
3001Sensors and Materials, Vol. 36, No. 7 (2024) 3001–3023
MYU Tokyo

S & M 3715

*Corresponding author: e-mail: tiemaos@sjzu.edu.cn
https://doi.org/10.18494/SAM5052

ISSN 0914-4935 © MYU K.K.
https://myukk.org/

Assessment of Spatial Patterns and Drivers 
of Respiratory Health Risks Based on

Air Pollution Spatiotemporal Data in Shenyang City, China

Zhenxing Li,1 Yu Shi,2 Peiying Li,1 Xiaojuan Xing,3
Jingxue Xie,4 Tiemao Shi,5* and Yaqi Chu

1School of Architecture and Urban Planning, Shenyang Jianzhu University, 
No. 25, Hunnan Middle Road, Hunnan District, Shenyang, Liaoning 110168, China

2School of Design and Art, Shenyang Jianzhu University, 
No. 25, Hunnan Middle Road, Hunnan District, Shenyang, Liaoning 110168, China

3Beijing Institute of Surveying and Mapping, No. 60 Nanlishi Road, Xicheng District, Beijing 10045, China
4United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, 

Fuchu, Harumicho, 3 Chome-8-1, Tokyo 183-8538, Japan
5Institute of Space Planning and Design, Shenyang Jianzhu University, 

No. 25, Hunnan Middle Road, Hunnan District, Shenyang, Liaoning 110168, China
6School of Architecture and Engineering, Shenyang University, 

No. 25, No.21, Wanghua South Street, Dadong District, Shenyang, Liaoning 110003, China

(Received April 12, 2024; accepted June 18, 2024)

Keywords: respiratory health, geodetector, spatial pattern of risk, spatial environmental elements, 
interaction effects

 Studying the spatial pattern distribution of respiratory health risks and the role of spatial 
environmental factors can improve our understanding of pathogenic mechanisms in the spatial 
environment. However, previous air quality index (AQI) sensor models lacked comprehensive 
air quality reflection, limiting risk prediction accuracy. In this study, we improved the AQI 
sensor model and combined it with population density data to establish a respiratory health risk 
exposure assessment model. Twenty-five spatial environmental variables were selected as 
potential factors. Pearson correlation analysis and a geodetector were used to assess the spatial 
risk patterns of respiratory diseases and determine the characteristics of the selected factors. The 
results indicated that (1) the health risk index showed autumn < summer < spring < winter 
ranking, with the health risk gradually decreasing from the center outwards. (2) The positive 
effect of the volume ratio, a spatial morphology factor, was the strongest, and the negative effect 
of the sky openness was the greatest. (3) The geodetector results showed significant spatial 
heterogeneity in the degree of effect of the spatial environmental factors on respiratory health 
risks. Moreover, the explanatory power of the interaction between any two factors (except the 
volume ratio) far exceeded that of a single factor.
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1. Introduction

 According to the World Health Organization (WHO), three of the ten leading causes of death 
worldwide are related to the respiratory system, and respiratory diseases have become a major 
threat to the health of the global population.(1) The respiratory system is an exogenous system of 
the human body. Air pollution has a direct effect on respiratory diseases. Although major 
atmospheric pollutants can cause various diseases in the human respiratory, circulatory, and 
other systems, they pose the greatest threat to the human respiratory system.(2) China’s rapid 
economic development has led to serious air pollution problems, resulting in more prominent 
respiratory health problems among Chinese residents.(3)

