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 The micro inertial measurement unit (MIMU) is widely used in various fields such as 
aerospace, automotive industry, smartphones, and wearable devices. Field calibration is the key  
to ensuring measurement accuracy and reliability. To address the complex problem of solving 
calibration parameters for MIMU system errors in nonlinear optimization calibration methods, 
an alternating minimization algorithm based on soft thresholding updates was proposed in this 
paper. An accelerometer error model was established regarding gravity, and the gyroscope error 
model was established on the basis of the calibrated acceleration and rotation angular velocity in 
this method. Finally, the error models were used in convex optimization to design a simplified 
solution process. Compared with the Gauss‒Newton algorithm, the scale factor calibration 
accuracy was improved by one order of magnitude, and in the nonorthogonal error and bias error 
calibration, the accuracy was improved by one to two orders of magnitude. Compared with the 
calibration method using a high-precision turntable with an accuracy of 0.001 °/s, the proposed 
method achieved an accuracy of 10−3 through manual calibration. It can still maintain stability 
with initial values of different orders of magnitude, and ultimately, the global optimal solution 
for the error was obtained.

1. Introduction

 With the rapid development of the microelectromechanical system (MEMS), the MEMS 
micro inertial measurement unit (MIMU) has gained significant attention owing to its small 
size, low cost, and light weight. It plays an irreplaceable role in various applications, such as 
indoor positioning systems, smartphones, small unmanned aerial vehicles (UAVs), and inertial 
guidance systems. However, the inertial devices used in MIMU devices are subject to various 
error sources, such as bias, scale factor, and nonorthogonal installation errors, originating from 
manufacturing processes and assembly. These error sources severely affect the measurement 
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accuracy of the MIMU and ultimately reduce the navigation accuracy. There are two main 
approaches for improving the accuracy of inertial devices: 1) improve the MIMU manufacturing 
processes and 2) implement error compensation and calibration techniques. With the continuous 
development of manufacturing processes, the manufacturing accuracy of MIMU has reached a 
bottleneck, making further improvements difficult owing to cost limitations. Traditional MIMU 
calibration methods typically require precision instruments and experimental equipment, such 
as high-precision turntables, to obtain the positional data of inertial devices for solving various 
error coefficients. However, these methods involve complex experimental procedures and 
expensive turntable equipment, making them unsuitable for low-cost inertial measurement unit 
(IMU) or real-time calibration applications.
 The commonly used calibration methods without turntables include nonlinear optimization-
based calibration,(1,2) recursive least squares-based calibration,(3,4) and Kalman filter calibration 
based on error equations.(5–7) In research on nonlinear-optimization-based calibration methods, 
Lötters et al.(8) proposed the model observation method, which converts the accelerometer 
calibration problem into a nonlinear optimization problem. Skog and Händel(9) utilized the 
principle that the norm of accelerometer and gyroscope measurements equals the applied force 
and rotation rate, respectively, to construct a cost function that achieves a mean square error of 
the sensor error parameters within 8 dB of the Cramér‒Rao bound. Syed et al.(10) discussed the 
calibration problem of an IMU in a GPS/inertial navigation system (INS) integrated navigation 
system and extended the multiposition calibration method proposed by Shin and El-Sheimy,(11) 
including the calibration of the gyroscope scale factor and nonorthogonal installation error. 
Frosio et al.(12) employed the Newton method to solve the self-calibration problem of a triaxial 
accelerometer and quantitatively evaluated the calibration algorithm using a vision-based motion 
capture system. Qureshi and Golnaraghi(13) optimized the cost function of an accelerometer by 
the Newton method, carried out a simple rotation calibration of a gyroscope, and obtained high-
precision calibration results. In addition, in solving nonlinear optimization calibration problems, 
intelligent optimization algorithms such as particle swarm optimization,(14,15) genetic 
algorithms,(16) and fruit fly optimization algorithms(17) are also commonly used, providing new 
insights for nonlinear-optimization-based calibration methods.
 A summary of the MIMU turntable-free calibration schemes based on nonlinear optimization 
methods is shown in Table 1. The Newton-type algorithm is commonly used to optimize error 
parameters when solving MIMU calibration models. However, these methods involve the 
calculation of the Hessian matrix and matrix inversion, which can be computationally expensive 
and even difficult to compute, often leading to matrix singularity issues.(12,13) Although 
intelligent optimization algorithms can avoid matrix singularity problems, their accuracy is low, 
and it is easy for them to diverge.(16) Additionally, because of the nonconvex nature of the 
calibration error equation, there are multiple local minima in the calibration equation. The 
aforementioned algorithms can only produce good results when the initial values are close to the 
true values and fail to achieve the global optimum, which reduces the calibration accuracy.(14,16) 
Therefore, it is crucial to obtain the global optimal solution of the MIMU calibration parameters 
and reduce the computational complexity to improve the calibration accuracy.
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 The main research content of this paper includes the following:
 • To address the problem of complex error parameter optimization in MIMU nonlinear 

