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 In this study, we utilized unmanned aerial vehicle (UAV) and high-precision 3D light 
detection and ranging (LiDAR) scanning to collect data before and after an earthquake-resistant 
behavior test on a reinforced concrete hybrid frame. We analyzed the deformation of the hybrid 
frame before and after the test and determined the specific deformation, scale, and change rule. 
The UAV image data was transformed into a 3D true-color model using the structure from 
motion (SfM) algorithm. Additionally, the 3D Delaunay surface reconstruction algorithm was 
used to create a 3D point cloud model and Rodriguez matrix, which are then used to align the 
two-phase model. Subsequently, a comparison was made in three dimensions between the 
distribution of the hybrid frame’s photographic and 3D point cloud models before and after 
undergoing earthquake-resistant behavior tests. This method allows for a precise analysis of the 
local deformation degree of the hybrid frame structure compared with the sensors. While the 
sensors can only analyze internal structural changes, this method provides results for both local 
and surface deformation degrees, which are not available in the sensor data. The comprehensive 
experimental comparison results demonstrate that the reinforced concrete hybrid frame structure 
had a collective rightward displacement before and after the earthquake-resistant behavior test. 
Moreover, nodes and edges exhibited more significant deformation, and the test resulted in a 
more stable overall framework.

1. Introduction

 The reinforced concrete structure (RCS) hybrid frame comprises reinforced concrete (RC) 
columns and beams, the reinforced concrete structure of which refers to the structure built of 
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concrete strengthened through steel reinforcement. RC columns offer substantial resistance to 
lateral forces, whereas steel beams exhibit favorable behavior in earthquake scenarios. These 
characteristics align with the demands of contemporary construction technology, as outlined by 
various national and international organizations since the early 1980s. The United States 
initiated developing the RCS hybrid frame system, which combines traditional RC frame, steel, 
and steel-framed concrete structures. This system has been effectively implemented in medium- 
and high-rise buildings. Subsequently, RCS buildings have gained extensive utilization in the 
global construction industry. To attain the desired levels of design strength and durability, it is 
necessary to employ suitable building techniques.(1) Owing to the frequent occurrence of natural 
disasters around the world, the seismic performance of RCS in various natural disasters, 
especially in earthquake disasters, plays a decisive role in the safety of residents; thus, it is 
necessary to study the seismic performance of RCS. At present, a variety of studies have been 
carried out, including but not limited to the use of fiber reinforcement in RCS to improve the 
structural performance,(2,3) the new connection method of steel-beam wrapped concrete 
composite columns,(4) the analysis of structural deformation(1,5)  in the experiment of RCS, and 
the evaluation of the performance of trapezoidal corrugated web reduced beam section 
connection under cyclic load.(6) 
 The subject of this study is the precast concrete pipe composite column-steel beam hybrid 
frame. A load-bearing component connects steel beams and concrete pipes using shear-resistant 
connectors. This structure combines steel’s tensile strength and concrete’s compressive 
performance, resulting in high load-bearing capacity, stiffness, earthquake resistance, and 
dynamic performance. Additionally, it offers the advantages of small cross-sectional size, easy 
construction, and other benefits. In this study, we combined unmanned aerial vehicle (UAV) 
photogrammetry and 3D light detection and ranging (LiDAR) scanning technology to collect 
data on the research object. These methods are commonly used to analyze urban scenes and 
ancient buildings, and have many other uses such as the quasi-vertical wall of a dam,(7) 
infrastructure monitoring and bridge evaluation, industrial chimney geometry,(8) and the 
measurement of towers and churches.(9) However, these methods have not been applied to the 
analysis of the local deformation of steel structures. In this work, we present an enhanced data 
acquisition and analysis process that extends the scope of deformation analysis for steel 
structures beyond sensor data acquisition and finite element analysis. 
 3D LiDAR scanning is a system that combines three technologies – laser, global positioning 
system (GPS), and inertial navigation system (INS) – to acquire point cloud data and generate 
accurate digitized 3D models. The combination of these three technologies allows for the 
acquisition of a 3D view of the surrounding area with the consistent and absolute measurement 
of point locations. Utilizing 3D LiDAR scanning technology enables the acquisition of extensive 
3D point cloud data on the intricate surfaces of buildings. By analyzing and processing this data, 
we can comprehensively and precisely understand the building’s tilt, settlement,(10,11) and overall 
deformation. This method is extensively employed in examining and safeguarding distorted 
structures and the architecture domain. It can be utilized to scrutinize the flaws in the 
construction of curtain walls,(12) precisely gather data, and conduct a thorough analysis and 
evaluation of intricate steel structures(13) and substantial steel structures.(14,15) Furthermore, 3D 