 According to epidemiological studies, the occurrence of respiratory diseases is caused mainly 
by environmental exposure, and rapid urbanization and the overcrowding of the population can 
exacerbate the occurrence of acute and chronic respiratory diseases. There are many atmospheric 
pollutants, among which sulfur dioxide (SO2), nitrogen oxides (NOx), carbon monoxide (CO), 
ozone (O3), and total suspended particulate matter (TSP) are the most threatening to human 
respiratory health.(4) Air quality index (AQI) is now widely used in China as a method for 
calculating air quality. The method of calculating AQI involves comparing the concentration 
limits of various pollutants and calculating subindices, with the overall index determined by the 
maximum subindex of pollutants.(5) The AQI calculation method neglects the cumulative and 
synergistic effects of various pollutants, leading to a blurred representation of individual 
pollutant information on an annual time scale and obscuring the overall pollution levels of 
different pollutants on a daily time scale.(6) The latest WHO findings showed that low 
concentrations of air pollutants can still cause damage to the human respiratory system.(7) 
However, at present, China still follows the previous classification standards for air pollutant 
concentrations. This may cause the public to misjudge the air quality and thus fail to take 
necessary protective measures. Accurate data for monitoring air pollution were the basis for 
improving environmental quality and developing protection strategies. The monitoring of air 
pollution in various Chinese cities was mainly based on fixed-point monitoring, a method that 
was insufficient to monitor the dynamics of the spatial distribution of air pollutants, although it 
could obtain monitoring data over a continuous period of time.(8) The remote sensing monitoring 
method can utilize satellites, drones, or other remote sensing technologies to obtain air quality 
data on a large scale. This method can help to analyze the spatial and temporal patterns of air 
pollution, thus providing insight into the dynamics of air pollutant concentrations and their 
potential impact on health.
 Li et al. introduced methods such as statistics and machine learning into the evaluation of air 
quality in order to solve the problem that the method of calculating AQI cannot fully reflect the 
real air quality, including index evaluation, principal component analysis, an analytic hierarchy 
process, artificial neural networks, fuzzy comprehensive evaluation, gray clustering, and set pair 
analysis, to improve AQI evaluation methods;(9,10) their goal was to increase the accuracy and 
reliability of more effective assessments of air quality conditions. Despite some progress in 
improving AQI calculation methods, current research still faces unresolved issues. Although 
advanced models and methods have been employed to improve the accuracy and stability of the 
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AQI under complex meteorological conditions, especially during extreme weather events such as 
dust storms or typhoons, areas for improvement remain.(11) Additionally, with the discovery of 
new pollutants and a deeper understanding of their impacts on human health, the adequacy of 
the AQI evaluation system for comprehensively covering various pollutants is still worth 
exploring.(12) 
 Factors such as urban form, land use, road transportation, and ecological environment impact 
the respiratory health of urban populations by influencing the human living environment and 
behavior.(13,14) The compact urban development approach in China has increased the density of 
population distribution, thereby reducing the total amount of pollutant emissions and increasing 
the degree of exposure to spatially pathogenic environments.(15) The urban built environment, 
land use status, and urban form structure affect the concentration distribution of air pollutants; a 
compact urban form can increase the pedestrian use of streets and improve the efficiency of 
public transportation, thereby reducing the amount of vehicle emissions and road particulate 
pollution.(16) Building height, massing, layout, and orientation can have important effects on the 
flow and distribution of air pollution. Urban planning can promote health by reducing the impact 
of pollution on the human body and promoting physical activity.(17) In urban construction, the 
urban spatial environment should be optimized to mitigate air pollution through a coordinated 
layout. Note that previous studies have mostly focused on the effect of pollutants on respiratory 
diseases from an epidemiological perspective or the effect of the spatial environment on the 
diffusion and distribution of pollutants from an ecological perspective, but studies on the 
mechanisms of respiratory pathogenesis from a spatial perspective are relatively few.(18) The 
results of these studies ignore the mutual spillover and effects of urban spatial environmental 
indicators, suffer from model estimation bias, and often underestimate the effects of spatial 
environmental indicators on respiratory health. Therefore, the research findings often lack 
guidance for urban construction.
 In this study, we applied air pollution remote sensing monitoring data and combined them 
with population thermal data and applied a risk exposure evaluation model to study the spatial 
distribution pattern of respiratory health risks in Shenyang. We also applied geographical 
detection methods to assess the correlation between spatial environmental elements and risk 
space. This paper has three main objectives: (1) to evaluate the spatial distribution of current 
respiratory risks, (2) to identify the main spatial environmental factors affecting respiratory 
health risks and analyze their spatial autocorrelation, and (3) to explore the joint effects of 
potential factors on respiratory health risks. By achieving these objectives, we aim to provide 
valuable insights for policymakers and public health officials to develop targeted interventions 
and strategies to mitigate respiratory health risks in urban environments.

2. Materials and Methods

2.1 Study area

 The city of Shenyang (41° 48′ 11.75″N, 123° 25′31.18″E) is located in the central part of 
Liaoning Province, covering an area of about 12860 km2. It has a temperate monsoon climate 
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with an average annual temperature of 6.2–9.7 ℃ and four distinct seasons. The annual 
precipitation is approximately 600–800 mm, with rainfall concentrated mainly in summer. Since 
its reform and opening up, Shenyang has played a pioneering role in the industrial development 
of China. The acceleration of urbanization has indirectly led to increased air pollution. Moreover, 
the number of deaths from respiratory, cardiovascular, and cerebrovascular diseases has 
increased in line with the rising concentrations of air pollutants. The urban area of this study is 
primarily the central area of Shenyang, involving eight administrative districts in which 
approximately 68% of the region’s population is concentrated, with a total area of approximately 
454.05 km2 (Fig. 1).

2.2 Research methods

2.2.1 Air quality assessment based on respiratory health

 The United States was the first to establish ambient air index standards in the 1970s. 
Subsequently, other countries established their own air quality index systems based on their air 
quality conditions, such as China’s Air Pollution Index and AQI. AQI is calculated by listing the 
concentration limits against each pollutant and taking the maximum IAQI for each pollutant to 
determine AQI.(19) This calculation method has an unclear basis for grading air pollutant 
concentration breakpoints and does not reflect the true overall characteristics of current air 
quality. Proper air quality management requires a reliable air quality classification system; 
however, the classification standards vary from country to country, and the blurring of air 
quality boundaries affects the accurate evaluation of air quality.
 Fuzzy theory was developed on the basis of the fuzzy set theory formulated by L.A. Zadeh of 
the Department of Electrical Engineering at the University of California, Berkeley, USA, in 
1965.(20) Fuzzy logic specializes in expressing qualitative knowledge and experience with 
unclear boundaries. It can distinguish fuzzy sets, deal with fuzzy relationships, and simulate the 
human brain to realize rule-based reasoning.(21) Therefore, some scholars have applied it to air 
quality assessment methods to solve the problem of overly arbitrary air pollutant concentration 
grading. Onkal-Engin et al.(22) applied fuzzy algorithms to assess urban air quality in Istanbul, 
and they confirmed that fuzzy algorithms are very suitable for air quality management. 
However, owing to the lack of data support for the classification and determination of weight 
coefficients of air pollutants, the calculation results of fuzzy algorithms can only represent the 
comprehensive trend of air pollution degree and cannot express the true pathogenic degree of air 
pollution.(23) In this study, we summarize the air quality standards issued by the World Health 
Organization(7) and the Chinese government based on the degree of impact of air pollutants on 
human respiratory health, form air quality standards for respiratory health, and formulate a 
reliable classification system for air pollution concentrations. A comprehensive fuzzy assessment 
method was established to eliminate the effects of blurred air quality boundaries. Fuzzy 
comprehensive assessment can be divided into three stages.
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(1) Constructing a fuzzy affiliation function
 In this study, we comprehensively referenced the latest global air quality guidelines issued by 
the WHO and the pollutant concentration limits defined in the Chinese national environmental 

