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 In unmanned aerial vehicles (UAVs), an inertial measurement unit (IMU) sensor is essential 
for maintaining stability and navigational accuracy during flight. It becomes exceptionally 
crucial when UAVs undertake complex tasks, such as flying near wind turbines for inspections 
or maintaining precise formations alongside other UAVs. The main challenge stems from the 
nonlinear nature of IMU sensor readings, especially in situations requiring meticulous control. 
In this article, the authors suggest integrating an unscented Kalman filter (UKF) with a support 
vector machine (SVM) to predict defects for effective fault prediction in UAVs. The efficacy of 
this method is validated through comparative experiments with standard prediction algorithms, 
demonstrating its accuracy in various simulated faulty scenarios. As a result of this research, the 
proposed method can serve as a trend predictor for monitoring IMU failures as well as a method 
of enhancing the reliability of drones.

1. Introduction

 As technology rapidly advances, devices are evolving at an extraordinary pace. Today’s 
machines are increasingly versatile and intelligent, yet this evolution introduces new challenges. 
The complexity of modern devices makes them more vulnerable to external effects, leading to 
the potential wear and tear of internal components and unexpected breakdowns, incurring 
additional costs as a result. Consequently, researchers have increasingly focused on improving 
the detection and diagnosis of such faults, arousing significant interest from academia and 
industry. Researchers from around the world are dedicated to exploring fault detection and 
diagnosis in depth. They aim for cost-effective and efficient solutions that minimize initial 
testing and trial costs through thorough research and data analysis.
 In recent years, drones, also known as unmanned aerial vehicles (UAVs), have emerged as a 
significant area of interest and extensive research. Drones distinguish themselves from 
traditional aircraft, such as helicopters and airplanes, with their lightweight design and agility, 
making them suitable for various applications while ensuring lower operational costs. 
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 Drones are widely adopted in various sectors, including entertainment and commerce, and 
significantly affect disaster management strategies. The inertial measurement unit (IMU) is 
crucial in enhancing the accuracy and efficiency of drone operations, particularly when UAVs 
experience GPS signal loss. It delivers critical data concerning the drone’s velocity, direction, 
and the effects of gravity, which are instrumental in defining its path and stability during 
flight.(1)

 The widespread application of drones increases the likelihood of accidents correspondingly. 
In response, the U.S. Federal Aviation Administration (FAA) and the European Union Aviation 
Safety Agency (EASA) began implementing drone-related laws and regulations in 2016. These 
agencies also formulated guidelines for documenting drone-related mishaps. The FAA took a 
step further by collaborating with the University of Abraham on an in-depth study. Reports 
suggest that malfunctions in navigation and positioning systems have led to drones colliding in 
midair. Furthermore, mechanical issues, especially concerning power, propellers, and rotor 
blades, have caused drones to crash into homes, resulting in significant property and agricultural 
damage. Moreover, there are documented cases of improper drone usage causing physical 
injuries to infants, brides, and even wildlife, highlighting the importance of adequate training, 
safety precautions, and a proper maintenance scheme.
 In both traditional industrial sectors and the aerospace field, employing hardware redundancy 
techniques is a common strategy to minimize the risks associated with flight safety incidents 
that can be caused by mechanical component or sensor failures. These techniques substantially 
reduce the likelihood of catastrophic failure in primary systems. The common method in 
commercial and military aviation involves leveraging triple redundancy—or even higher levels 
of redundancy—in hardware components to ensure a robust safety net, significantly elevating 
the reliability and safety of flight operations.
 While hardware redundancy offers a convenient and straightforward approach to enhancing 
system reliability, especially from the standpoints of implementation and management, it is not 
without its challenges. Hardware redundancy increases the overall system weight and battery 
consumption rate, which is particularly concerning for long-duration missions. Financially, 
redundancy measures entail the cost of extra hardware and higher long-term maintenance costs. 
Also, the decreasing available payload capacity can limit the aircraft’s operational flexibility.(2) 
These challenges and trade-offs are particularly significant in the context of small UAVs 
(SUAVs). In smaller platforms, where weight, energy efficiency, and cost-effectiveness are 
highly valued, incorporating hardware redundancy necessitates a careful balancing act with 
these limitations.
 The fault prediction method based on filtering algorithms creates a residual series through 
the analysis of the angular rate estimated using gyro measurement values. Subsequently, it 
utilizes the amplitude trends of the residual series to forecast potential faults. Typically, the 
filtering algorithm leverages kinetic equations to ascertain the angular rate. Furthermore, 
quadrotor UAV is characterized as a nonlinear system, primarily owing to its dynamic motion 
patterns. This configuration facilitates the integration of multiple inputs and outputs (MIMO), 
enhancing the system’s versatility and adaptability.(3)
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 The aim of this study is to establish a fault early-warning mechanism to alert drone owners to 
the need for appropriate preventive maintenance and repairs when specific failure rates arise. 
The construction of the predictive model involves the steps shown in Fig. 1.
 The Kalman filter (KF), developed by R. E. Kalman in 1960, is recognized as an optimal 
recursive data processing algorithm. It has become a benchmark in optimal estimation, 
leveraging the data collected over time to more precisely estimate unknown variables and their 
nonlinear derivatives across various systems. The KF is particularly valuable when sensors 
within dynamic systems might be unreliable, making state estimation methods incorporating 
input evaluation highly recommended. As such, the KF has gained widespread acceptance, 
notably in estimating angular rates and analyzing attitude kinematic equations, particularly for 
IMU fault prediction.(4)