Sensors and Materials, Vol. 36, No. 7 (2024) 3027

LiDAR scanning technology can be employed to assess the corrosiveness of the surface of the 
steel reinforcement(16) and other related applications. Its application before and after an 
earthquake disaster is also very extensive, and it can extract the seismic characteristics, 
deformation,(17–19) and distribution of deformed buildings(20) with small deviations that cannot 
be detected by the naked eye. UAV photogrammetry can be used to capture multiangle target 
images and correct them with camera orientation, ultimately creating a 3D model that can be 
used for mapping or terrain analysis. In large-scale construction surveys, UAV photogrammetry 
can effectively capture features and textures. It can considerably minimize the manual effort 
required to conduct surveys of historic architectural heritage(21,22) and acquire urban data.(23) 
The conventional UAV data collection process requires enhanced stability. However, owing to 
ongoing advancements in science and technology, the device’s portability has been enhanced,(24) 
and its capabilities are progressively expanding, hence alleviating the workload associated with 
fieldwork. In an earthquake disaster, UAV photogrammetry can generate a dense point 
cloud(25,26) and combine thermal infrared technology(27) or 3D LiDAR technology to analyze 
building or terrain deformations(28) in a more sophisticated way to help with earthquake relief 
and post-disaster reconstruction. 
 To avoid the problems of partially missing data and unclear characterization caused by a 
single sensor, we carried out data acquisition and deformation analysis of the manufactured 
concrete pipe combined column-steel beam hybrid frame based on UAV photogrammetry and 
3D LIDAR synergistic observation technology. This study is mainly divided into three phases: 
program design and data acquisition, experimental data preprocessing, and data analysis. The 
specific technical roadmap is shown in Fig. 1.
 In the program design and data acquisition phase, the overall program design and data 
acquisition of the research object are combined with the actual situation, which mainly includes 

Fig. 1. (Color online) Research technical route.
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the deployment of 3D LIDAR scanning sites and the planning of UAV photogrammetric routes. 
In the experimental data preprocessing phase, the noise is removed from the 3D LIDAR 
scanning point cloud, and the 3D model is formed after the encapsulation process of station-by-
station alignment.(29) For the true-color 2D images acquired by the UAV, automatic and manual 
alignments are performed, and to ensure that the data utilization is maximized, 3D reconstruction 
is performed on the basis of the SfM(30) algorithm. The two models were continuously and 
repeatedly trimmed, cropped, and aligned on the basis of the Rodriguez matrix algorithm for 
subsequent deformation analysis. In the data analysis phase, the two data models were analyzed 
macroscopically and microscopically to determine the specific deformation parts and the degree 
of deformation in the two data before and after the seismic performance test. 