Fig. 1. (Color online) Study area. (a) Distribution of air quality monitoring stations in Shenyang. (b) Layout map of 
the Third Ring Road in Shenyang.

(a)

(b)
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protection standard [Technical Regulation on the Ambient Air Quality Index (on trial)]. We 
classified eight levels of air quality standards (Table 1), and the lower the level, the higher the air 
quality and the more notable the negative effects on human respiratory health (Fig. 2). 
The value of the fuzzy affiliation function for each of the factors associated with the eight 
assessment levels can be calculated using the following set of equations:
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where μA–H is the fuzzy affiliation function, x is the average annual air pollutant monitoring 
value, and DA–H is the average annual air quality classification value.

(2) Building a fuzzy relationship matrix
 The assessment matrix R can be obtained from the affiliation values of the input pollutant 
values and the corresponding air quality parameters.



Sensors and Materials, Vol. 36, No. 7 (2024) 3007

 

( )
}{ }{

11 12 18

21 22 28

31 32 38

41 42 48

51 52 58

61 62 68

1 2 3 4 5 6 7 8

,  1, 2, ,6,  1, 2, ,8

, , , , , , , , , , , , , ,
ij j

A B C D E F G H

r r r
r r r
r r r

R
r r r
r r r
r r r

r x i jµ

µ µ µ µ µ µ µ µ µ µ µ µ µ µ µ µ

… 
 … 
 …

=  … 
 …
 

…  
= = … = …

=

 (2)

 The fuzzy matrix can be solved according to the maximum subordination principle.
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Table 1
Annual average air quality evaluation criteria.

Standard level SO2

(ug/m³)
NO2

(ug/m³)
O3

(ug/m³)
CO

(mg/m³)
PM2.5

(ug/m³)
PM10

(ug/m³)
DA Level 1 ( ≤ 50) 20□ 10○ 60○ 1◊ 5○ 15○

DB Level 2 ( > 50 and ≤ 100) 60□ 20○ 70○ 2◊ 10○ 20○

DC Level 3 ( > 100 and ≤ 150) 100□ 30○ 100○ 4◊ 15○ 30○

DD Level 4 ( > 150 and ≤ 200) 140◊ 40○ 160◊ 7◊ 25○ 50○

DE Level 5 ( > 200 and ≤ 250) 220◊ 70◊ 200◊ 12◊ 35○ 70○

DF Level 6 ( > 250 and ≤ 300) 300◊ 100◊ 300◊ 18◊ 75◊ 150◊

DG Level 7 ( > 300 and ≤ 350) 400◊ 160◊ 400◊ 24◊ 150◊ 200◊

DH Level 8 ( > 350) 800◊ 250◊ 800◊ 30◊ 250◊ 300◊

Note: ○: Indicator from the Global Air Quality Guideline (2021); □: Indicator from the Chinese national standard ambient 
air quality standards (GB 3095—2012); ◊: Indicator based on daily average values calculated on a pro rata basis.

Fig. 2. Fuzziness for fuzzy classification method. μ: fuzzy membership degree; A–H: fuzzy membership level; 
DA–DH: concentration classification of air pollutants.
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Here, Ai is the standard level and Ai is an integer from 1 to 8. If rij = rij' and j < j', then Ai equals j' 
corresponding to the standard level grade value.
 The overall air pollution status cannot be determined via individual pollutants; each pollutant 
contributes to air pollution in some way. In this study, we collated relevant findings on the 
relationship between air pollutant concentrations and respiratory disease outpatient visits in 
Shenyang and cities at the same latitude; the effects of air pollutants on respiratory health could 
be ranked as follows:(24–26) CO > NO2 > SO2 > PM2.5 > PM10 > O3. The weighting coefficients 
for the effects of each type of air pollutant on respiratory health were further calculated via 
hierarchical analysis.
 The weighting factor matrix can be obtained as 

 ( ) ( ) ( ) ( ) ( ) ( ){ }SO2 CO NO2 O3 2.5 100.16 , 0.36 , 0.28 , 0.04 , 0.09 , 0.07PM PMW w w w w w w= . (4)

(3) Establishing a fuzzy integrated evaluation algorithm model
 Fuzzy integrated evaluation results can be obtained as 
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2.2.2 Respiratory health exposure risk assessment of air pollution