optimization calibration methods, a norm-based convex optimization method is introduced to 
optimize the calibration error equations of the accelerometer and gyroscope to improve the 
calibration efficiency.

 • An alternating minimalization algorithm with soft thresholding updates is proposed to solve 
the calibration error equations and obtain the global optimal solution for the error parameters. 
The aim of this approach is to simplify the estimation process and improve the calibration 
accuracy of MIMU systems.

 The organization of the paper is as follows. In Sect. 2, we establish the error models for the 
accelerometer and gyroscope of the MIMU. In Sect. 3, the calibration cost functions for the 
accelerometer and gyroscope are constructed, and an alternating minimalization algorithm 
based on soft thresholding updates is proposed. In Sect. 4, the calibration experiments conducted 
using the Mti-1 MIMU are shown, and the results are analyzed. Section 5 shows the conclusions.

2. MIMU Error Model Establishment

2.1 Error analysis and model development of MEMS accelerometers

 The primary errors of an accelerometer include offset, scale factor, and nonorthogonal 
mounting errors. To establish an accelerometer error model based on the angle between the 
coordinate and ideal axes, as well as the distance of the origin offset, a method of rotation 
followed by translation is employed. The coordinate axes are rotated to align with the ideal axes, 
and then all three axes are translated to align with the ideal origin. Finally, proportional scaling 
is applied. The output data model of the accelerometer is established as follows:

Table 1
Characteristics of nonlinear optimization calibration schemes.
Author Parameters and sensors Method Existing problems

Lötters et al.(8) b, S, A
Quasistatic random 

motion for accelerometer 
calibration

Unable to calibrate K. The 
setting of the quasistatic 

threshold is arbitrary.

Skog and Händel(9) b, S, K, A, G
(single-axis turntable)

Newton iteration algorithm 
for estimation of parameter

No description of the 
gyroscope calibration 

process; unresolved sensor-
to-sensor calibration

Frosio et al.(12) b, S, K, A
Newton iteration algorithm 

for accelerometer 
calibration

Uncalibrated gyroscope; 
low accuracy; high 

computational complexity

Qureshi and Golnaraghi(13) b, S, K, A, G
Newton's method and 
standard least squares 

algorithm

Uncalibrated gyroscope K. 
Matrix singularity issues 

can easily occur.

Poddar and Kumar(15) b, S, K, A Adaptive particle filter 
algorithm

Inaccurate estimation of K; 
prone to getting stuck in 

local optima

Cui et al.(16) b, S, K, A, G
(three-axis turntable)

Genetic algorithm used to 
estimate parameters

Low accuracy of S 
estimation; prone to getting 

stuck in local optima
Note: b—bias; S—scale factor; K—nonorthogonal error; A—accelerometer; G—gyroscope.
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as and ab represent the projection of the acceleration on the nonorthogonal coordinate system s 
and that on the orthogonal coordinate system b, respectively. Sa is a diagonal matrix whose 
elements Sax, Say, and Saz on the diagonal are the scale factors of the three axes of the triaxial 
accelerometer. s

bKa  is the transformation matrix from coordinate system b to coordinate system 
s. θij represents the rotation angle of the i-axis of coordinate system b around the j-axis, and s

a∇  
represents the bias vector of acceleration in coordinate system s, which is a column matrix with 
three elements of s

ax∇ , s
ay∇ , and s

az∇ , including v s
a a aS∇ = ⋅∇ , where s

a a bS S Ka′ = ⋅ .
 Because of nonorthogonal mounting error, the angles are all small, allowing the conversion 
matrix of the coordinate system to be rewritten in the form of a lower triangular matrix.
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 The conversion model for transforming the acceleration data from the nonorthogonal 
coordinate system s to the orthogonal coordinate system b can be expressed as
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 (4)