2. Data and Materials

2.1 Study object

 The seismic experimental facility is located at Tianjin University in China. A one-bay 
transverse frame of a four-story dormitory building was selected as the prototype of our 
experiment. A scaled-down model of an energy-dissipating RCS was designed and built at a 
ratio of 2/3, consisting of a single story and a single span. The RCS structure is designed with a 
scale ratio of 1/2, a column spacing of 3 m, a floor height of 1.8 m, a combined beam with a full 
shear connection of H200 × 100 × 6 × 8, a RC floor slab of 60 mm thickness, and a width of 1100 
mm. The designed axial compression ratios are 0.43 for side columns and 0.81 for center 
columns. The column beam bending capacity ratio, also known as the column end moment 
reinforcement coefficient, is 1.6, and the structure has a strong node coefficient of 1.38. 
 The beams and columns in the energy-dissipating substructure are crucial components built 
to withstand significant forces. The concrete wall in the vertical joints is engineered to provide 
damping force, taking into account the maximum displacement that may occur. The primary 
goal of the energy-dissipating substructure is to ensure that the beams and columns remain 
intact and do not bend during infrequent earthquakes.
 Additionally, the core of the beams, columns, and nodes should exhibit shear elasticity. The 
primary performance goals for vertical seam concrete walls are to maintain their elasticity 
across several earthquakes and to surrender and dissipate energy during severe and infrequent 
earthquakes. The primary purpose of implementing a vertical slit slab is to enhance the 
structural resilience and earthquake resistance of the building. The vertical slit slab serves as a 
secondary line of defense against seismic activity, specifically targeting the damage sequence of 
the slab-beam column. However, note that the vertical slit slab alone does not provide all the 
necessary stiffness; the overall stiffness is achieved through the combined contribution of the 
frame and vertical slit slab. The structural loading regime involves the joint management of 
force and displacement. Initially, the loading is force-controlled, and then it transitions to 
displacement-controlled. The loading process stops when it reaches 85% of the yield load. The 
loading is intended to be static to intensify the damage process of the components. The duration 
of the seismic process is typically very brief, approximately 10 s. The experiment complies with 
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the code for the design of concrete structures (GB 50010-2010) and the code for the seismic 
design of buildings (GB 50011-2010), sets the loading time of 20 h to model the damage process 
caused by an earthquake accurately, by repeating the loading procedure to replicate the effects of 
an actual earthquake, and analyzes the deformation before and after the earthquake.

2.2 Data acquisition and processing

 On the basis of 3D LiDAR scanning technology,(31) we used a FARO Focus XD130 LIDAR 
scanner with an accuracy of 2 mm for point cloud data acquisition [Fig. 2(a)]. The specific 
technical parameters of the LIDAR scanner are shown in Table 1. 
 Additionally, on the basis of the principles of close-range photogrammetry, the DJI Jingling 
PHANTOM 4 RTK UAV with a maximum resolution of 20 MP was employed as the research 
object, the technical parameters of which are shown in Table 2. The process involves capturing 
images from multiple directions [Fig. 2(b)], guaranteeing a navigational overlap of 80% and a 
sideways overlap of more than 70%. The SfM algorithm was used to determine the original 
camera position, applying beam leveling and other techniques, and finally solving for null triples 
to create a dense point cloud and an image model with accurate color texture.

Fig. 2. (Color online) Data collection site photos: (a) 3D LiDAR scanning and (b) close-range UAV. 

(a) (b)

Table 1 
Technical parameters of FARO Focus XD130.
Parameter Unit Range
Pixel Pix 70 million
Optical resolution dpi 600 × 1200
Scanning range °/° Horizontal 360, Vertical360
Scanning distance m 0.6–330
Maximum resolution °/° Vertical: 0.009, Horizontal: 0.009
Scanning speed point/s 976000
Ranging error mm ±2
Temperature parameter ℃ 5–40 ℃
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 The data acquisition process was conducted in two stages. The first stage involved acquiring 
the 3D LiDAR point cloud and UAV photogrammetry images of the research object in its 
original state before the earthquake-resistant behavior test [Fig. 3(a)]. The second stage involved 
acquiring the 3D LiDAR point cloud and UAV photogrammetry images of the research object 
after it was deformed by the earthquake-resistant behavior test, specifically with the addition of 
a vertical slit steel plate [Fig. 3(b)]. These data sets were then used to analyze the deformation of 
the hybrid frame structural body before and after the test. The obtained data findings are shown 
in Fig. 4.

3. Methods and Technology

3.1 Multifeature constraints for overall multisite cloud alignment

 Research efficiency is enhanced to mitigate the cumulative error caused by multistation 
transmission, enhance data quality, and reduce the time spent on data processing. In this study, 
we utilized the high-precision control network as the benchmark constraint, employing the 
iterative closest point (ICP) technique introduced by Besl and McKay in 1992.(32) By considering 
the characteristics of points, lines, and surfaces in multisite cloud data and their mutual 
constraints, we employed the indirect leveling theory to determine the initial values for the 
station attitude and unknown point coordinates. Using these initial values, we performed 
iterative calculations with a weight function that incorporates each constraint error. This weight 
function serves as a constraint to achieve a solution for all the point cloud data. This overall 
solution is represented by
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 Equation (2) represents the unified result, where k is the number of stations in the aligned 
point cloud, m is the number of point constraint features, n is the number of surface constraints, 
and l indicates the line constraints.

