data were generated during the motor test. The train and test split contain 34356 and 14724 data 
items, respectively. The ratio of the number of training data to the number of testing data is 7:3. 
The simulation results are shown in Table 3. The accuracy of recognition using 1D-CNN is the 
highest at 99.7%, followed by 2D-CNN with an accuracy of 96.1%. The training and learning 
accuracy of 1D-CNN is 99.9%, and that of 2D-CNN is only 97.1%. In contrast, ENN had the 
lowest recognition accuracy of 95% and learning accuracy of 90%.
 In this paper, the motor fault recognition results are presented in a confusion matrix. Figure 
18 shows that the x-axis is the predicted fault type and the y-axis is is the actual fault type. The 
white and red grids in the confusion matrix represent the numbers of correct and incorrect 
recognitions, respectively. Taking Class H in Fig. 18 as an example, among the 1279 testing data, 
the proposed method identified 1278 data as Class H, and only one data was misidentified as 
Class D. Therefore, the recognition rate of Class H was 99.9%. Similarly, the recognition rate of 
the proposed method for Classes A, C, E, I, and L was 100%. Finally, the white grid values were 
added up and divided by the sum of the white and red grid values, and the total recognition 
accuracy was 99.7%.

Fig. 17. (Color online) 1D-CNN architecture diagram.
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5. Conclusion

 In this study, we utilized 1D-CNN to develop a PMSM fault diagnosis system, aiming at 
multiple common PMSM fault types in practice. Fault diagnosis and identification were 
performed by measuring the time domain signals of motor vibration using the proposed 
1D-CNN method. Experimental results showed that the recognition accuracy of the proposed 

Table 2
Parameters of each layer in convolutional neural network.
Layer Number Parameters
Conv1D 2 Filter = 50, kernel size = 20, activation function = tanh.
Pooling1D 1 Max pooling, pool size = 2.
Flatten 1
Dense 1 Units = 30.
Dense 1 Units = 12, activation function = Softmax.

Table 3
Comparison of 1D-CNN, 2D-CNN, and ENN recognition results.
Detection method Epoch Training accuracy (%) Learning accuracy (%) Ranking
1D-CNN 50 99.9 99.7 1
2D-CNN 50 97.1 96.1 2
ENN 50 95 90 3

Fig. 18. (Color online) 1D-CNN confusion matrix.
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method is 99.7%. The time and instability in determining the cause of motor abnormality can be 
reduced effectively. The external factor that PMSM should be equipped with a driver is 
eliminated, making the practical application more convenient. In the future, a complete fault-
type database will be built and continuously updated to reduce the possibility of misjudgment. 
The proposed method can be extended to other motor-related fields to develop fault diagnosis 
and identification systems for various motor types, such as servo motors, generators, electric 
vehicle motors, and wind power generation systems.
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