 We adopted an unscented KF (UKF) with the support vector machine (SVM) for IMU fault 
prediction because of its key characteristics that differentiate it from other filtering techniques 
such as the extended KF (EKF) and the basic KF. The UKF, as a nonlinear filter, excels in 
estimating the state of nonlinear systems based on noisy observations. Unlike the EKF, the UKF 
has several unique features that make it particularly advantageous for specific applications. One 
of the primary benefits is its deterministic sampling approach, which effectively captures both 
the mean and covariance of state variables. It eliminates the need for calculating Jacobians to 
linearize system and observation models, simplifying the UKF’s implementation in complex 
nonlinear systems. As such, the UKF often produces more accurate state estimates, particularly 
when dealing with highly nonlinear systems. Compared with the first-order Taylor series 
expansion employed by the EKF, the UKF captures the mean and covariance of a nonlinear 
transformation of a random variable more precisely.(5)

2. Mathematical Model of a Rigid-Body UAV

2.1 Orientation and position of drones

 In aerospace engineering and control systems, the mathematical model of a rigid-body UAV 
is paramount for understanding its dynamics and designing control algorithms. This model 

Fig. 1. (Color online) Strategies for enhancing the reliability of IMUs.
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primarily characterizes the UAV’s movement in a three-dimensional space, incorporating a 
range of physical and aerodynamic elements. This section begins with a discussion on kinematic 
and dynamic equations.
 Comprehending UAVs’ kinematic and dynamic models is the key to developing advanced 
programs that accurately predict their flight behaviors This understanding also facilitates the 
creation of fault prediction models for these aerial systems. A standard quadrotor, for instance, 
exhibits six degrees of freedom (DOF): three for movements along the X-, Y-, and Z-axes, and 
three for rotational movements, specifically Roll (ϕ), Pitch (θ), and Yaw (ψ). The behavior of 
such vehicles can be explained through Newtonian physics combined with aerodynamic 
principles. The foundational kinematic and dynamic models that describe the movement of these 
rigid-body aircraft are outlined below.(6)

 Various coordinate frames, such as the Earth reference frame (OE, XE, YE, ZE) and the body 
fixed frame (OB, XB, YB, ZB), play a pivotal role in pinpointing the quadrotor’s position and 
orientation within its six degrees of freedom (6 DOF). For example, a coordinate frame affixed 
to the quadrotor must be utilized to assess motion equations. Nevertheless, the forces and 
moments exerted on the quadrotor and the values from the IMU sensors are analyzed in relation 
to its body frame. The position and velocity of the quadrotor are ultimately determined by an 
inertial frame located at the base station. As a result, three primary reference frames are 
established, as depicted in Fig. 2.
 The equations for the motion of the UAV are calculated with reference to the aircraft’s body 
frame. During calculations, the body’s orientation and position cannot be defined within a 
moving frame, or else complexity will increase. Instead, a fixed frame, such as the Earth frame 
system, is a relatively ideal method to tackle challenge. To accomplish the transformation 
between two coordinate frames, the aircraft’s orientation is defined by a sequence of three 
consecutive rotations known as Euler angles.(7,8) The equations are below.

