
2983Sensors and Materials, Vol. 36, No. 7 (2024) 2983–3000
MYU Tokyo

S & M 3714

*Corresponding author: e-mail: m210200598@st.shou.edu.cn
https://doi.org/10.18494/SAM5047

ISSN 0914-4935 © MYU K.K.
https://myukk.org/

Mapping of Yangtze River Estuary Tidal Flat 
Based on Sentinel-2 Sensor and Google Earth Engine

Kuifeng Luan,1,2 Haixia Wan,1* Zhenhua Wang,3 Xuejun Lu,4 
Zhuyuan Bei,4 Jiansheng Yuan,1,2 Zhaoxiang Cao,1 Xinyi You,1 

Jie Wang,1,2 Wei Shen,1,2 and Junfang Bi5

1College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai 201306, China
2Estuarine and Oceanographic Mapping Engineering Research Center of Shanghai, Shanghai 201306, China

3College of Information Technology, Shanghai Ocean University, Shanghai 201306, China
4Shanghai Marine Affairs Administration Center, Shanghai 200050, China

5Changjiang River Estuary Bureau of Hydrological and Water Resources Survey, Shanghai 200136, China

(Received March 15, 2024; accepted May 10, 2024)

Keywords:	 Otsu algorithm, maximum spectral index composite, tidal flat, Sentinel-2 sensor, Google 
Earth Engine

	 Delineating the distribution of tidal flats in the Yangtze River Delta region is of considerable 
significance for the ecological environment research and sustainable development of the region. 
However, the tidal flat ecology is greatly threatened by rapid economic development and human 
disturbance. Information on the tidal flat ecology is necessary for tidal flat extraction studies in 
Jiangsu Province and Shanghai City. Therefore, using imagery acquired by Sentinel-2 sensors 
along the coasts of Jiangsu Province and Shanghai City and the Google Earth Engine Cloud 
Platform, we established a multilayer automatic decision tree classification model based on the 
maximum spectral index composite algorithm and Otsu algorithm to extract tidal flats. A total 
of 1011 scene images, acquired from January 1 to December 31, 2021, were collected to generate 
tidal flat maps of Jiangsu Province and Shanghai City. The overall accuracy obtained by 
establishing the confusion matrix was 96.1%. The tidal flat areas of Jiangsu Province and 
Shanghai City in 2021 were 222347 and 41097 hectares, respectively, among which the tidal flat 
area of Jiangsu Province was 5.4 times that of Shanghai City. Moreover, we compared the results 
with real images and existing products, which further explained the rationality of the tidal flat 
results of this study. The 10-m-resolution tidal flat map of Jiangsu Province and Shanghai City 
obtained in this study can provide support for the sustainable policy management of tidal flats in 
the Yangtze River Delta region.