 Currently, the generally accepted tool for assessing the effects of environmental factors on 
the human body is the risk assessment method. This method is used by leading scientists in the 
field of hygiene and epidemiology to study and evaluate the effects of various etiological 
substances on human health. The study of the effects of major atmospheric pollutants on human 
health is carried out mainly through two aspects. The first is through the uninterrupted 
monitoring of individuals for specific time periods and the evaluation of the risks posed by 
pollutants based on this monitoring to obtain data on the doses of pollutants inhaled by humans, 
which are combined with physical health data.(27) The second involves the study of the stagnation 
time of major air pollutants in the spatial environment, combined with the degree of population 
concentration, to evaluate the effects of major air pollutants on human health. The second 
method is currently the most common method of evaluating the impact of pollutants on human 
health. Spatial simulation methods are used to simulate the spatial distribution of pollutants and 
thus more accurately evaluate the effects of major air pollutants on human respiratory health. We 
applied a method to assess the risk status of the respiratory health of the population with long-
term exposure to air pollutants. The urban atmospheric conditions were evaluated according to 
the priority pollutants of the surface layer of the atmosphere – sulfur dioxide, nitrogen dioxide, 
carbon monoxide, ozone, and suspended solids – and the results of the gas evaluation were then 
combined with the population distribution to assess the population’s risk of respiratory 
exposure.(28) We used this exposure risk evaluation model to reflect the quantitative population 
respiratory health risk, which can distinguish the severity of local areas relative to the spatial 
whole. We cited the population exposure risk model equation.
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In this equation, i is the grid number and j is the characteristic type of air pollution source (e.g., 
industrial source). Rij denotes the relative risk of air pollution exposure of the population in grid 
i with the contribution of type j sources. popudc is the number of people in a single grid of urban 
land-use type u in spatial cell d. Cij is the pollution concentration of grid i under the contribution 
of type j sources. n is the total number of grids contained in spatial cell C.

2.2.3 Correlation analysis

 In this study, a geodetector was used to test the relationship between the role of spatial 
environmental factors and exposure risk. It is a statistical method that primarily detects spatial 
heterogeneity and is applicable to the spatial geographic analysis of driving forces, which can 
integrate the homogeneity and variability of the distribution of environmental elements and 
high-risk spaces and better relate environmental factors to high-risk spaces for quantitative 
assessment.(29) In this study, we used three main methods, Pearson’s correlation coefficient, 
factor detection, and interaction detection, to investigate the correlation between spatial 
environmental factors and exposure risk. 
(1)  Factor detection analyzes whether there is significant similarity in spatial distribution by 

testing the spatial divergence between the dependent and independent variables; if the two 
show spatial similarity, it means that the element in question plays a considerable role in the 
formation of spatial changes in the geographical element. The formula is

 
2

1
2

1
1

L
h hh

N �q
N SSTσ

σ
=

−
� ∑ . (7)

  In this formula, h is the stratification of factor X; Nh is the number of cells in layer h; N is the 
total number of cells in the whole region; the q value is between 0 and 1. The more similar the 
spaces of the independent variable X and the dependent variable Y are, the greater their effect 
on the dependent variable Y and the greater the q value, and vice versa.

(2)  Pearson’s correlation coefficient quantifies the linear relationship between two variables by 
calculating their covariance and standard deviation. Its value ranges from −1 to 1, with 1 
indicating a perfect positive correlation, −1 indicating a perfect negative correlation, and 0 
indicating no linear relationship. The formula is 
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In this equation, r is Pearson's correlation coefficient, which reflects the degree of linear 
correlation between two variables. Xi is the ith data point of variable X. Yi is the ith data point of 
variable Y. X̅  is the mean of variable X. Y̅  is the mean of variable Y.
(3)  Interaction detection involves identifying the interactions between various variables. It 

assesses whether the combined effect of factors X1 and X2 enhances or diminishes their 
explanatory power on the dependent variable, or if these factors independently influence the 
dependent variable. The assessment is performed by calculating the effect of each spatial 
environmental factor on the risk, examining each effect when these factors interact, and then 
comparing the magnitude of the effect among the three factors.

2.3 Data acquisition

2.3.1 Air quality data

 The air pollutant data used in this paper were obtained from the China High Air Pollutants 
(CHAP) dataset and the Shenyang Environmental Monitoring Centre (EMC). The air pollutants 
include SO2, NO2, CO, O3, PM10, and PM2.5. The CHAP dataset refers to the long-term, full-
coverage, high-resolution, and high-quality datasets of ground-level air pollutants in China. It is 
generated from the big data (e.g., ground-based measurements, satellite remote sensing products, 
atmospheric reanalysis, and model simulations) using artificial intelligence by considering the 
spatiotemporal heterogeneity of air pollution.(30,31) The CHAP dataset has an accuracy of 1 km 
for PM2.5, PM10, O3, and NO2, and an accuracy of 10 km for SO2 and CO. We used the 
monitoring data from the EMC for the accuracy correction of the six categories of air pollutants. 
There are 10 monitoring stations distributed within the city of Shenyang; the temporal resolution 
is hour-by-hour, and the time span collected was from January 1 to December 31, 2019, for a 
total of 1095728 data messages. The spatial interpolation method for anti-weight distance was 
selected to design a calculation scheme based on sampling data, and an air pollution trend 
surface with a spatial resolution of 500 × 500 m2 was generated.