2.2 Error analysis and model establishment of MEMS gyroscope

 The process of establishing the gyroscope error model is similar to that of the accelerometer 
error model. The mounting, calibration factor, and bias errors of the gyroscope are considered. 
The data output model of the gyroscope is given by
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 ( ) ,s s b s b v
g b gw S Kg w S w′= +∇ = ⋅ +∇  (5)

where ws and wb represents the projection of angular velocity in the nonorthogonal coordinate 
system s and that in the orthogonal coordinate system b, respectively. Sg represents the gyroscope 
scale factor matrix. s

bKg  represents the gyroscope coordinate system transformation matrix. s
g∇  

represents the gyroscope bias vector in the system s. 
 The coordinate system transformation matrix is rewritten as a lower triangular matrix. 
Therefore, the transformation model for converting gyroscope data from the coordinate system 
to the orthogonal coordinate system s is

 1 1( ) ( ) ( ) ( ),b s v s s v s v
g g bL g gw S w S Kg w Kg w− −′= −∇ = −∇ = −∇  (6)

where
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3. Alternating Minimization Calibration Method Based on the Soft Thresholding 
Update

3.1 Calibration of acceleration mode observation method based on L1 norm

 The cost function for traditional accelerometer calibration is typically modeled as a 
nonconvex smoothing function,(1,2,9,13) which has multiple local minima during iterative solving 
and complex calculations, leading to decreased solution accuracy. Therefore, by leveraging the 
principle that the sum of accelerometer vectors equals the local gravitational acceleration vector 
under static conditions, the cost function for accelerometer calibration can be expressed as

 
2 2

1
( ) arg min ,

n
b

a i
i

L a gθ
=

 
= −  

 
∑  (8)

 
where , , , , , , , ,a xx yy zz xz xy yx ax ay azK K K K K Kθ  = ∇ ∇ ∇  is the parameter to be calibrated, n is the 
number of acquired accelerations, b

ia  is the projection of the i-th acceleration value on system b, 
and g is the local gravity vector that can be calculated in accordance with the local geographic 
longitude, latitude, and altitude 

T
x y zg g g g =   .

 As the MIMU has multiple sources of error and its actual acceleration at rest is not equal to 
the local gravitational acceleration, in this paper, we propose a cost function for accelerometer 
calibration that is formulated as a convex function in the L1-norm form devoid of singular 
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points. By solving the convex optimization problem corresponding to the L1-norm, it becomes 
possible to attain the global optimal solution for the original nonconvex optimization problem, 
effectively circumventing local minimum traps and reducing computational complexity 
compared with traditional models.

3.2 Gyroscope calibration based on acceleration correction values

 By combining the corrected acceleration in the previous stationary state with the angular 
velocity generated by rotation and employing an inertial navigation algorithm to update the 
MIMU attitude, it becomes possible to determine the acceleration in the current stationary state.

 1 ˆ ,n
k b ka C a+ =  (9)

where ˆka  is the corrected output value of the accelerometer for the k-th static state, n
bC  is the 

coordinate rotation matrix, and ak+1 is the IMU acceleration in the (k + 1)-th static state.
 According to the inertial solution, the acceleration in the current static state should be equal 
to the accelerometer measurement at the previous moment, and the error function for calibrating 
the gyroscope should be constructed. Assuming the availability of M sets of inertial data 
comprising dynamic and stationary intervals, the cost function for gyroscope calibration is 
constructed as

 2 2
1

2
ˆarg min ,

M
g

k k
k

a aθ −
=

= −∑  (10)

where ak is the IMU acceleration in the k-th static state and 1ˆka −  is the corrected output value of 
the accelerometer for the (k − 1)-th static state.