1.	 Introduction

	 Tidal flats are transitional zones between marine and terrestrial environments. They are 
sensitive areas where the two environments intersect and include mud, sand, and rocky flats in 
intertidal zones. They allow global ecosystem services, including climate regulation, carbon 
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sequestration, and shoreline maintenance.(1) In addition, they provide habitats for many marine 
and terrestrial organisms, maintain biodiversity, and are essential for maintaining the ecological 
balance in the region.(2) However, as an important ecosystem, tidal flats are very fragile(3,4) and 
are seriously threatened by human activities and natural changes.(4) For example, the rapid 
expansion of aquaculture on a global scale has led to the alteration of large areas of valuable 
coastal land, which has had a strong negative impact on natural ecosystems, including the 
destruction of coastal wetlands, the loss of biodiversity, and the pollution of water and soil.(5,6) 
More changes, such as the destruction of tidal flats by artificial seawalls and tidal flat erosion 
due to sea level rise, lead to the loss of many tidal flats and intertidal habitats, affecting tidal flat 
biodiversity.(7) According to the International Union for the Conservation of Nature (IUCN), the 
loss of intertidal habitats is a major threat to many countries.(8) With human development and 
climate change, the loss of intertidal habitat has become so complete and sudden that birds have 
little time to adapt. Therefore, it is necessary to map tidal flats with high resolution and accuracy.
	 Tidal flats are an important part of the coastal ecosystem in Jiangsu Province and Shanghai 
City and are under significant threat.(9,10) Shanghai City, a super-large city in China, has a GDP 
of 4465.28 billion yuan. Economic development and environmental issues in this region have 
received considerable attention. In particular, the ecological environment and a vast majority of 
coastlines have suffered extensive damage due to economic development. For example, in 
Shanghai City, reclamation projects are being implemented to expand urban land areas and 
support economic development,(11) which usually involve the reclamation of land from the sea, 
i.e., turning the original sea into land.(12) In particular, large-scale reclamation projects in the 
Yangtze River Estuary area include Donghengsha and Pudong coastal reclamation, which may 
cause the original tidal flats to be submerged or destroyed.(1,13) Reclamation projects alter marine 
ecosystems in coastal areas, adversely affecting ecological elements, such as fish, benthos, and 
birds.(14) Jiangsu Province ranks second in terms of GDP among 31 provincial administrative 
regions in mainland China, and the economic benefits of coastal aquaculture ponds are clear(15) 
China is the world’s largest producer of aquaculture, accounting for approximately 61.5% of the 
global production. Jiangsu Province has large-scale aquaculture ponds, which are mainly used 
for aquaculture products such as shrimp, crab, and fish.(5) However, the expansion of coastal 
aquaculture ponds also poses severe environmental problems. The construction of aquaculture 
ponds usually requires the occupation of coastal wetlands and tidal flats because of the saline-
alkali soils in these areas, which are conducive to aquaculture. This may result in the reduction 
or alteration of tidal flats, as existing wetlands and tidal flats are used to build ponds.(16) 
Additionally, pollutants may be introduced during farming, posing a potential threat to tidal flats 
and the surrounding ecosystems.(16) The governments of Shanghai City and Jiangsu Province 
make extensive efforts to effectively manage the deteriorating tidal flat ecosystem and achieve 
the sustainable development of the coastal resources of China. Therefore, the study of up-to-date 
and reliable tidal flat maps in Shanghai City and Jiangsu Province is critical to maintaining 
ecological balance, disaster prevention, and the economy.
	 For the monitoring and mapping of tidal flats, field investigations are difficult owing to 
periodic variations in tides. The mapping of tidal flats in small areas relies mainly on field 
measurements, such as unmanned aerial vehicle and bathymetric lidar measurements; however, 
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owing to data availability, openness, and price, it is not feasible to apply these methods to large-
scale tidal flat mapping.(17) Remote sensing technology has the advantages of high effectiveness, 
a large amount of information, and multiple platforms. Its rapid development provides a new 
method for identifying tidal flats and plays an increasingly important role in tidal flat 
identification.(18,19)

	 In recent years, numerous studies have used satellite remote sensing images to extract tidal 
flat information at the local, national, and global scales. Currently, three main methods are used 
for tidal flat mapping based on remote sensing images: tidal models, machine learning based on 
training samples, and decision trees based on prior knowledge.(18,20,21) In the first method, which 
is based on tidal models or topography, satellite remote sensing data are used to capture the 
position of the coastline at different times. The predicted data of tidal models are then combined 
to monitor water level changes under different tidal conditions and determine the contour and 
extent of tidal flats. For example, Murray et al.(22) used regional tidal models to acquire remote 
sensing images of high and low tides, determined instantaneous water boundaries, and mapped 
intertidal wetlands along the coast of East Asia. Sagar et al.(20) mapped tidal flats in Australia 
using a continental-scale tidal model combined with the median pixel synthesis of normalized 
difference water index (NDWI) stacks using full-time-series Landsat observations. However, 
owing to the scarcity of intertidal elevation, the complexity of coastal topography, and the spatial 
variation of tidal levels, the application of this method to large areas causes great uncertainty. 
The second method is a machine learning method based on training samples and uses remote 
sensing image data with label information to create a machine learning model that automatically 
identifies and labels tidal flat areas to achieve tidal flat mapping. Zhang et al.(23) mapped coastal 
tidal flats in eastern China using machine learning classification methods based on the Google 
Earth Engine (GEE) platform. On the basis of the GEE platform, Murray et al.(18) analyzed more 
than 700000 Landsat satellite images globally to map the extent of and changes in tidal flats 
from 1984 to 2016. They found that approximately 70% of the global tidal flats were distributed 
in Asia, North America, and South America, and 16.02% of the global tidal flats disappeared in 
33 years. However, these classifications rely on a large number of training samples and are often 
time-consuming and labor-intensive. The third method is the knowledge-based decision tree 
method, which is based on expert knowledge and rules and gradually delineates the tidal flats in 
the images through a decision tree. For example, Wang et al.(21) mapped tidal flats in China 
using a decision tree algorithm based on prior knowledge from Landsat data and the GEE 
platform. These studies extracted tidal flats using empirical knowledge and statistical data 
derived from universal thresholds. However, because of the complexity of tidal flats in different 
areas, universal thresholds may not apply to large areas. Current tidal flat research methods lack 
robust, accurate, and universal classification methods for simultaneously mapping tidal flats. 
Classification approaches should not be dependent on pre-existing information such as tidal 
levels on the dates of image capture, significant phenological dates, artificially outlined shoreline 
data, or experiential thresholds.
	 Recently, Earth observation satellites have become the primary data source for large-scale 
coastal land cover mapping. Time-series Sentinel-2 Sensor acquired images and GEE platforms 
have great potential for mapping tidal flats with detailed spatial information.(14,19,21). Sentinel-2 
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Sensor acquired images have revisit intervals of 2–5 days, and the high temporal resolution 
provides an excellent opportunity to capture the lowest and highest tides, which is critical to 
accurately determine the extent of tidal f lats. However, satellite images have several 
shortcomings when mapping tidal flats. Because of the wide coverage of a single satellite image, 
there are continuous tidal changes in the region, and accurately obtaining low tide and high tide 
images in different regions is difficult. In addition, owing to the possible cloud occlusion, tidal 
images that have been obscured by clouds for a long time cannot be effectively filtered out. The 
GEE has a strong potential for remote sensing analysis and is widely used in coastal zone 
research. The GEE is a cloud-based analytics platform that includes a large amount of publicly 
available geospatial data, analytically available Landsat data, and high-performance parallel 
computing services. Many scientists have conducted various studies related to land cover 
mapping on the GEE platform. For example, Li et al.(14) constructed a Sentinel-2 normalized 
difference vegetation index (NDVI) time series from January 2017 to December 31, 2018, 
characterized the changing track of mangrove phenological characteristics, and verified the 
feasibility of the random forest algorithm on the basis of phenological characteristics to classify 
mangrove species on the GEE platform. Xu et al.(24) put forth a straightforward phenological 
vegetation index (PVI) that relies on the pixel-wise composition of Sentinel-2 observational data, 
utilizing the GEE platform. They confirmed the applicability of the random forest algorithm for 
classifying mangrove species and found that the supervised Otsu-PNDVI technique exhibits 
high accuracy in classifying Spartina alterniflora.
	 Although several local-scale studies were conducted, the latest high-resolution tidal flat 
conditions in Jiangsu Province and Shanghai City remain unclear. In this study, we aimed to 
realize the automatic and high-precision extraction of intertidal wetlands in Jiangsu Province 
and Shanghai City using Sentinel-2 Sensor acquired images and GEE cloud platforms. To 
address the above-mentioned issues, in this study, we include (1) fast and automatic tidal flat 
mapping using Sentinel-2 Sensor acquired time series images and the GEE platform, (2) 
comprehensive verification using tidal station measurement data, existing research data, and 
selected edge points to evaluate the accuracy of tidal flat mapping results in Shanghai City and 
Jiangsu Province, and (3) the analysis of possible reasons for the spatial variation of tidal flats in 
Jiangsu Province and Shanghai City .