Table 2
Technical parameters of RTK UAV.
Parameter Unit Range
Hover accuracy m Vertical: ±0.1  Horizontal: ±0.1
Satellite positioning modulev cm Vertical: 1.5  Horizontal: 1.5
Pixel pix 20 million
Photo resolution – 5472 × 3078  4864 × 3648  5472 × 3648
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(a) (b)

Fig. 3. (Color online) Hybrid frame structure before and after test: (a) hybrid frame structure before test and (b) 
hybrid frame structure with vertical slit steel plate after test. 

(a) (b)

(c) (d)

Fig. 4. (Color online) Comparison of initial point clouds in two phases: (a) 3D LiDAR scanning point cloud of first 
phase, (b) UAV photogrammetry point cloud of first phase, (c) 3D LiDAR scanning point cloud of second phase, and 
(d) UAV photogrammetry point cloud of second phase.
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 The observation residual is denoted by V. The coefficient matrix of the spatial transformation 
parameter A represents the spatial transformation parameter. The correction number is denoted 
by t. The coefficient matrix of the to-be-determined point is represented by B. The to-be-
determined point parameter is denoted by X. Lastly, the observation residual is denoted by L. 
Each constraint has varying degrees of influence, and the error weight P is used to create the 
error model of the joint solution, which is expressed in matrix form as
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 To ensure the rigor of the pilot study, before the point cloud alignment of the two phases of 
data, no pruning is performed on the point cloud data except for denoising, the objects without 
spatial position transformation and deformation are used as the alignment benchmark, and the 
relatively fine and complete point cloud data are selected as the reference base for the deformed 
objects to be aligned.

3.2 Selection and registration of homonymous points of two-phase data

 To mitigate human error and prevent data accuracy loss, the point cloud is not thinned before 
aligning the two-phase data. The alignment method involves selecting the reference area near 
the research object but not included in the test image. The homonymous points are chosen on the 
basis of their prominence and visibility to prevent significant systematic errors caused by the 
deformation shift of these points. Such errors can interfere with the accurate analysis of the 
model and reduce its reliability and precision.
 The main principle of the two-phase data alignment is as follows: first, the rotation angles εx, 
εy, and εz, the translations ΔX, ΔY, and ΔZ, and the scale factor σ are solved, so as to calculate the 
rotation matrix R and the translation matrix T when the target model is transformed. The 
coordinates of the vertex information after the deformation are set to be [xyz]T, those of the 
vertex information before the deformation are set to be [XYZ]T, and the transformation formula 
for the rotational transformation is given as
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 First, calculate the scale factor σ. The ratio of the corresponding side lengths is back-
calculated from the coordinates of two homonymous points selected in both coordinate systems 
as
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 From the basic principle of the Rodriguez matrix,(33) in the process of transforming the 
coordinates, there exists an anti-symmetric matrix S. The anti-symmetric and rotation matrices 
are related as follows, where I is a third-order unit matrix as

 1( )( ) .R I S I S −= + −  (6)

 The anti-symmetric matrix can be represented by the three parameters in the Rodriguez 
matrix as
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 At this point, the rotation matrix R is the Rodriguez matrix, whose expression can be 
expressed as Eq. (8). It can be seen that only the parameters should be solved to find the rotation 
matrix R. From this, the rotation matrix solver model is utilized to solve for the parameters. In 
solving, at least six equations are required and thus at least three homonymous point pairs are 
required for solving.
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 The translation matrix T (T = [ΔXΔYΔZ]T) can be solved by solving the obtained rotation 
matrix. After substituting the rotation matrix into Eq. (4), the translation parameters are finally 
obtained by averaging the multiple sets of translation parameters obtained, i.e., Eq. (10) (where n 
is the number of homonymous point pairs).
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 In aligning the two-phase data model, we picked nine pairs of homonymous points [Fig. 4(a)] 
to create the error equations and solve the parameters. This allowed us to successfully determine 
the rotation matrix R and the translation matrix T. As shown in Fig. 5, two reference regions 
were used to pick nine pairs of homonymous locations. We selected nine pairs of homonymous 
points from two reference regions. The first region is the part of the wall in the test space that did 
not experience any deformation during the earthquake-resistant behavior test. We chose six 
corner points that were easily visible through scanning. The second region is the load-bearing 
wall portion on the right side of the study object, where we selected three visible corner points. 
The nine chosen points with identical names exhibit well-defined boundaries around them and 
can serve as a reliable foundation for comparison. Furthermore, selecting distinct reference 
locations can enhance the precision of data alignment across the two phases and establish a 
calibration foundation for reciprocal validation.