Fig. 2. (Color online) Simplified Euler angle representation for quadrotor UAV.
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The conception in the following Eq. (2) is the product of combining these matrices.
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The direction cosine matrix (DCM) is the rotation matrix that transforms coordinates from the 
body frame to the inertial frame. This matrix is a function of the Euler angle and is composed as
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 The IMU delivers angular rate measurements, represented by the roll rate (p), pitch rate (q), 
and yaw rate (r). They are essential for determining changes in Euler angles (ϕ, θ, and ψ) that 
describe the body’s orientation in space. The kinematic equations that link the IMU angular 
rates with the time derivatives of the Euler angles are given by
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2.2 State estimate

 The nonlinear nature of UAV flight motion often necessitates using a KF for sensor fusion. 
Among various KFs, the UKF is particularly adept at handling systems with complex, nonlinear 
dynamics and measurement functions. In contrast to the EKF, which linearizes these functions, 
the UKF adopts the unscented transformation technique. This method enables a more accurate 
propagation and updating of probability distributions using Gaussian random variables (GRVs), 
particularly in nonlinear situations. The UKF’s advanced algorithm functions as a recursive 
filter, efficiently dealing with nonlinear system dynamics. It avoids the complex linearization 
process, usually associated with the computation of Jacobian matrices, which is not only 
resource-intensive but also susceptible to errors, especially in intricate nonlinear systems.(9,10)

 The governing equations of the UKF embody its core principles and define its functionality. 
During the unscented transformation (UT) phase, a crucial step is to select strategic sigma 
points around the mean. These points are carefully chosen to represent the mean and covariance 
of the Gaussian distribution accurately. This step is vital for the method’s thoroughness and 
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efficacy in later stages. The following theoretical step is adopted to implement this recursive 
algorithm.

 [ ]0 0x̂ E x=  (5)

 ( )( )0 0 0 0 0ˆ̂ Tp E x xx x = − − ( )( )0 0 0 0 0ˆ
Tp E x xx x = − −   (6)

In this context, 0x̂  represents the initial estimate of the state, p0 refers to the initial covariance 
matrix, and E[x0] is the forecasted value of the preliminary state.
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 The selection of sigma points is based on the estimated state covariance matrix. When 
calculating sigma points, 1kx −

  represents the matrix of the evaluated state vector, while 1ˆkp −  is the 
predicted covariance matrix state at the time step k − 1. The composite scaling parameter γ is 
used to calculate the square root of the scaled covariance matrix. Moreover, L represents the 
dimension of the augmented state vector and is involved in the computation of sigma points. 
Note that the scaling parameter λ specified in Eq. (8) is different from γ and determines the 
spread of the sigma points.
 The UKF uses a recursive algorithm to optimally filter the state. It considers various factors 
from the previous state, such as noise, the time elapsed between measurements, and input and 
output data. These elements are updated regularly. The procedure for information prediction and 
correction is as follows.
(a) Time update process—State Prediction
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(b) Measurement update process—State Correction
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 In summary, the equations listed in procedures (a) and (b) iteratively predict the state of a 
system at a future time and then update those predictions with new measurements. The Kalman 
gain in Eq. (16) is a key component that balances the weight given to new measurements versus 
the predictions. Equation (17) is concerned with updating the state covariance to reflect the new 
confidence level after incorporating the measurement. Finally, the state estimate is updated 
using the Kalman gain and measurement residual, as shown in Eq. (18).