2.	 Data, Materials, and Methods

2.1	 Study areas

	 The study areas were Shanghai City and Jiangsu Province, China (Fig. 1). Shanghai City is 
located at 120° 52′–122° 12′ E and 30° 40′–31° 53′ N, with a land area of 6340 km2. This place is 
situated on the western shore of the Pacific Ocean and at the eastern boundary of the Asian 
landmass, and serves as the meeting point of China’s northern and southern coastlines. It is 
positioned where the Yangtze River and Huangpu River merge into the sea. Its geographical 
boundaries are the Yangtze River to the north, the East China Sea to the east, Hangzhou Bay to 
the south, and the provinces of Jiangsu Province and Zhejiang to the west. Because of the special 
geological and geomorphological environment and water and sediment conditions in the Yangtze 
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River Estuary and Hangzhou Bay, the tidal flats in the Shanghai City area have a unique 
distribution and ecological environment. Shanghai City tidal flats are mainly distributed in the 
east and south of Shanghai City and in the coastal zone near the Yangtze River estuary.(25) 
Jiangsu Province, which spans 30° 45’–35° 08’ E, 116° 21’–121° 56’ N, belongs to the East Asian 
monsoon climate zone and is located in the subtropical and warm temperate climate transition 
zone, where the annual precipitation is 704–1250 mm. The tidal flats in Jiangsu Province are 
mainly distributed along the coastlines of the Yellow Sea and East China Sea, as well as in the 
estuary near the Yangtze River estuary. Jiangsu Province has the largest tidal flat wetland in 
China,(9) which is the habitat of many birds, shellfish, and other organisms with rich species 
diversity.(21)

2.2	 Dataset

2.2.1	 Sentinel-2 Sensor data

	 Sentinel-2 Earth observation satellites were launched by the European Space Agency (ESA) 
for remote sensing and environmental monitoring missions. Sentinel-2 consists of two polar-
orbiting satellites (Sentinel-2A launched in June 2015 and Sentinel-2B launched in March 2017), 