3.3 Removal of redundant interference point clouds

 In this study, we utilized a dispersive scanning 3D LiDAR scanner, which exhibits a wide 
scanning range and characteristics such as a multipath effect. In scanning, numerous objects 
surrounding the research target cause interference. This interference affects the analysis of the 

(a) (b)

Fig. 5. (Color online) Manual alignment of two-phase scan data: (a) first and (b) second phases. 
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point cloud’s peripheral features and ambient noise. Therefore, it is necessary to remove this 
point cloud manually and only retain the point cloud of the area being studied for subsequent 3D 
deformation analysis. The manual removal of the point cloud is necessary, retaining only the 
point cloud of the specific area of interest for later 3D deformation analysis. The point clouds of 
the research item, excluding the interfering point clouds, are depicted in Fig. 6.

3.4 3D reconstruction based on UAV photogrammetry

 To determine the 3D depth of the experimental scene and research object from multiangle 
true-color 2D images, we utilized the 3D depth information obtained from images captured by 
the Elf IV UAV. The 3D structure is then projected onto a series of images from various 
viewpoints for 3D reconstruction using the SfM algorithm. The primary components consist of 
two sections: matching search (which involves feature extraction, matching, and geometric 
verification) and incremental reconstruction (which includes initialization, picture alignment, 
triangulation, and beam technique leveling). The 3D reconstruction outcomes are achieved by 
inputting several photos.
 It is necessary to set up and calibrate the camera before data acquisition and provide the  
calibration images from different angles for input, then convert the world coordinate system to 
the image coordinate system to address the camera’s internal and external parameters. From 
various perspectives, capturing many 2D photographs of the research object and its surroundings 
is necessary using true-color technology. The SIFT feature detection operator is utilized to 
extract and describe the feature points of an image.
 Additionally, image stereo correction is necessary to ensure that the images are aligned in the 
same plane and level. This correction involves calculating the relative rotation matrix R and the 
relative translation vector T of the camera’s external parameters. Subsequently, the 3D 
coordinates of the point to be measured are determined by utilizing the geometric relationship 
between triangles. This is achieved by employing the known internal and external characteristics 
of the camera and the image point coordinates of the feature points in various photographs. 
Subsequently, the methods employed, such as SfM and beam leveling, are utilized to restore the 

(a) (b)

Fig. 6. (Color online) Scanning structural body point cloud (a) before and (b) after experimentation. 
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original camera position. This enables the subsequent 3D reconstruction of the study object; the 
result is shown in Fig. 7.

3.5 3D reconstruction based on 3D LiDAR scanning

 In this study, we used a surface reconstruction approach, specifically the 3D Delaunay 
triangular mesh,(34) to create a 3D model of a laser radar point cloud. The technique does surface 
extraction on the sampled points obtained during scanning (mapping the item in 3D space) to 
acquire an appropriate topology for building the initial Delaunay triangular mesh structure.
 Given the extensive data obtained through the 3D scanning technique and numerous factors 
that can cause interference, creating a satisfactory surface model is impractical. Therefore, it 
becomes essential to divide the vast number of point clouds into smaller sections and employ 
algorithms within each section to construct the model. Following the construction process, 
block-to-block splicing is carried out to achieve a surface reconstruction structure that exhibits 
enhanced precision and improved integrity.
 The effectiveness of surface reconstruction algorithms heavily depends on the quality of the 
point cloud data. A denser and more accurate point cloud enables the algorithm to be used more 
effectively. However, in reality, several uncertainties result in a limited number of sampling 
sites. This also poses a challenge for specific algorithms that rely on the sampled points’ standard 
information to compute the data for mesh generation appropriately. The 3D Delaunay algorithm 
exhibits superior adaptability, even in minor point cloud omissions. Nevertheless, it can produce 
a more comprehensive, transparent, and superior result than the other algorithms for the 
triangular mesh model (Fig. 8).