3.3 Alternating minimization optimization algorithm based on soft thresholding update

 For objective function (8), set 
2 2s v

ay Ka a Ka g= ⋅ − ⋅∇ −  to construct a constrained 
optimization problem:

 1
2 2t
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.
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.s.  

n
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i
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y
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∑
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 The constrained optimization problem (11) exhibits strong convexity. Introducing the 
Lagrange multiplier λk

T to construct the Lagrange function for problem (11) gives
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 The alternating minimization algorithm is used to fix y in the Lagrange function (12), and Ka 
and v

a∇  are alternately minimized to obtain the optimal solutions of Ka and v
a∇ , respectively. For 

the solution of y, the following problem form is obtained using the regularization problem (11):

 

2
1 2

2 2s.t. ,

1min  ,
2 ky

s v
i i a

y y C

y Ka a Ka g

µ + −

 = ⋅ − ⋅∇ −

 (13)

where μ > 0 is the regularization parameter and 
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When solving optimization problem (13) and its corresponding reformulation, the iterated soft-
thresholding (IST) operator is used to construct the corresponding optimization algorithm. 
Because of the suitability of the alternating direction method of multipliers (ADMM) for solving 
separable convex optimization problems and its simplicity in iterations, we here adopt the IST 
operator within the ADMM framework to solve problem (13) and obtain the optimal value. 
Consequently, the steps for solving the accelerometer error equation using the alternating 
iterative algorithm based on soft-thresholding updates can be given as below.
 Step 1: The augmented Lagrange function of problem (11) can be written as

 

2( 1)
1 2

2
1 2
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2
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where Ck is a constant, bk = λk/ρ + Ck, ρ > 0 is a penalty factor, and ˆ / 2k kC λ ρ= −  is a constant 
term. The optimization problem (14) is equivalent to
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 Applying IST to solve the optimization problem (15), the iterative steps of y can be obtained 
as 
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where tk = 1/Lf is the step size and Lf is the Lipschitz constant.
 Step 2: In the Lagrange function (12), Ka is minimized and solved using the gradient descent 
algorithm. The iterative format Ka is

 ( 1) ( ) ,k k
k KaKa Ka Lα+ = − ⋅∇  (17)

where αk is the iteration step size and KaL∇  is the gradient obtained by the Lagrange function for 
Ka and is
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1
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n
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 Step 3: To minimize v
a∇  in the Lagrange function (12) using the gradient descent algorithm, 

the iterative format v
a∇  is given by

 ( 1) ( ) ,v
a

v k v k
a a k Lβ+

∇∇ =∇ − ⋅∇  (19)

where βk is the iteration step size and v
a
L∇∇  is the gradient obtained by the Lagrange function for 

v
a∇ .
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1
( ) .v

a

n
k T k s v

i i a
i

L Ka Ka aλ + +
∇

=
∇ = − ⋅ ⋅ ⋅ −∇∑  (20)

 Using the Armijo line search to update the step size αk, βk, the Armijo criterion, ensures that 
each step of the iteration is fully reduced if
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L∇∇  is the gradient obtained by the Lagrange function to v
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the variable βk can be updated.
 Step 4: Iteratively update the Lagrange multiplier λ as
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where γk is the step size, which is updated as γk+1 = γk ∙ ρ, [2,10]ρ ∈ , and 0 (1,2)γ ∈ .
 After calibrating the accelerometer, the optimized solution for the gyroscope calibration 
parameters is obtained by using the alternating minimization algorithm based on soft 
thresholding updates to minimize the gyroscope calibration cost function (10).

4.	 Experimental	Verification	and	Results	of	Analysis

 The MTI-1 IMU module of XSENS Company as shown in Fig. 1 is used for experimental 
verification. The operating voltage is 3.3 V. A horizontal marble platform is used to ensure the 
accuracy of the measurements, reduce human error, and ensure the consistency of the 
measurement process. The technical specifications are shown in Table 2. 