Fig. 1.	 (Color online) Map of study area (Jiangsu Province and Shanghai City) showing the positions of edge 
validation points. A total of 624 samples were randomly selected along the coast.
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with a revisiting period of 10 days for individual satellites and 3–5 days for the combined 
constellation. Sentinel-2A represents a novel high-resolution multispectral imaging satellite, 
predominantly employed for worldwide land observations, which includes the monitoring of 
land vegetation, soil, and water resources, inland water bodies, coastal regions, and services 
related to emergency rescue.(26) The satellite image data acquisition time was from January 1, 
2021 to December 31, 2021, covering the entire area of Shanghai City and Jiangsu Province, and 
1011 images were acquired.
	 In this study, we applied the Sentinel-2 sensor data L2A product, which contains surface 
reflectance data after atmospheric correction. Images with greater than 50% cloud cover were 
filtered out, and pixels with low observation quality, such as opaque clouds, cirrus clouds, and 
shadows in each image, were masked by the QA60 band.(27) The remaining pixels were retained 
as high-quality observation data. Taking into account computational efficiency and the presence 
of one of China’s most extensive tidal flats in southern Jiangsu Province, the research area was 
further narrowed down to a buffer zone extending 20 km from the northern Jiangsu Province 
coastline and 100 km from the southern Jiangsu Province coastline. A total of 1011 images 
covering the entire coastal areas of Shanghai City and Jiangsu Province were used for further 
analysis.

2.2.2	 Verification samples

	 For evaluating the accuracy of the produced tidal flat map, a total of 624 samples were chosen 
randomly from the coastal area of the study region. The geographical arrangement of these 
sample points is depicted in Fig. 1. All these samples were sourced from high-resolution images 
on Google Earth or from Sentinel-2 Sensor acquired images taken at low tide. By visual 
interpretation, samples were labeled into two categories: tidal flat and others. Thus, the overall, 
user, and producer accuracies for each category were derived from the confusion matrix.(9,19)

	 In this study, we randomly identified completely exposed tidal flat points and their edge 
points, and established verification points as key references to verify the accuracy of tidal flat 
maps for Shanghai City and Jiangsu Province. To identify the edge points, we chose seven 
crucial tidal stations, located from the northern to southern parts of the coast. Daily time-by-
time tide data for these stations are available at the National Oceanographic Science Data Center 
(https://mds.nmdis.org.cn/pages/tidalCurrent.html). On the basis of Sentinel-2 satellite transit 
times and tide tables, daily tide data were matched to seven images acquired at local low tide, 
showing that the tidal flats were fully exposed. Information on these images and instantaneous 
tide heights is summarized in Table 1. For the selection of edge verification points, the 
Qionggang Station in Jiangsu Province was used as an example. The largest tidal flat in China is 
located near the Qionggang Station. By screening the high-quality Sentinel-2 image 
corresponding to the lowest tide level at the transit time [Fig. 2(A)], the transit date of the lowest 
tide image was determined, and the tide level height at the transit time of the image was obtained 
from the tide table of that day [Fig. 2(B)]. From the Sentinel-2 image captured during peak tide 
[Fig. 2(C)], we randomly picked pixels representing both pure tidal and nontidal flats along the 
periphery of the tidal flat patch to serve as edge points [Fig. 2(C)–(E)]. Thus, we acquired 624 
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edge validation points, which were distributed from the northern to southern parts of the area. 
Pure tidal and nontidal flat edge points can reflect whether our synthetic map contains 
completely exposed tidal flat patches and can be used to test whether the pixels of high-turbidity 
river water and building land are misclassified as tidal flats. The sampling method of randomly 
selecting the pixels at the edges of the tidal flat patches provides a more accurate verification for 
extracting the shape features of the tidal flat edges. Therefore, edge point verification is key to 
verifying the accuracy of the obtained tidal flat map.

Table 1
General characteristics of tidal stations (from north to south), time of image acquisition, and temporal tidal status.

Province Station name Sentinel-2 Sensor 
transit time

Instantaneous tide 
height (cm) Tide status

Jiangsu

Qionggang 01-18-2021
10:40:29 87 Local lowest

Binghaigang 03-24-2021
10:44:16 66 Local lowest

Yangkougang 07-17-2021
10:47:28 196 Local lowest

Lianyungang 12-02-2021
10:50:52 99 Local lowest

Sheyanghekou 12-07-2021
10:45:52 142 Local lowest

Shanghai
Zhongjun 02-04-2021

10:29:07 79 Local lowest

Sheshan 02-04-2021
10:29:07 30 Local lowest

Fig. 2.	 (Color online) Edge point selection near Qionggang Station. (A) Transit lowest tide date of January 18, 2021 
for Qionggang Station image. (B) Tide table for Qionggang Station on January 18, 2021. The minimum tide image 
transit time is 11:00:00 a.m., and the tide height is 87 cm. (C) Lowest tide image captured by Sentinel-2 Sensor at 
10:40:29 a.m. (C–E) Edge point location.
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2.3	 Method

	 In this study, we developed an automatic, fast, and high-precision tidal flat extraction method 
based on the maximum spectral index composite (MSIC) algorithm and Otsu method, which 
mainly included the following steps: (1) the construction of a high-quality dense time-series 
Sentinel-2 Sensor acquired image stack based on the GEE cloud platform, (2) the selection of a 
suitable spectral index according to the time-series variation characteristics of tidal flats and the 
synthesis of maximum and minimum water surface images from a high-quality time-series data 
set based on the MSIC algorithm, (3) the construction of a multilayer decision tree automatic 
classification model based on the Otsu algorithm to extract beach area, and (4) the noise removal 
and verification of quantitative visualization for beach area.(9,28) The workflow is illustrated in 
Fig. 3.