2.3.2 Land use data

 The 2019 remote sensing image data of Shenyang used in this paper were obtained from the 
Geospatial Data Cloud website. The remote sensing data were interpreted by the Envi method. A 
total of 12 classes of land use types were identified: public management and services, business 
services, facilities, water sources, other nonconstruction land areas, water and other land areas, 
park green space, protective greenbelt, regional facilities, industrial, residential, and traffic 
facilities, and logistics warehousing. The general integration of various land types resulted in 
eight types of land use: water sources and water areas were classified as water area land; park 
green space and protective greenbelts were classified as green land; regional transportation 
facilities and associated land were classified as land for transportation facilities (Fig. 1).
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2.3.3 Population distribution data

 We obtained the population thermal data of the 500 × 500 m2 area of Shenyang through cell 
phone signaling data. The mobile signaling data used in this study were from China Unicom 
Smart Footprint Data Technology Co., Ltd., which was the first batch of population big data 
officially purchased by the Ministry of Natural Resources of China in 2019. The data in this 
study were selected from the typical months of each season (January, April, July, and September), 
from which three typical days were selected (two working days and one holiday) to analyze the 
spatial and temporal distribution characteristics of the population within the Third Ring Road of 
Shenyang in each season (Fig. 3).

2.3.4 Spatial environmental element data

 Numerous studies have demonstrated that regulating some urban spatial environmental 
factors can improve the current situation of air pollutant concentrations. The role of the urban 
spatial environment in air pollution is reflected mainly in four spatial environmental factors, 
which can exert direct impacts on human respiratory health within the city: land use, spatial 
morphology, road traffic, and green and open spaces. In this study, 25 spatial environmental 
factors were selected. A map of the spatial environmental factors with 500 m × 500 m resolution 
was obtained by interpreting the land use data (Table 2).

Fig. 3. (Color online) Spatial and temporal distributions of population in different seasons in the Third Ring Road 
of Shenyang in 2019: (a) spring, (b) summer, (c) autumn, and (d) winter.
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3. Results and Discussion

3.1	 Differences	in	spatial	and	temporal	distributions	of	health	risks	

 The distribution of human respiratory health risks in the core built-up area of Shenyang is 
shown in Fig. 4. In terms of spatial distribution patterns, the spatial heterogeneity of urban 
respiratory health risks was large, with an overall trend showing risk gradually decreasing from 
the center outwards. The health risk safety areas were distributed mainly in areas with rich 

Table 2 
List of selected urban spatial environmental factors.
Category Detailed categories Abbreviation Description

Land use

Percentage of public service 
land area PLA

Percentage of area of each type of land use per unit 
area

Percentage of commercial land 
area CLA

Percentage of residential land 
area RLA

Percentage of industrial land 
area ILA

Percentage of logistics and 
warehousing land area LLA

Percentage of land area for 
transportation facilities TLA

Percentage of green space GLA
Percentage of water area WLA

Spatial form

Intensity of land development LDI Ratio of total construction land to urban area

Building density BUD Ratio of total base area of building to occupied land 
area within certain area

Volume ratio VOR Ratio of total above-ground floor area to site area

Sky openness SOD Quantitative description of degree of openness of 
urban form

Roughness length RLD Height when air flow is subjected to rough element 
resistance of ground.

Ventilation potential factor VPF Urban ventilation capacity

Road traffic

Road area ratio RAR Ratio of total urban road land area to total area 
Density of primary road 

network PRD Ratio of total centerline length of trunk roads to 
total site area

Density of secondary road 
network SRD Ratio of total centerline length of secondary roads 

to total site area
Transportation coverage BLD Number of bus stops within 500 m of travel space

Density of bus stops BSD Sum of the service areas covered by bus stops 
within 500 m 

Green open 
space

Green space coverage ratio GSR Ratio of total area of each green area in built-up 
area to total area of built-up area

Patch density PD Number of patches per unit area

Aggregation index AI Degree of aggregation of different patch types in 
landscape

Landscape shape index LSI Complexity in spatial pattern of shapes used to 
measure landscape types

Landscape division index DIVISION Degree of fragmentation of landscape patches
Number of patches NP Number of patches of landscape type 
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natural ecological spaces at the periphery of the city; areas with higher health risk were scattered 
in the central areas of the city, primarily around major commercial and high-density residential 
areas. Natural ecological space and respiratory health risk in the city showed similar distribution 
patterns; the value of health risk was lower in areas with higher urban vegetation coverage and 
more open space. In terms of time variation (Fig. 4), respiratory health risks in Shenyang showed 
significant seasonal spatial distribution differences, although they demonstrated the same trend 
in spring and summer. The high-risk area was slightly lower in summer than in spring, with the 
main health risk areas scattered in the urban core. The range and location of health risks in 
autumn were significantly different from those in spring and summer. The range of respiratory 
health risks in autumn was the smallest, accounting for 6.87% of the total area. The high-risk 
areas were scattered and concentrated in the urban center. In winter, the range of the respiratory 
health risk index was the smallest, and the highest risk index was 10.4. However, the range of 
respiratory health risk in winter was the highest throughout the year, and the high-risk areas 
were concentrated and distributed in the urban center. 