4.1 Calibration path scheme design

 In the scenario where the navigation coordinate system aligns with the east–north–up (ENU) 
frame, the calibration path scheme is presented in Table 3, and the initial static attitude of the 
IMU is illustrated in Fig. 3. The marble platform has high flatness and stability, which can 
ensure that the MIMU is not affected by the uneven surface of the platform during calibration, 
thereby improving the calibration accuracy. Therefore, the experiment was carried out on a 
marble platform. As shown in Fig. 2, the IMU is fixed in a simple cube frame for data acquisition, 
and a total of 10 groups of experimental data are collected. Following the set calibration path, 
each set of experimental data consists of 12 rotating and stationary data points at different 
positions, with the sensor being manually rotated.
 First, the cube frame is placed on the marble platform to collect static data for initialization; 
Second, the cube frame is rapidly rotated around the positive direction of the y-axis at 0, 90, 180, 
and 270°, around the positive direction of the x-axis at 0, 90, 180, and 270°, and finally around 
the positive direction of the z-axis at 0, 90, 180, and 270°. After each rotation, the sensor is 
placed on the marble platform for 3 s to collect data, after which the next rotation begins. Finally, 
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a total of 12 sets of static data and 11 sets of rotational data were collected at 12 different 
positions for error calibration. The calibration paths for the 12 positions are shown in Table 3.
 To distinguish between static and dynamic data from accelerometers and gyroscopes, a 
variance-based static detection algorithm is adopted, utilizing acceleration data to construct a 
static detection operator. The acceleration data ( , , )yx z

k kka a a  at any time k are taken as the center, 
an acceleration interval is set with a length of N, and the variance 2

kσ  is calculated.

 2 ( ) ( ) ( ),yx z
k N k N N kkstd a std a std aσ = + +  (23)

where stdN(x) represents the variance operator of the three-axis acceleration. The variance 
threshold λ is set, and the IMU motion state is determined on the basis of the acceleration 
variance at time k. When the variance 2

kσ  is less than the threshold, the time is determined to be 
in a stationary state; when the variance 2

kσ  is greater than the threshold, the moment is 
determined to be in a motion state.
 First, the MTI-1 IMU module was placed on a marble platform in a static position aligned 
with the northeast direction, and initial static data were collected for 1 min at a sampling 
frequency of 100 Hz. Second, the IMU was rapidly rotated to the next position on the designated 
path and then kept stationary, holding the static state for 3 s after each rotation until data from 12 
positions were collected. This process was repeated 10 times to gather 10 sets of valid data. 
Third, for each set of data, 12 stationary interval data points and 11 rotating interval data points 

Fig. 1. (Color online) Xsens MTI-1 IMU. Fig. 2. (Color online) Horizontal marble platform.

Table 2
MTI-1 IMU technical indices.

MTI-1 IMU
Accelerometer range ±16 g
Zero-bias stability of accelerometer 0.1 mg
Gyroscope range ±2000 °/s
Zero-bias stability of gyroscope 10 °/h
Magnetometer range ±0.8 G
Magnetometer noise intensity 200 μG 
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Table 3
Design table for the twelve-position calibration path.
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were collected according to the set calibration path. Finally, a static detector was used to 
distinguish between the static data for accelerometer calibration and the rotation data for 
gyroscope calibration. Some sample data formats are listed in Table 4, where Packet Counter 
represents the number of data points; Acc_X, Acc_Y, and Acc_Z represent the acceleration data 
of the x-, y-, and z-axes, and Gyr_X, Gyr_Y, and Gyr_Z represent the angular velocity data of the 
x-, y-, and z-axes, respectively.
 In Fig. 4, the static detector is depicted as a black square wave, where a high level indicates an 
interval classified as static. There are 12 static intervals and 11 dynamic intervals, which are 
consistent with the actual sampling conditions. The simulation results are simulated in 
MATLAB by collecting data through serial ports. 

4.2 Calibration results and analysis

 A comparison of two different experimental scenarios is conducted to evaluate the proposed 
algorithm: high-precision turntable calibration and calibration using the Gauss–Newton 
algorithm. The reasons for choosing these scenarios are as follows.
 First, high-precision turntables are widely recognized as reliable calibration tools that enable 
the accurate measurement and calibration of sensor performance. By mounting the sensors on a 
precisely controlled turntable, predefined angular velocities and angles can be applied. The 
outcomes obtained from turntable calibration are typically regarded as accurate reference values.
 Second, the Gauss–Newton algorithm, a widely adopted optimization algorithm, is employed 
as a reference method for parameter estimation and nonlinear least squares problem solving. The 
parameter values are iteratively adjusted to minimize the difference between the objective 
function (calibration cost function) and observed values. This approach is commonly used for 
calibrating different error parameters of accelerometers and demonstrates effective performance 
in scale factor calibration. However, this approach is prone to becoming stuck in local optima 
and tends to yield moderate results in calibrating nonorthogonal and bias errors.