2.3.1	 Image synthesis method based on MSIC

	 After the removal of cloud cover, the modified normalized difference water index 
(mNDWI)(29) and NDVI(30) of each pixel in the image collection were calculated. Table 2 shows 
both the indices. All preprocessing tasks for building collections were performed in the GEE 
platform. The mNDWI is widely used to distinguish open surface water from other features 

Fig. 3.	 (Color online) Workflow of tidal flat mapping in this study. TF: tidal flats. 

Table 2
Spectral index equations used in this study.
Name Abbreviation Equation
Nominalized difference vegetation index NDVI (ρnir − ρred)/(ρnir + ρred)
Modified normalized difference water index mNDWI (ρgreen − ρswir)/(ρgreen + ρswir)
Here, ρnir is the reflectance of the near-infrared band (Band 8 of Sentinel-2 Sensor acquired images), ρred is the reflectance 
of the red band (Band 4 of Sentinel-2 Sensor acquired images), ρgreen is the reflectance of the green band (Band 3 of 
Sentinel-2 Sensor acquired images), and ρswir is the reflectance of a short-wave infrared band (Band 11 of Sentinel-2 
Sensor acquired images).
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using different sensors (such as Landsat). It enhances the difference between artificial shorelines 
and water bodies, such as levees (roads and pond edges), and effectively suppresses the effects of 
other background water bodies, such as aquaculture ponds.(31) The NDVI is used to obtain the 
lowest tide image, which can significantly increase the difference between vegetation, beach, 
and water and can effectively avoid the interference of tidal uncertainty on beach extraction.
	 GEE API provides “imageCollection.qualityMosaic()”, MSIC selects a quality band as a 
pixel-by-pixel sorting function to extract the data with the maximum value after the 
superposition and sorting of the specified bands of the pixel, which is used as the source of each 
pixel in the final synthesized image. The details can be found at https://developers.google.com/
earth-engine/guides/ic_composite_mosaic.
	 Within a full tidal cycle, a pixel of a tidal flat can be recognized as either a tidal flat or a 
water body, due to tidal variations. The mNDWI extremum synthesis technique was utilized on 
a stack of Sentinel-2 Sensor acquired images to determine the effects of these tidal changes. The 
extreme values encompass both the highest and lowest points. In the image stack, the mNDWI at 
a pixel location varied with the tidal cycles, with higher and lower mNDWIs corresponding to 
water and land, respectively. The mNDWI maximum composite image (mNDWI-MSIC) can be 
used to extract areas where seawater historically exists in tidal flats or other characteristic areas; 
therefore, the largest mNDWI-MSIC represents the largest water area.(9,23) In contrast, if the 
location is exposed to the sea surface, the highest NDVI can be recorded because the NDVI of 
water is lower than those of the other features. Thus, the largest NDVI-MSIC depicts the smallest 
water area.(9)

2.3.2	 Water–land separation based on Otsu algorithm

	 By selecting an appropriate threshold, objects in a synthetic image can be segmented into two 
classes. The Otsu algorithm, proposed by Otsu in 1979, is a nonparametric method for selecting 
the optimal threshold based on the image’s statistical attributes. It functions as an automatic 
classification model resembling a multilayer decision tree.(32,33) According to the gray 
characteristics of the image, the image is divided into background and foreground on the basis of 
the principle by the least squares method. The basic logic of the algorithm is to select the value 
with the largest variance between classes and the smallest variance within classes as the optimal 
threshold for automatically classifying the image. Equation (1) is as follows:

	 ( ) ( ) ( ) ( ){ }2*
0 1 1 2

1
arg max ,

t n
t w t w t m t m t

≤ ≤
 = −  	 (1)

where t* is an arbitrary threshold, representing the optimal threshold, n represents the gray level 
of the pixel, w0(t) and w1(t) represent the possibilities of two classes appearing at pixel level t, 
m1(t) and m2(t) represent the mean values of two classes at pixel level t, and the image is 
synthesized by traversing extreme values. When w0(t)w1(t)[m1(t) − m2(t)]2 (interclass variance) is 
maximum, the corresponding t value is selected as the optimal threshold for segmentation. The 
tidal flat was identified by obtaining the synthetic images of the maximum and minimum water 
areas of the study area, applying the Otsu method and selecting the optimal threshold.
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2.3.3	 Denoising and accuracy assessment