2.3 Flight reconstruction

 In the coming phase, UKF will be used to reconstruct the actual flight path, and two critical 
parameters, the process noise covariance matrix (Q) and the measurement noise covariance 
matrix (R), will be used to adjust the completed flight log. The root mean square error (RMSE) 
will be adopted to compare the predictive performance characteristics of UKF and EKF for 
subsequent fault prediction purposes.
 RMSE is employed to assess the quality of the adjusted data to confirm its suitability for 
model training. The equation representing RMSE is

 RMSE
n

y y
i

n

� �
�
�1 1 2

2

1

( ) . (19)

 The 2D and 3D flight patterns respectively depicted in Figs. 3 and 4 illustrate the 
reconstructed flight paths using IMU sensor data. Simulations were carried out to showcase the 
capabilities of the UKF and EKF in making accurate estimates despite limited measurement 
data. The estimation results show discrepancies compared with the actual measurement data, 
presenting the findings as estimated coordinates and linear velocities.
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 Table 1 shows the original flight data and the predicted flight paths obtained using the UKF 
and EKF. The UKF, after extra tuning the parameters using the sigma point calculation method 
proposed by Wan and van der Merwe,(11) demonstrated a significantly lower RMSE than the 
EKF. Therefore, the UKF will be used in future research for fault prediction since it performs 
better than the EKF. 

Fig. 3. (Color online) Flight path reconstruction in 2D pattern.

Fig. 4. (Color online) Flight path reconstruction in 3D pattern.
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3. Prognostic and Health Management

3.1 Defect injection

 In practical applications, various IMUs exhibit distinct tolerances to a range of stochastic 
processes. Academic studies have identified common categories of IMU faults. These categories, 
sequentially arranged, include (i) Normal Condition, indicating a healthy situation; (ii) Sensor 
Bias, referring to consistent measurement deviation; (iii) Drifting, where readings change 
erratically over time; (iv) Inaccuracy, denoting a decrease in measurement precision; (v) Sensor 
Freezing, where the sensor fails to record changes; and (vi) Calibration Error, related to incorrect 
sensor calibration.(12,13) These fault symptoms can be expressed as
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These equations demonstrate common failure patterns of IMU sensors in a mathematical way, 
comparing the sensor reading Si(t) with the true value Ti(t). The term tFi represents the time 
instant when the failure occurrs in sensor i, and di is the accuracy coefficient. Ci reveals the 
effectiveness coefficient and λi represents the drift rate.
 The upcoming research uses the dataset obtained from the faults randomly injected into the 
original dataset, as mentioned above, to train a health prediction model, where the UKF with the 
SVM is adopted in experiments. Figure 5 shows various fault patterns indicated in Eq. (20) using 
visualization techniques. 

3.2 Data processing

 The dataset is cleaned by the following commonly employed methods,(14) and the visualized 
results are shown in Fig. 6:

Table 1
RMSE values obtained using UKF and EKF.

UKF EKF
Latitude (deg) 1.775886 3.481463
Longitude (deg) 1.296059 2.499633
Altitude (ft) 0.163879 3.028826
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(a) Data normalization:

 X x x
x xnormal

min

max min
�

�
�

�� �0 1, . (21)

Fig. 5. (Color online) Defect simulation for model training. 

Fig. 6. (Color online) Histograms for data standardization and normalization.
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(b) Data standardization:

 ~score
xZ Nµ
σ
−

= . (22)

In these equations, x denotes the original data, μ represents the mean of the data, and σ signifies 
the standard deviation. The described procedure rescales the data to fall within the interval of 
(0, 1), ensuring it follows a standard normal distribution.