Fig. 4. (Color online) Spatial distribution of respiratory health risks by season and year in the core area of 
Shenyang in 2019.
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 Shenyang respiratory health risks showed strong spatial and temporal heterogeneities. This 
phenomenon may be caused by changes in human activities, spatial environment, and 
meteorological conditions. Meteorological factors in the study area show a clear seasonal 
variation, as the study area was located in the temperate monsoon region in northeastern China. 
Thus, seasonal changes under urban meteorological conditions also affect the temporal 
variability of respiratory health risks. The dominant wind directions in Shenyang are 
southeastern in summer and northwestern in winter. In winter, numerous inhalable particles are 
brought from the Loess Plateau, leading to an increased pollutant concentration in these seasons. 
Shenyang has a long and cold winter, with a total of five months of heating time throughout the 
year. Pollutant concentration is generally higher in winter and early spring than in other seasons 
due to coal-fired heating.(32) In addition, the large temperature difference between day and night 
at high latitudes and the clear atmospheric temperature inversion also provide favorable 
conditions for the easy accumulation and diffusion of pollutants.(33) Urban green space and water 
bodies exert important effects on atmospheric pollutants and can also adjust the microclimate 
environment.(34) The purification effect of urban vegetation and water bodies is the strongest in 
the summer, resulting in the best air quality; in contrast, the purification effect of urban 
vegetation and water bodies has a weak effect in winter, leading to the worst air quality.(35) Our 
study demonstrated that land use, spatial morphology, road transportation, and green open space 
all play important roles in respiratory health risks. The urban spatial environment can change the 
local spatial microclimate environment, thereby affecting the city’s local air pollution.(36) The 
urban spatial environment is also an important source of urban air pollution, and its layout has a 
direct effect on respiratory health risks.(37) Urban industrial, traffic, and individual building 
spaces are all important sources of air pollution.(38) Therefore, the layout of such spaces can lead 
to spatial variability in air pollution. Eastern Shenyang houses the Chipanshan Ecological 
Protection Area. The density of urban population and green space area gradually increase from 
the center outwards, which is one of the main reasons for the temporal difference of air quality 
and health risk.
 In addition, high-risk areas of respiratory health are affected not only by air pollutants but 
also by population concentration.(39) The results of respiratory health risk evaluation showed that 
the highest risk value was much lower in winter (10.40) than in the other three seasons 
(approximately 30). Compared with the other seasons, the statistical data of the population 
distribution in winter reflect that the winter population decreased by 1 million, mainly caused by 
migration during the Chinese Spring Festival. The average risk values of the four seasons were 
similar. Therefore, we found that the health risk in winter was still the most serious. The urban 
spatial environment and urban land use functions will affect the spatial flow and distribution of 
the population.(40) Areas with poor atmospheric conditions and high population density tend to 
exhibit higher respiratory health risks.

3.2	 Effectiveness	of	risk	factors

 We first calculated the correlation coefficients (Pearson coefficients) between each spatial 
environmental element and spatial risk values by using the function of multiple stepwise 
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regression analysis to measure the effectiveness of the selection of spatial environmental 
elements. The results showed that there was a correlation between the respiratory health risk 
space and 23 spatial environmental factors in Shenyang (Table 3). The correlation coefficient 
values between the annual risk value and the percentage of logistics land area and the percentage 
of primary road network density were close to 0, and the p-value was greater than 0.05, thus 
indicating that there was no correlation between the annual risk value and the two factors. 
Therefore, these two factors were excluded from subsequent measurements.
 The factor detector of the geodetector revealed the extent to which spatial environmental 
factors explain the variation in respiratory health risk. The factor detector showed the following 
results (Table 3). In terms of land use, only the percentage of residential land area showed a 
strong correlation with respiratory health risk, with an explanatory power of 11% for the risk; the 
percentage of green space area showed a more general correlation with respiratory health risk, 
with an explanatory power of 6.4%; the percentage of other land area showed a weak correlation 
effect with respiratory health risk, indicating that, in terms of urban land use, only the percentage 
of other land areas showed a weak correlation with respiratory health risk. These results indicate 
that only residential land use and green areas have a significant effect on respiratory health risk. 
In terms of urban spatial morphology, all spatial environmental elements showed significant 
correlations. The volume ratio and sky openness had the strongest explanatory power for 
respiratory health risk, explaining 26.9 and 25.3% of the risk variation, respectively, indicating 
that urban spatial morphology is a key factor affecting respiratory health risk. In terms of road 
traffic, the road area ratio showed a weak correlation with respiratory health risk, with an 
explanatory power of 2.4% of the risk; there was a general correlation between respiratory health 
risk and SRD, BLD, and BSD, with explanatory powers of 6.8, 6, and 6.4%, respectively. In 
terms of urban green open space elements, the green space coverage ratio showed a general 
correlation with respiratory health risk, with an explanatory power of 6.4%. The remaining 
spatial indicators showed a strong correlation with respiratory health risk, with an explanatory 
power of approximately 10% for each indicator.

Table 3
Pearson correlation analysis results and factor detection results.

Project Pearson 
correlation q value Project Pearson 

correlation q value

PLA 0.063** 0.02 VPF 0.196** 0.118
CLA 0.138** 0.037 RAR 0.092** 0.024
RLA 0.319** 0.115 PRD 0.001 —
ILA −0.097** 0.011 SRD −0.183** 0.068
LLA −0.036 — BLD 0.258** 0.06
TLA 0.092** 0.024 BSD 0.243** 0.066
GLA −0.237** 0.064 GSR −0.237** 0.064
WLA −0.193** 0.042 PD −0.324** 0.104
LDI 0.267** 0.079 AI −0.277** 0.094
BUD 0.307** 0.138 LSI −0.313** 0.113
VOR 0.509** 0.269 DIVISION −0.102** 0.107
SOD −0.464** 0.253 NP −0.324** 0.108
RLD 0.151** 0.102