	 From the obtained preliminary tidal flat map, pixel groups smaller than 100 units were 
eliminated by using the “connetedPixelCount” function in GEE to remove small nontidal flat 
noise points. A large amount of noise was removed in this process.
	 The confusion matrix was calculated on the basis of samples from the classified tidal flats 
and other categories using three metrics: producer accuracy (PA), user accuracy (UA), and 
overall accuracy (OA).(9,19,34) PA represents the probability of a land cover map accurately 
classifying a ground feature class, thereby assessing the omission error. UA evaluates the 
consistency between the tidal wetland categories in satellite-derived maps and the reference 
data, and assesses commission errors. OA is the ratio of the number of pixels correctly classified 
to the total number of pixels, serving as a metric for evaluating the classification outcomes and 
data agreement.

3.	 Results 

3.1	 Accuracy assessment of tidal flat classification

	 The accuracy of the 10-m-resolution tidal flat maps generated for Shanghai City and Jiangsu 
Province for 2021 was verified. The results showed that the tidal flats were accurately mapped, 
with accuracy rates of more than 95% for both UA and PA and OA rates as high as 96.1% 
(Table 3). From a regional perspective, the OA of Jiangsu Province was 96.4%, which was higher 
than that of Shanghai City (95.3%). This is because the turbid water in Shanghai City might have 
affected the identification of tidal flats using the algorithm, which is consistent with the results 
of Jia et al.(9)

3.2	 Spatial distribution characteristics of tidal flat

	 Figure 4 shows the spatial distribution of tidal flats along the coastlines of Shanghai City and 
Jiangsu Province extracted by the MSIC-Otsu method. The total area of tidal flats in Shanghai 
City and Jiangsu Province is 263444.0 hectares. Jiangsu Province is larger than Shanghai City, 
and its tidal flat area is 5.4 times that of Shanghai City.

Table 3
Confusion matrix for each map.
Region Class TF Non-TF UA OA

Shanghai
TF 84 6 93.3% 95.3%

Non-TF 2 80 97.5%
Pro. acc. 97.6% 93.0%

Jiangsu
TF 215 5 97.7% 96.4%

Non-TF 11 221 95.2%
Pro. acc. 95.1% 97.7%

Total
TF 299 11 96.4% 96.1%

Non-TF 13 301 95.8%
Pro. acc. 95.8% 96.4%
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	 To show the details of the tidal flat map more visually, the tidal flat maps of Jiangsu Province 
and Shanghai City were divided into seven subregions from north to south: the Linhong Estuary 
[Fig. 4(a)], abandoned Yellow River Estuary [Fig. 4(b)], Sheyang Estuary [Fig. 4(c)], Liangduo 

Fig. 4.	 (Color online) Beach distribution in Jiangsu Province and Shanghai City. (a) Linhong Estuary, (b) 
abandoned Yellow River Estuary, (c) Sheyang Estuary, (d) Liangduo Estuary, (e) Lusigang, (f) Chongming Island, 
and (g) Nanhui Xincheng Beach. The purple line in subfigures (a)–(g) delineates the extent of tidal flats proposed by 
our method. The optical base maps used in subfigures (a)–(g) are the false-color Sentinel-2 images obtained during 
the lowest tide, at 10:50:52 on 2 December 2021, 10:44:16 on 24 March 2021, 10:45:52 on 7 December 2021, 10:40:29 
on 18 January 2021, 10:47:28 on 17 July 2021, 10:29:07 on 4 February 2021, and 10:29:07 on 4 February 2021, 
respectively.
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Estuary [Fig. 4(d)], Lusigang [Fig. 4(e)], Chongming Island [Fig. 4(f)], and Nanhui Xincheng 
Beach [Fig. 4(g)]. The tidal flat distribution that we obtained was superimposed on the real low 
tide image for display, in which the low tide image was combined with the tide height data from 
the tide station to find the image corresponding to the lowest tide level at the moment of image 
transit, the details of which are shown in Table 1. Overall, the tidal flat classification was 
accurate, and the tidal flat area was clearly divided. Large tidal flats are mainly distributed in 
estuaries and deltas with large tidal differences and high sediment inflow, such as the Liangduo 
Estuary [Fig. 4(d)], Lusihe Estuary [Fig. 4(e)], and Nanhui Xincheng Beach [Fig. 4(g)]. For 
example, in the estuary of the Yangtze River, the longest river in Asia, a distinct tidal flat forms 
in Shanghai City [Fig. 4(g)]. The Liangduo Estuary [Fig. 4(d)] in the Yancheng area is 
continuously supplied with sediment because of the southward coastal current and circular 
currents of the abandoned Yellow River Estuary, which is in a siltation environment and rich in 
tidal flat resources. We found that the mapped contours of the tidal flat were in good agreement 
with the satellite images.