(a) (b)

Fig. 7. (Color online) Comparison of photogrammetric reconstruction model in two phases: (a) first and (b) second 
phases.
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4 Results and Discussion

4.1 Result analysis

4.1.1 3D deformation analysis based on UAV photogrammetry

 The UAV photogrammetry collects 2D truecolor images of the research object and its 
surrounding features. These images are obtained using photogrammetry, which converts 2D 
image data into 3D models. The collected data are then used for comparison by creating 3D solid 
models. The method also allows for the analysis of 3D deformation by comparing the data 
collected before and after the test. The results of this analysis are shown in Fig. 9.
 The statistics include the maximum positive deviation value of 0.8547 m and the maximum 
negative deviation value of −0.8700 m. The average positive deviation value is 0.8547 m, and the 
average negative deviation value is −0.1458 m. The standard deviation value is 0.2141 m, as 
shown in Fig. 10.

4.1.2  3D deformation analysis based on 3D LiDAR scanning

 When assessing the extent of deformation on the surface of a hybrid frame structure, the 
inaccuracy resulting from manual measurement is significant. It does not allow for obtaining 
measurements of deformation within the structure. In this study, we utilized the initial phase 
point cloud model as a reference point and compared it with the subsequent phase model after 
the seismic test. The 3D analysis ribbon diagrams generated from this comparative analysis [Fig. 
11(a)] offer a more accurate and visually precise observation of the deformation of the hybrid 
frame structure body. The green portion represents the deformation offset unaffected by the test.
 Conversely, the deformed section is mainly characterized by transverse micro-deformation, 
with its primary structure inclined towards the right rear. Notable distortions are present at 
specific connecting nodes and edges [Figs. 11(b) and 11(c)]. Nevertheless, the deformation of the 
structure is consistent throughout, indicating that the earthquake-resistant performance of this 
mixed-frame construction is generally stable and has a solid basis for withstanding seismic 

(a) (b)

Fig. 8. (Color online) Comparison of 3D LiDAR scanning triangular grid model in two phases: (a) first and (b) 
second phases.
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(b) (c)

(a)

Fig. 9. (Color online) UAV photogrammetry based 3D deformation analysis results: (a) top, (b) front, and (c) side 
views.

Fig. 10. (Color online) Deviation diagram for 3D deformation analysis of two-phase data from UAV 
photogrammetry.
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activity. Additionally, a vertical slit steel plate is incorporated into the structure, creating a 
twofold anti-side-standing system. This design enhances the structural body’s elasticity and 
optimizes the utilization of the material and the structural body’s maximum advantages.
 Through the 3D analysis and comparison of experimental statistics, we obtained data on the 
maximum positive deviation value (0.3900 m), maximum negative deviation value (−0.3900 m), 
average positive deviation value (0.0796 m), average negative deviation value (−0.600 m), and 
standard deviation value (0.0936 m). These results are illustrated in Fig. 12.

4.2 Comparison of data acquisition methods and accuracy analysis

4.2.1 Analysis of advantages and disadvantages of two data collection methods

 Our primary research data sources are photogrammetry images captured by UAV and point 
cloud data obtained through 3D LiDAR scanning. The images captured by UAVs were processed 

Fig. 11. (Color online) 3D LiDAR based 3D deformation analysis results: (a) top, (b) front, and (c) side views.