Fig. 3. Initial static state of the IMU.
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 The error and bias matrices for the accelerometer and gyroscope are calculated as

 1
1.0218 0 0

( ) 0.0020 1.0200 0 ,
0.0002143 0.0011 1.0234

s
a bLKa S Ka −

 
 = =  
  

 (24)

 [ ] 20.0410 0. ,s0049 0.0028 m/Tv s
a a aS∇ = ∇ = − −  (25)

 1
57.2525 0 0

( ) 0.4066 57.4267 0 ,
0.2624 0.2228 57.3658

s
g bLKg S Kg −

 
 = = − 
 − 

 (26)

 [ ] .0.0011 0.0018 0.0014 /hTv s
g g gS∇ = ∇ = − − − °  (27)

 Using the GRS80 gravity model, the local gravity acceleration was calculated to be 9.80 m/s2. 
For the high-precision turntable calibration scenario, the experimental results are presented in 
Tables 5 and 6. The turntable had an accuracy of ±0.001 °/s.
 Using the proposed calibration method, the collected data from 10 experimental trials were 
subjected to iterative optimization to obtain the calibration error parameters for the accelerometer 
and gyroscope. The corresponding averages and standard deviations were calculated and are 
presented in Tables 7 and 8, respectively.

Table 4
IMU data formats.
Packet Counter Acc_X Acc_Y Acc_Z Gyr_X Gyr_Y Gyr_X
03366 0.032724 −0.077869 9.774956 −0.002386 −0.002581 0.001581
03367 0.027340 −0.089129 9.763243 −0.003562 −0.002573 0.002013
03368 0.037307 −0.091866 9.794288 −0.000690 −0.003613 0.002125

Fig. 4. (Color online) Static detector result.
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 The proximity between the average calibration values of the ten datasets and the calibration 
values obtained from the turntable demonstrates the high calibration accuracy achieved by the 
proposed method. Furthermore, the standard deviation of the calibration parameters being of the 
same order of magnitude indicates an excellent repeatability of the calibration results.
 To validate the effectiveness of the algorithm in IMU calibration, both the proposed method 
and the Gauss–Newton algorithm are employed to solve the cost function for accelerometer and 
gyroscope calibrations, using different initial values for the iterations. A comparative analysis is 

Table 5
Turntable calibration values for accelerometer error.
Error type Error value
Zero-bias error s

a∇  (m/s2) 0.0418975 −0.004965 −0.002915
Scale factor Sa 9.7869075 9.80403 9.771265
Nonorthogonal error s

bLKa −0.001955 −0.000195 −0.001095

Table 6
Turntable calibration values  for gyroscope error.
Error type Error value
Zero-bias error s

g∇  (°/h) 0.0418975 −0.004965 −0.002915
Scale factor Sg 9.7869075 9.80403 9.771265
Nonorthogonal error s

bLKg −0.001955 −0.000195 −0.001095

Table 7
Averages and standard deviations of accelerometer parameters.
Parameter Turntable calibration Average Standard deviation
Kxx 1.0218 1.0228 0.00056
Kyy 1.0200 1.0210 0.0031
Kzz 1.0234 1.0244 0.00064
Kxz 0.0020 0.0021 0.0000504
Kxy 0.0002143 0.000234 0.0000176
Kyx 0.0011 0.0012 0.00011

ax∇  (m/s) 0.0410 0.0419 0.000604
ay∇  (m/s) −0.0049 −0.0046 0.000166
az∇  (m/s) −0.0028 −0.0026 0.0000918