4.	 Discussion

4.1	 Reliability of edge extraction at high and low tides

	 Observation frequency plays an important role in mapping tidal flats. Even though the 
Sentinel-2 Sensor has a repetition period of two days, only a portion of the tidal flats is inevitably 
captured at a given time. Because of the effects of ground albedo and clouds, remote sensing 
images are often incomplete, and a single image cannot show the characteristics of large areas. 
Additionally, tidal variations within a scene can introduce uncertainty into tidal flat mapping. In 
earlier studies, high and low tides were determined on the basis of the artificial selection of high 
and low tide images(35) or on the assumption that percentiles were the lowest and highest tide 
data.(36) Manually determining images of high and low tides can be time-consuming when 
dealing with extensive regions. In addition, the percentile selection method may lead to the 
inclusion of the lowest and highest tides in the lower and upper quantiles, respectively. The 
cartographic work in this study was based on the assumption that images were obtained near the 
lowest and highest tides. Instead of choosing the images of the highest and lowest tides from the 
observed scene, we utilized the MSIC method, which amalgamates the images of the highest and 
lowest tides.(9,19) MSIC is an automatic technique that requires no human input, training sets, or 
supplementary data during the mapping procedure. It also does not require any extra masking, 
preprocessing, or postprocessing stages to alter the initial mapping outcomes.(9)

	 Next, the reliability of the results of extracting the maximum and minimum tidal lines is 
discussed by combining data from tidal stations and images. The highest tide date was selected 
when the satellite passed through the tide data of one year, and then the tide height was obtained 
at the image transit time using the tide table of that day, which was downloaded as a satellite 
image. Similarly, the time points of the second high tide, second low tide, and lowest tide were 
selected on the basis of the tide height data at the image transit time, and the corresponding 
satellite image data was downloaded. Additionally, the maximum water area image obtained 
from the mNDWI-MSIC maximum synthesis map was used as the generated high-water line, 
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and the minimum water area image obtained from the NDVI-MSIC maximum synthesis map 
was used as the generated low-water line.
	 As shown in Fig. 5, considering the tidal flat near Yangkou Port in Jiangsu Province as an 
example, we displayed the true-color Sentinel-2 Sensor acquired image of the highest, 
intermediate, and lowest tides superimposed on the high- and low-tide lines extracted in this 
study. In the image of the highest tide at 728 cm [Fig. 5(a)], the tidal flat completely disappeared, 
and only the town was observed. The outline boundary of the enclosed artificial island and that 
of the Yellow Sea Bridge connecting Sunshine Island and inland land in the figure are consistent 
with the water–land boundary line of the high-tide image. The extracted high-tide line coincided 

Fig. 5.	 (Color online) Selection of the tidal flat near Yangkou Port, Jiangsu Province, China. (a) Highest tide 
Sentinel-2 Sensor acquired image taken at 10:38 a.m. on November 4, 2021, and the tidal flat corresponding to 11:00 
a.m. was 728 cm, (b) Sentinel-2 Sensor acquired image taken at 10:47 a.m. on March 29, 2021, and the tidal flat 
corresponding to 11:00 a.m. was 586 cm, (c) Sentinel-2 Sensor acquired image taken at 10:47 a.m. on December 29, 
2021, and the tidal flat corresponding to 11:00 a.m. was 386 cm, and (d) lowest tide Sentinel-2 Sensor acquired image 
taken at 10:37 a.m. on February 17, 2021, and the tidal flat corresponding to 11:00 a.m. was 252 cm.
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with the water–land boundary line corresponding to the high-tide image. In the tide image at the 
middle tide level of 586 cm [Fig. 5(b)], exposed tidal flats were found southeast of the town, and 
the extracted high-tide line was located inside the exposed tidal flats [Fig. 5(b), yellow ellipse]. 
When the tide level was lower than the highest tide level, the image change between the 
artificially constructed shoreline area and the highest tide period was clear, whereas that 
between the tidal flats in the southeastern direction of the town without artificial intervention 
and the highest tide period was unclear [Fig. 5(b), yellow ellipse]. This indicates that different 
tidal levels have larger water-edge extraction results, showing the impact of human activities on 
tidal flats. At the lowest tide time, the tide level was 252 cm on the image [Fig. 5(d)]; the purple 
line is the low-tide boundary line extracted using the proposed method. It was found that all the 
tidal flats were identified, and the extracted low-tide line was consistent with the corresponding 
tidal flat outer edge line in the lowest tide image. Compared with Fig. 5(d), Fig. 5(c) shows the 
sub-low tide (386 cm tide level). The submerged tidal flats far away from the shoreline [yellow 
solid line and dotted rectangle in Fig. 5(c)] and smaller tidal flat areas near the town indicate that 
the extraction difference of tidal flats was large at different tide levels, highlighting the 
irrationality of setting the percentile for tidal flat extraction.