Note: p > 0.05, *p < 0.05, **p < 0.01. The p-value values were all less than 0.001.
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 According to the spatial autocorrelation analysis, the percentage of logistics land area and the 
density of the primary road network did not correlate with the annual risk value; this is mainly 
due to urban management constraints, as logistics land is not deployed within the Third Ring 
Road, which exerts a substantial impact on the quality of the air environment. Previous studies 
have shown that primary road networks are both an important source of urban traffic pollution 
and also an important urban corridor for the exclusion of air pollutants;(41) thus, the density of the 
primary road network is not an important factor affecting the risk level.
 Related studies have shown that urban land expansion significantly affects air pollution, with 
higher levels of air pollution in areas with higher levels of urban land development.(42) Wang et 
al. suggested that the spatial structure of cities with high population density caused an inverted 
U-shaped change in air pollution based on the statistics of 194 prefecture-level cities in China, 
and in the eastern part of China, residential land, public facilities land, and transportation land in 
the urban structure had the greatest impact on air pollution.(43) This is consistent with the 
findings of our study. In addition, RAR, BLD, and BSD also had positive effects on respiratory 
health risk, but with a lower intensity than land use and spatial pattern; this indicates that road 
traffic is an important source of air pollutants, but it accounts for a relatively small proportion of 
all pollutants. This finding was verified in a study by Harrison et al.(44)

 The layout, scale, and vegetation configuration of green spaces help to form urban ventilation 
corridors, purify air, absorb dust, and improve air quality in urban areas,(45) thereby affecting 
public respiratory health; this is consistent with our findings. We found that an increase in the 
density of urban secondary road networks reduced the respiratory health risk throughout the 
year, which is consistent with the results of previous studies that small neighborhoods and dense 
road networks can effectively mitigate urban air pollution.(46) The results indicated that sky 
openness had the strongest negative effect on risk. This may be because the higher the sky 
openness of a region, the easier it is for clean airflow from the periphery to enter the interior of 
the city, and the easier it is to expel the internal polluted air to the periphery of the city. In 
contrast, a higher volume ratio brings an excessive population concentration, and a high level of 
site development will reduce the sky openness of the region, thereby increasing air pollution.(47)

3.3 Interaction of risk factors

 Interaction detection was used to detect whether two potential factors interacted with each 
other. The detection results showed that each spatial environmental element variable enhanced 
its own effect on respiratory health risk to some extent after interaction. Interaction detection 
determined the interaction effects between pairs of factors. We measured the positive and 
negative effects of spatial environmental factors on respiratory health risk separately.
 The results of measuring the factors with positive effects on respiratory health risk (Fig. 5) 
showed three interaction effects: “enhanced, nonlinear”, “enhanced, two-factor variable”, and 
“single-factor nonlinear weakening”. The first and second scenarios imply that the joint effect of 
two factors on respiratory health risk is greater than the effect of two independent factors. 
Therefore, for any two factors other than the volume ratio factor in this study, their combined 
effects on respiratory health risk were stronger than those considered independently. We found a 
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stronger effect of an increasing mix of urban functional land use categories on respiratory health 
risk. For example, the interaction of PLA (q = 0.020) and CLA (q = 0.037) nonlinearly increased 
respiratory health risk, with a q value of 0.060 after the interaction, and the interaction results of 
other types of land use showed similar results. This finding may be explained by the fact that 
when different types of land use are functionally mixed, population movement within the area 
increases, leading to multiple population concentrations and a subsequent rise in air pollutant 
levels from human activities.(48) BLD and BSD had a small effect on their own but a large 
interaction with other factors. For example, the interaction of BSD (q = 0.066) and TLA 
(q = 0.024) nonlinearly increased respiratory health risk (q = 0.110). There could be two potential 
reasons for this. One is that roads are an important source of pollution in the region, and public 
transportation is usually located along major urban roads; the other is that a developed public 
transportation system results in the concentration and mobility of people in space; when these 
two factors are combined, respiratory health risk is significantly enhanced.(49) In this study, we 
also found that the interaction results of the floor area ratio factor with other land area share 
factors showed a nonlinear weakening trend. For example, the interaction result of VOR 
(q = 0.296) and PLA (q = 0.020) had a q value of 0.278. The reason for this phenomenon may be 
that, on the one hand, land with a high plot ratio will increase the number of people within the 
land, resulting in increased respiratory health risk. On the other hand, land with a high plot ratio 
will have a larger building height and a lower building density, which will increase the green 
space area within the land and improve the ventilation state of the land.(50) The interaction 
between volume ratio and road area ratio showed a nonlinear weakening trend, confirming the 
mitigating effect of “small neighborhoods and dense road networks” on respiratory health risk.
 The results of the measurement of the factors with negative effects on respiratory health risk 
(Fig. 6) showed two interaction effects: “enhanced, nonlinear” and “enhanced, bivariate”. The 
interaction between ILA and SOD was greater than the single q value of the two factors 

Fig. 5. (Color online) Results of spatial environmental interaction detection of positive effects.
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separately and weaker than the sum of the two individual effects, resulting in an enhanced two-
factor variable. The interaction between ILA and other factors with negative effects was greater 
than the sum of the two individual effects, resulting in an enhanced nonlinear interaction effect. 
The interaction between PD and SOD was enhanced and nonlinear, whereas the interaction 
between any other negative effectors was enhanced and bivariate. Therefore, the interaction for 
any two factors in the study had a stronger effect than their independent effects. The interaction 
results of factors such as the proportion of industrial land and green space in Shenyang showed 
nonlinear enhancement; the reason for this may be that industrial land (clean, unpolluted 
industrial land) within the city is characterized by low building density, low building height, and 
good greenness. The results showed an enhanced bivariate interaction of various factors of green 
space and water bodies. Previous studies have shown that green space and water body factors  
impact respiratory health in three aspects: layout, scale, and vegetation configuration.(51) The 
scale effect of green space can form urban ventilation corridors, purify the air, and absorb dust. 
The patch size and shape of natural elements and corridor settings have a direct effect on the 
purification of air pollutants. The type of green space and vegetation distribution also have a 
significant effect on regulating the microclimate environment.(52) These characteristics are 
consistent with our findings; therefore, the reasonable arrangement of natural elements can 
mutually reinforce the mitigation effect on respiratory health risks.