(b) (c)

(a)
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using the SfM algorithm to generate a 3D model with accurate color representation. The 3D 
Delaunay surface reconstruction algorithm was also used to construct a 3D point cloud model.
 UAVs are compact, facilitating effortless assembly and portability while also being user-
friendly, effectively fulfilling most operators’ data collection requirements. Simultaneously, the 
3D LiDAR scanning technology gathers extensive data from reliable sources. Aside from the 
measurement station’s initial setup, adjusting the tripod’s height, and configuring the parameters, 
no further modifications are necessary during the acquisition process. Moreover, manual 
operation will not have any detrimental effects on it.
 However, it is crucial to guarantee optimal lighting conditions and a consistent illumination 
surface while gathering data from a drone. Additionally, capturing many photographs is 
necessary to construct a more intricate model. Assume that an obstructing object is present 
during data collection. Consequently, the model obtained after data processing will exhibit 
phenomena where a portion of its structure is missing (Fig. 13). This is attributed to the 
limitations of the UAV camera, which fails to capture a sufficiently broad view angle. The 
precision of the measurements is diminished near the ground. The existing algorithms exhibit 
flaws, particularly in delineating the model boundaries and the portion of the ground adjacent to 
the surface. This lack of clarity hinders the study of the structural body’s earthquake-resistant 
behavior.
 Before data collection by the 3D LiDAR scanner, the user can specify the data density, 
allowing for scanning findings that are more closely aligned with the specific study objectives. 
Furthermore, 3D LiDAR technology gathers extensive data, enabling a more accurate depiction 
of the surrounding environment. However, this also necessitates a more significant amount of 
data processing. The presence of obstructing objects along the path of the laser emission will 
lead to data loss in the veiled portion of the research object. As a result of the limitations of UAV 
photogrammetry, such as a narrow field of view and low accuracy when capturing images close 
to the ground, the 3D LiDAR scanning used in this study provides a higher data accuracy than 
UAV photogrammetry. Additionally, the research data collected through 3D LiDAR scanning is 
more stable and comprehensive, as depicted in Fig. 14.

Fig. 12. (Color online) Deviation diagram for 3D deformation analysis of two-phase data from 3D LiDAR scanning.
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4.2.2 Accuracy analysis of deformation analysis results

 To better understand the pros and cons of the deformation analysis results from the two data 
acquisition methods before and after the seismic test, we utilized the analyzed data to create 
Table 3, showing the distribution of standard deviations, as well as bar charts (Fig. 15). Through 
observation and comparison, it is evident that UAV photogrammetry exhibits a higher degree of 

Fig. 13. (Color online) Ribbon diagram of 3D 
deformation analysis of two phases of UAV 
photogrammetry data.

Fig. 14. (Color online) Ribbon diagram of 3D 
deformation analysis of two phases of 3D LiDAR 
scanning data.

Table 3
Standard deviations for comparison of data from two phases.

UAV Photogrammetry 3D LiDAR Scanning
≥ Min < Max Percent(%) ≥ Min < Max Percent(%)

−0.1500 −0.1375 1.5276 −0.1500 −0.1375 0.6224
−0.1375 −0.1250 1.6328 −0.1375 −0.1250 0.5783
−0.1250 −0.1125 1.7763 −0.1250 −0.1125 0.6044
−0.1125 −0.1000 1.9419 −0.1125 −0.1000 0.6555
−0.1000 −0.0875 2.1566 −0.1000 −0.0875 0.7279
−0.0875 −0.0750 2.3585 −0.0875 −0.0750 0.9953
−0.0750 −0.0625 2.7177 −0.0750 −0.0625 2.3342
−0.0625 −0.0500 3.5913 −0.0625 −0.0500 10.9898
−0.0500 −0.0375 4.4855 −0.0500 −0.0375 16.0752
−0.0375 −0.0250 5.8507 −0.0375 −0.0250 19.9885
−0.0250 −0.0125 6.5237 −0.0250 −0.0125 11.6516
−0.0125 0.0000 5.7943 −0.0125 0.0000 6.3437