Table 8
Averages and standard deviations of gyroscope parameters.
Parameter Turntable calibration Average Standard deviation
K'xx 57.2525 57.7764 0.2628
K'yy 57.4267 58.0131 0.2060
K'zz 57.3658 57.9057 0.2576
K'xz −0.4066 −0.4053 0.000932
K'xy −0.2624 −0.2618 0.000296
K'yx 0.2228 0.2239 0.000426

gx∇  (°/h) −0.0011 −0.0011 0.0000308
gy∇  (°/h) −0.0018 −0.0016 0.000127
gz∇  (°/h) −0.0014 −0.0012 0.0000873
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conducted to evaluate the calibration results. Compared with the Gauss–Newton algorithm, the 
proposed algorithm improves the scale factor calibration accuracy by one order of magnitude 
and achieves an accuracy improvement of one to two orders of magnitude in nonorthogonal and 
bias error calibrations.
 The static data collected are compensated using the accelerometer calibration parameters 
provided in Table 9. The uncompensated and compensated acceleration values are shown in Fig. 
5. The relative errors of the accelerometer calibration parameters are shown in Table 10. The 
standard deviation and root mean square error between these values and the local gravity 
acceleration are computed and presented in Table 11.
 As shown in Fig. 5, the compensated acceleration amplitude is closer to the local gravity 
acceleration. Compared with the original data without compensation, the standard deviation of 
the acceleration data is reduced by one order of magnitude, and the root mean square error is 
reduced 46 times. The calibrated acceleration value has higher accuracy and data stability.
 Using the compensated static acceleration and rotational angular velocity data for gyroscope 
calibration, both the proposed method and the Gaussian–Newton algorithm are employed to 
solve the gyroscope calibration cost function. The gyroscope calibration parameters are 
presented in Table 12, while the relative errors of the calibration parameters are displayed in 
Table 13.

Table 9
Accelerometer calibration parameters.

Parameter Turntable 
calibration value

Proposed method Gauss–Newton method
Initial value 1 

(Uncompensated)
Initial value 2 

(Compensated)
Initial value 1 

(Uncompensated)
Initial value 2 

(Compensated)
Kxx 1.0218 1.0201 1.0204 1.0101 1.0104
Kyy 1.0200 1.0201 1.0210 1.0309 1.0309
Kzz 1.0234 0.9889 0.9895 0.9867 0.9707
Kxz 0.0020 0.0020 0.0020 −0.0010 −0.0020
Kxy 0.0002143 0.0002096 0.0002264 0.0003237 0.0002061
Kyx 0.0011 0.0014 0.0012 0.0013 0.0015

ax∇  (m/s) 0.0410 0.0399 0.0392 0.0310 0.0340
ay∇  (m/s) −0.0049 −0.0049 −0.0049 −0.0046 −0.0040
az∇  (m/s) −0.0028 −0.00274 −0.00269 −0.0011 −0.0021

Fig. 5. (Color online) Acceleration data obtained before and after compensation.
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Table 10
Relative error of accelerometer calibration parameters.

Parameter
Proposed method Gauss–Newton method

Initial value 1 
Relative error/%

Initial value 2 
Relative error/%

Initial value 1 
Relative error/%

Initial value 2 
Relative error/%

Kxx 0.1664 0.1370 1.1450 1.1157
Kyy 0.0098 0.0980 1.0686 1.0686
Kzz 3.3711 3.3125 3.5861 5.1495
Kxz 0 0 150 200
Kxy 2.1932 5.6463 51.0499 3.8264
Kyx 27.2727 9.0909 18.1818 36.3636

ax∇  (m/s) 2.6829 4.3902 24.3902 17.0732
ay∇  (m/s) 0 0 6.1224 18.3673
az∇  (m/s) 2.1429 3.9286 60.7143 25

Table 11
Acceleration standard deviation and root mean square error before and after compensation.

Standard deviation Root mean error
Uncompensated 0.0025 0.033
Compensated 0.00091 0.0007

Table 12
Gyroscope calibration parameters.

Parameter Turntable 
calibration value

Proposed method Gauss–Newton method
Initial value 1 Initial value 2 Initial value 1 Initial value 2

K'xx 57.2525 57.891 59.8587 57.4627

—

K'yy 57.4267 56.9350 63.1217 56.8914
K'zz 57.3658 57.165 62.3087 56.4951
K'xz −0.4066 −0.4176 −0.3365 −0.3761
K'xy −0.2624 −0.2535 −0.1841 −0.1279
K'yx 0.2228 0.2013 0.3037 0.1903

gx∇  (°/h) −0.0011 −0.0015 −0.0011 −0.0017
gy∇  (°/h) −0.0018 −0.0017 −0.0022 −0.0011
gz∇  (°/h) −0.0014 −0.0013 −0.0011 −0.0012

Table 13
Relative errors of gyroscope calibration parameters.