3.4 Policy implications for space environment construction

 The identification of the spatial pattern of respiratory health risks and potential risk factors 
can form the basis for planning and control implementation, making the construction of healthy 
cities more operable. The key to the optimization of urban spatial environment is to build a low 
pathogenic spatial exposure environment. According to the main results of this study, the 
planning and control methods can be carried out in four aspects: (1) Optimization of urban land 

Fig. 6. (Color online) Results of spatial environmental interaction detection of negative effects.
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use: The focus is on the optimization of the layout of residential, commercial, and public service 
land to avoid excessive dispersion or concentration; commercial and public service land should 
form a layout pattern of “small concentration and large dispersion” (commercial and public land 
of the same level should be appropriately concentrated, whereas commercial and public land of 
different levels should be dispersed).(15) The balanced layout of residential land can guide the 
spatial and temporal distributions of population flow, reduce the pressure of traffic flow, and 
reduce the concentration of a large number of people in high-risk areas. (2) Optimization of 
urban spatial form: The space form with low floor area ratio, low building density, high 
ventilation, and high sky openness is beneficial to human respiratory health. Therefore, in  urban 
planning, it is necessary to control the intensity of land development. Because sky openness is 
the factor that has the strongest effect on respiratory health risk, “high-rise, low-density” 
development is better than “low-rise, high-density” development. Because the risk is most severe 
in winter in Shenyang, the optimization and adjustment of urban spatial form have the most 
significant protective effect on health risk. (3) Optimization of urban road traffic: Urban roads 
and traffic facilities are a “double-edged sword”, which are both a major source of pollution and 
an important ventilation corridor in the city; the planning can appropriately increase the density 
of the road network and the width of the road, and the branch road network can be expanded to 
avoid the formation of crowded and narrow road forms; at the same time, the high-risk road 
sections should be protected by applying greening vegetation design. The design of greening 
barriers on both sides of intersections and roads can be strengthened to build an urban road dust 
retention network, and the layout of traffic service facilities can be improved to provide a 
balanced level of service to avoid the excessive concentration of people in traffic facilities and 
increase the risk of respiratory health exposure. (4) Optimization of urban green space and open 
space: Green space coverage rate and landscape separation play an important role in the 
regulation of respiratory health risk; the land area of blue-green space should be increased in the 
planning and appropriately dispersed layout to maximize the health benefits of green space. 
More open space should be arranged in high-risk areas to increase the openness of the sky in the 
area. A network-type green space layout pattern of different levels should be formed in the city 
construction.(53)

 This study has some limitations. First, we did not combine meteorological environment 
factors and health risks, primarily because we only had continuous meteorological monitoring 
data for Shenyang and did not obtain continuous meteorological monitoring data from each 
monitoring station. Second, the study was based only on the monitoring data of the same 
horizontal plane in the city, whereas the distribution structure of urban air pollutants and 
population also presents a vertical distribution trend.(54) We did not determine the risk pattern of 
urban vertical space. Therefore, follow-up studies can combine long-term monitoring data of the 
urban meteorological environment to further verify the key spatial environmental factors 
affecting respiratory health to form a spatial respiratory health risk pattern in urban longitudinal 
space.
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4. Conclusion

 We improved the AQI sensor method and established a respiratory health risk exposure 
assessment model. The spatial distribution pattern of the respiratory health risks in Shenyang, 
China, was investigated, and the relationship between spatial environmental factors and 
respiratory health risk was further analyzed. The results were as follows: the spatial distribution 
pattern of the health risks in Shenyang in 2019 showed notable spatial heterogeneity and 
temporal variability. The respiratory health risk was the lowest in autumn and the highest in 
winter. Overall, 23 types of spatial environmental factor, including land use, spatial form, road 
traffic, and green space, were highly correlated with respiratory health risks, indicating that they 
play a role in the formation of such risks. Two of them, urban spatial morphology and green 
space, were the key factors affecting the degree of respiratory health risk. The geographical 
detection results showed that the volume ratio, building density, sky openness, ventilation 
potential coefficient, and landscape shape indicators played a greater role in affecting respiratory 
health risks than the other spatial environmental factors. The explanatory power of the 
interaction between any two factors other than the volume ratio factor on respiratory health risks 
far exceeded that of a single factor. Despite some limitations, the findings provide new 
perspectives for optimizing the urban spatial environment and designing healthy cities. They 
stimulate further research on the relationship between urban spatial environments and 
respiratory diseases, thus contributing to the understanding of urban environmental-respiratory 
health mechanisms. Finally, we also emphasize the importance of exploring new indicators for 
assessing the relationship between population and respiratory exposure risk.
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