0.0000 0.0125 4.9414 0.0000 0.0125 3.6803
0.0125 0.0250 5.3320 0.0125 0.0250 2.6263
0.0250 0.0375 3.7560 0.0250 0.0375 2.7980
0.0375 0.0500 2.1991 0.0375 0.0500 2.4035
0.0500 0.0625 1.3349 0.0500 0.0625 1.8497
0.0625 0.0750 1.0249 0.0625 0.0750 1.5965
0.0750 0.0875 0.8845 0.0750 0.0875 0.6707
0.0875 0.1000 0.9211 0.0875 0.1000 0.3244
0.1000 0.1125 0.9812 0.1000 0.1125 0.2678
0.1125 0.1250 1.0330 0.1125 0.1250 0.1885
0.1250 0.1375 0.9625 0.1250 0.1375 0.1882
0.1375 0.1500 0.9428 0.1375 0.1500 0.2385
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fluctuating deviation and a lower level of stability in the analysis of deformation findings from 
the two data collection stages, compared with 3D LiDAR scanning. The precision of the 
deformation analysis outcomes obtained from the model created by UAV photogrammetry is 
inferior to that of 3D LiDAR scanning. The primary cause for this outcome is an excessive 
presence of obstructing entities surrounding the subject of study. A meticulous roping procedure 
is necessary for data processing to eliminate interfering items outside the hybrid frame structure. 
This operation causes the structural body to become partially absent, leading to insufficient 
analysis of deformation objects.

5. Conclusion

 To address the issues of incomplete data and ambiguous feature descriptions resulting from a 
single sensor, we utilized the combined capabilities of UAV photogrammetry and 3D LiDAR 
observation technology for data acquisition and deformation analysis on the hybrid frame 
consisting of manufactured concrete pipes and steel beams. An advanced alignment algorithm 
enhances the precision and effectiveness of aligning UAV photogrammetry images. This 
algorithm combines point, line, and surface features. Additionally, a dense point cloud generation 
algorithm based on SfM is utilized to achieve 3D-reconstructed close-range photogrammetry 
images. The Rodriguez matrix was employed to align the two-phase data before and after the 
earthquake-resistant behavior test to assist in investigating deformation in the hybrid frame 
construction. We utilized UAV to gather image data, enabling a more precise acquisition of 
model features and texture data. This facilitated the visualization of structural deformation and 
allowed for focused analysis and comparison of severe offset areas between two data phases. A 
high-precision 3D LiDAR scanning technique was employed to obtain a 3D point cloud model. 
The scanning accuracy was carefully controlled to within 2 mm to minimize accuracy loss. The 
resultant 3D reconstruction can significantly enhance the precision of the model and align it 
more closely with the real-world conditions of the hybrid frame structure, hence boosting the 
accuracy of the deformation analysis.

Fig. 15. (Color online) Distribution of standard deviation of deformation analysis by different methods.
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 We conducted comparative, qualitative, and quantitative analyses to obtain deformation data 
between two phases obtained under the UAV photogrammetry method for the manufactured 
concrete pipe combined column-steel beam hybrid frame and the deformation data obtained on 
the basis of 3D LiDAR scanning. The following conclusions were drawn:
(1) We found that the accuracy of data obtained through 3D LiDAR scanning is superior to that 

of UAV photogrammetry. Additionally, the data obtained in the study are more stable and 
substantially more comprehensive.

(2) Prior to and following the earthquake-resistant behavior test, the hybrid frame structure 
experienced a significant shift towards the right rear. This resulted in substantial deformation 
at the nodes and edges and extensive bending deformation and bending-shear cracks at the 
top of the columns. The columns also exhibited severe deflection, and there was noticeable 
crushing at the connection between the columns and the concrete beds. Despite these 
damages, the overall structure did not collapse and remained relatively stable post-test.

 In earthquake disasters, building collapse is one of the major causes of casualties, so rapid 
assessment of the extent of building damage is important for emergency management and 
rescue. In this study, we provided a feasible method for the deformation analysis before and after 
the earthquake disaster of buildings: the data were collected using the UAV and 3D LiDAR, 
which can be complementary to each other for their respective shortcomings and serve as a 
reliable basis for the sensor data to make a more comprehensive data supplement. The collection 
duration of this method in this experiment is 6 h in total, which requires less labor, but the data 
processing and analysis are more time-consuming. The accuracy is mainly dependent on the 
accuracy of the alignment algorithm, which can be applied to the field of the structural 
deformation analysis of buildings in actual earthquake scenarios with higher accuracy and 
contributing to earthquake relief and mitigation of disaster damage and casualties in the future. 
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