Parameter
Proposed method Gauss–Newton method

Initial value 1 
Relative error/%

Initial value 2 
Relative error/%

Initial value 1 
Relative error/%

Initial value 2 
Relative error/%

Kxx 1.1152 4.5521 0.3671

—

Kyy 0.8562 9.9170 0.9321
Kzz 0.3500 8.6165 1.5178
Kxz 2.7054 17.2405 7.5012
Kxy 3.3918 29.8399 51.2576
Kyx 9.6499 36.3106 14.5871

ax∇  (m/s) 9.0909 0 54.5455
ay∇  (m/s) 5.5556 22.2222 38.8889
az∇  (m/s) 7.1429 21.4286 14.2857
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 The analysis of the calibration results in Tables 12 and 13 shows that for an initial value of 1, 
both algorithms successfully calibrate the gyro’s error parameters. However, the proposed 
method outperforms the Gauss–Newton algorithm in terms of calibration accuracy, particularly 
in terms of nonorthogonal and bias error calibrations, where it achieves an improvement of one 
order of magnitude. For an initial value of 2, the Gauss–Newton algorithm fails to converge 
owing to matrix singularities during the iterative process, resulting in divergent calibration 
results. Conversely, the proposed algorithm is effective at calibrating the error parameters and 
achieves a higher calibration accuracy than does the Gauss–Newton algorithm, specifically in 
terms of bias error calibration under an initial value of 1. Compared with the Newton-class 
nonlinear optimization algorithm, the Jacobian matrix of the independent variable does not need 
to be calculated, which solves the problem that the traditional algorithm is difficult to calculate 
and falls into the local extreme value, and reduces the amount of computation.
 To validate the accuracy of the gyroscope calibration results, the initial attitude angle is set to 
[0 0 0]. The angular velocity is compensated by the gyro calibration error parameter, and the 
attitude calculation results obtained before and after compensation are compared. The attitude 
calculation results are shown in Fig. 6, and the attitude angles calculated before and after a 50 s 
static interval are presented in Table 14. 
 Figure 6 depicts the variations in the pitch angle, roll angle, and heading angle of the 
uncompensated and compensated beams. The attitude angles calculated after calibration 
compensation exhibit relative stability, with a maximum pitch drift of 0.13°, a maximum roll 
drift of 0.20°, and a maximum yaw drift of 0.5° within 50 s. Overall, both the accuracy and the 
stability significantly improved.

Fig. 6. (Color online) Attitude calculation results in the static state.

Table 14
Attitude angles calculated before and after calibration.

Pitch/° Roll/° Yaw/°
Initial attitude angle −0.21 −0.50 −24.9
Uncompensated attitude angle 8.47 −8.50 −30.39
Compensated attitude angle −0.08 −0.70 −25.4
Uncompensated attitude angle error 8.67 8.00 5.49
Compensated attitude angle error 0.13 0.20 0.50
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 The experimental results provide evidence of successful accelerometer and gyroscope 
calibrations by effectively addressing bias, scale factor, and nonorthogonal mounting errors. The 
achieved accuracy is in agreement with that of turntable calibration. Following calibration, the 
root mean square error of the static acceleration decreases from 0.033 to 0.0007 degrees. 
Additionally, the proposed algorithm significantly reduces the pitch, roll, and yaw angle drifts 
by 98.5, 97.5, and 90.9%, respectively, within a specific timeframe. Furthermore, the algorithm 
exhibits robustness and adaptability to different initial input values, yielding calibration results 
close to the ground truth.

5. Conclusions

 To address the challenges associated with nonlinear optimization calibration techniques, a 
convenient MIMU calibration method was proposed in this paper. The challenges included 
prolonged data collection time, complex calibration parameter models, and susceptibility to local 
optima. The error models of the accelerometer and gyroscope were developed as convex 
functions by using the L1-norm calibration cost function. This iterative approach enabled us to 
obtain the globally optimal solution for the error parameters, thereby significantly reducing the 
computational complexity involved in the calibration process. These findings underscore the 
suitability of low-cost IMU field calibration methods for the calibration of smartphones, 
microdrones, and wearable devices. This paper was focused mainly on mathematical theory, but 
testing in more practical scenarios will be conducted in the future.
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