3.3 Model training and validation

 The following steps show a combination of the characteristics of the UKF with SVM 
techniques to improve the accuracy of various IMU fault predictions. The objective is to provide 
a relatively reliable and high-performance fault classification model by capitalizing on UKF 
characteristics in dealing with nonlinear systems and the SVM’s solid foundation for 
classification tasks. This approach is expected to enhance the overall system stability and 
improve the performance robustness in dynamic environments. Furthermore, after several 
experiments, it was discovered that SVM produces better predictive results in this experiment 
when using the radial basis function (RBF) as the kernel. Equation (23) is the fundamental 
theory of the RBF.(15–17)
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Here, k(xi, xj) is the RBF kernel function, i jx x−  represents the Euclidean distance between the 
data points xi and xj, and σ is the width of the Gaussian kernel.
 The principal component analysis (PCA) method, proposed by Karl Pearson in 1901, is 
employed for dimensionality reduction in the following steps before model training. PCA is a 
statistical approach that uses linear algebra to derive solutions without predefined parameters. It 
involves straightforward calculations of statistical measures, such as the mean and covariance, 
directly from the data without any prior assumptions.(18) Figure 7 and Table 2 show the 
experimental and fault classification results.
 Three key metrics adopted to evaluate the SVM classifier were precision, recall, and F1-
score. Precision measures the accuracy of the model’s positive predictions, indicating the 
proportion of true positive results among all positive classifications. Recall or sensitivity 
assesses the model’s ability to identify all positive cases, reflecting the true positive rate. The F1-
score, a harmonic mean of precision and recall, is a balance between the two and is suited to 
scenarios with uneven class distributions. These metrics collectively provide a comprehensive 
assessment of the model’s performance in binary classification tasks.(19)
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3.2 Model comparison

 We use the UKF-SVM method to randomly generate singular faults of various types. The 
comparative outcomes for each algorithm are as follows. UKF-SVM achieves a remarkable 
accuracy of 1.00, equal to XGBoost’s accuracy of 1.00. The K-nearest neighbors (KNN) 
demonstrates an accuracy of 0.997382, while logistic regression records an accuracy of 0.982379. 
The accuracy of the random forest algorithm is 0.996683. Among these established algorithms, 
the UKF-SVM proposed in this study exhibits a slightly superior performance.
 This approach and other common PHM algorithms are compared, and the results are 
visualized as below.

Fig. 7. (Color online) 3D UKF-SVM classification results.

Table 2
UKF-SVM classification accuracy report for different kernels.

Classification Accuracy Report
Precision Recall F1-score Sample

0 0.99 0.97 0.98 1316
1 0.97 0.98 0.97 1322
Accuracy — — 0.98 2638
Macro avg 0.98 0.98 0.98 2638
Weighted avg 0.98 0.98 0.98 2638

Accuracy of Linear SVM on test set: 0.7845366685616828
Accuracy of RBF SVM on test set: 0.9775952245594087
Accuracy of Linear SVC on test set: 0.923820352472996
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4. Conclusions

 To ensure the safe operation of drones in human environments, evaluation methods such as 
global navigation satellite system (GNSS) and automatic dependent surveillance-broadcast 
(ADS-B) tracking, which are more dependable and capable of real-time processing, are required. 
Additionally, the high operational cost is confirmed. In this study, we conducted fault prediction 
analysis by the UKF-SVM method. In the real world, the operating environment of drones is 
continuously changing. Therefore, the approaches to data preprocessing, feature engineering, or 
data imputation must be adjusted in accordance with the actual situation. The fault prediction 
data presented in this study utilized eight flight logs, accounting for 16863 records, including 
normal data from accelerometer and gyroscope sensors and a database randomly inserted with 
various faults for training. The results of the training demonstrated satisfactory performance. 
Moreover, the characteristics of the UKF contribute further to predicting subsequent flight 
paths, thus enhancing the safety and reliability of drones.
 Despite the high precision observed in the test results for prediction, the research still has 
certain limitations. To overcome these limitations, deploying edge devices on UAVs and 
transmitting real-time data through a popular lightweight messaging protocol via Internet of 
Things (IoT), called message queuing telemetry transport (MQTT), is recommended. These 
enhancements are aimed at facilitating the execution of tiny machine learning-based flight 
control systems to collect essential data for estimating the degradation trajectory and to assist 
drone owners in prioritizing maintenance decisions when long-term or critical failures occur 
repeatedly.(20,21)

Fig. 8. (Color online) Evaluation of accuracies of various algorithms.
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