4.2	 Comparison with other studies

	 We compared our tidal flat results in area and space with those of other studies: tidal flat map 
2018 (hereafter referred to as Wang_TF),(21) tidal flat map January 2019–June 2020 (hereafter 
referred to as Jia_TF),(9) tidal flat map 2014–2016 (hereafter referred to as Murray_TF),(18) and 
tidal flat map 2020 (hereafter referred to as Zhang_TF).(34)

	 First, we observed some differences between the datasets, as shown in Fig. 6. Our Jiangsu 
Province tidal flat area was larger than those of Wang_TF and Jia_TF and smaller than those of 
Murray_TF and Zhang_TF. The Shanghai City tidal flat area was larger than those of Wang_TF, 

Fig. 6.	 (Color online) Bar plot comparing the tidal flat areas of Jiangsu Province and Shanghai City with those of 
Wang_TF,(21) Jia_TF,(9) Murray_TF,(18) and Zhang_TF.(34)
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Jia_TF, Murray_TF, and Zhang_TF. Wang_TF, Murray_TF, and Zhang_TF used the Landsat 
data. The revisit period of the Landsat data is 16 days; therefore, it cannot capture high and low 
tides completely. Furthermore, a resolution of 30 m leads to wider bands; therefore, it cannot 
provide finer tidal flat results than sentinel sensor data. The low tidal flat area of Wang_TF is 
also related to the division of most tidal flats into water areas. Temporal variations and tidal flat 
definitions also cause areal differences. For example, in the definition of tidal flats, Jia_TF 
defines the vegetation-free sediment area between the high- and low-tide lines as tidal flats. In 
terms of time variation, the results for Murray_TF were the tidal flats from 2014 to 2016.
	 As shown in Fig. 7, the tidal flat results of this study differ significantly from those of 
Murray_TF, which may not be solely due to the data source and tidal flat evolution. Combining 
the tidal flat distribution map of Murray_TF and the algorithm details, it can be seen that in the 
tidal flat result identification of Murray_TF, the sediment and culture pond on the beach are 
regarded as tidal flat identification, which is the most important reason for the difference 
between our results and that of Murray_TF. As Murray et al.(18) and Zhang et al.(34) did not 
consider the effect of low tide, they did not capture many low-tide beaches.
	 Our interpretation of tidal flats is consistent with that of Zhang_TF. However, Zhang_TF 
employs the random forest technique. In this technique, certain mudflats or sandy beaches 
situated above the high-tide line are categorized as tidal flats, but they are not classified as tidal 

Fig. 7.	 (Color online) Subset views of tidal flats in Murray_TF,(18) this study, and Zhang_TF(34) located in the 
abandoned Yellow River Estuary (Area A), Liangduo River Estuary (Area B), and Nanhui New Town (Area C), 
respectively.
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flats in our study (for instance, portions of Areas C and B between 33° 00′00″ and 33° 10′00″). 
This is one of the factors that contribute to Zhang_TF’s large results in Jiangsu Province 
compared with this study.

5.	 Conclusion

	 Using the GEE platform and Sentinel-2 Sensor data, we obtained the tidal flat maps of 
Jiangsu Province and Shanghai City by the MSIC-Otsu method. The MSIC method was used to 
obtain the extreme value of the same position on massive images pixel-by-pixel and a composite 
image of the maximum and minimum water areas, and then the Otsu method was used to 
identify the tidal flat. The reliability of the MSIC-Otsu extraction was verified for Shanghai City 
and Jiangsu Province on the basis of time-series Sentinel-2 Sensor acquired images and tide 
station data. Additionally, the reliability of the results of extracting the boundary lines of the 
highest and lowest tides was discussed by combining the tide station and image data. The effect 
of human activity on tidal flats and the irrationality of using the percentile tidal flat extraction 
method were revealed.
	 From the confusion matrix of recognition results, the accuracies of users and products of 
beach are 96.4 and 95.8% respectively. In addition, combining with the real image data, the 
results of this study are compared with the existing products Murray_TF and Zhang_TF. The 
results show that the tidal flat data provided by this study in 2021 has high accuracy. This 10-m- 
resolution map of tidal flats in Shanghai City and Jiangsu Province for 2021 serves as reference 
for the ecosystem management and sustainable development of tidal flats. Although the method 
used in this study is mainly aimed at Jiangsu Province and Shanghai City in the Yangtze River 
Delta region, it can be potentially applied at the spatial scale of larger regions.
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