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With the development of computer vision and remote sensor devices, object detection in
aerial images has drawn considerable attention because of its ability to provide a wide field of
view and a large amount of information. Despite this, object detection in aerial images is a
challenging task owing to densely packed objects, oriented diversity, and complex background.
In this study, we optimized three aspects of the YOLOVS algorithm to detect arbitrary oriented
objects in remote sensing images, including head structure, features from the backbone, and
angle prediction. To improve the head structure, we decoupled it into four submodules, which
are used for object localization, foreground, category, and oriented angle classification. To
increase the accuracy of the features from the backbone, we designed a block dimensional
attention module, which is developed by splitting the image into smaller patches based on a
dimensional attention module. Compared with the original YOLOVS algorithm, our approach
has a better performance for oriented object detection—the mAP on DOTA-v1.5 is increased by
1.25%. It was tested to be effective on DOTA-v1.0, HRSC2016, and DIOR-R datasets as well.

1. Introduction

With the rapid expansion of artificial satellites and unmanned aerial vehicles, high-resolution
remote sensing images are easily available and widely introduced to smart city systems,(!-?)
environment monitoring,® intelligent traffic system,*7) and other technical fields. Generally
speaking, remote sensing images contain a great deal of information and a large field of view, as
they are captured from a high altitude and vertical perspective.®) Therefore, how to automatically
detect and identify the objects in these images has become a hot topic in current research.

Currently, many high-performance detectors have been proposed, which can generally be
divided into two types: two-stage and one-stage object detectors. Two-stage detectors have
achieved promising results on various benchmarks, whereas one-stage detectors maintain a
faster detection speed.
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General horizontal detectors have fundamental limitations in many practical applications of
remote sensing object detection owing to their various scales, high density, and arbitrary
orientation. Therefore, many oriented detectors are designed to address these issues.

As discussed above, we designed a one-stage method based on YOLOVS to improve the
performance of oriented object detection in remote sensing images. This method has both high
detection accuracy and real-time performance. Extensively, we evaluated the proposed approach
on two public datasets, namely, DOTA® and HRSC2016.(19 In summary, our contributions are
as follows.

*  We decoupled the detection head of YOLOVS to alleviate the conflict between classification
and regression.

*  We designed a dimensional attention module (DAM) to make better use of the relationship
between channel and spatial information.

* On the basis of the characteristics of remote sensing images, we developed a block
dimensional attention module (BDAM) based on the DAM by block processing.

* We evaluated the state-of-the-art performance on two public datasets. Experiments showed
that the strategies we proposed can be easily embedded into any detection framework with
significant performance.

2. Related Work

In recent years, deep learning has subverted the field of traditional object detection by its
own efforts.(!!) In particular, the convolutional neural network (CNN) has made a great deal of
achievement and has emerged as a powerful strategy for learning feature representations directly
from data. The existing deep detection framework can be summarized into two categories: one-
and two-stage frameworks. The one-stage framework directly predicts the object bounding box
and label category including the You Only Look Once (YOLO) series, (1213 single shot
detector,(1®) RetinaNet,(!”) and SqueezeDet.!®) The two-stage framework consists of two steps.
The first step is to roughly generate proposal bounding boxes using the region proposal network
(RPN). The second step is to predict object category and fine-tune the bounding boxes. The two-
stage framework is presented by using such methods as Mask R-CNN,(1¥) Fast R-CNN,?% and
Faster R-CNN.CD Compared with the one-stage framework, most methods based on the two-
stage framework have better detection accuracy, whereas the one-stage framework has better
real-time performance because of its simple network structure.

Unlike nature images, objects in remote sensing images have characteristics of scale
variance, high density, oriented diversity, and complex background, all of which make it of great
difficulty to locate and identify objects in remote sensing images. Recently, numerous
approaches have been proposed as solutions to these issues. Li et al.>? proposed the object-wise
semantic representation (OWSR), which combines the enhanced feature pyramid network
(eFPN) and semantic segmentation module to deal with the issue of scale variance. Cheng et
al.® proposed the rotation-invariant CNN (RICNN) model to address the oriented diversity of
objects in remote sensing images. To alleviate the disturbances of complex background, Ding et
al.®® designed the region of interest (Rol) transformer to generate the rotated Rol (RRol). As
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inspired by the Rol transformer, ReDet*®) was designed to improve the robustness of features
for both oriented diversity and complex ground by obtaining the rotation-invariant features via
the rotation-invariant network based on e2cnn®® and the RiRol align module. There are a large
number of small objects in remote sensing images, which may pose challenges to deep detectors,
because of their deficiency of information. To improve small object detection, Wu et al.®
designed CDD-Net, whose local context feature network (LCFN) can cause the fusion of objects
and their neighbor information, significantly increasing the amount of information about small
objects. All the methods mentioned above are based on the two-stage framework, and they are
always limited by their speed. Therefore, we tend to use one-stage framework methods when
facing situations with high real-time demands. For example, Qu ef al?? employed the
convolutional block attention module (CBAM)@® and adaptive feature fusion (AFFF) module(!®)
to YOLOV3 for the improvement of features in remote sensing images. R3Det??) introduced the
regression of oriented object angle to RetinaNet for oriented object detection. Inspired by
CornerNet, Chen et al.(?9 proposed an anchor-free method for oriented bounding box (OBB)
detection by searching corners of objects in remote sensing images. Oriented R-CNNGD is
designed on the basis of proposal-based oriented object detection methods, designing a high-
efficiency oriented RPN to break the computational bottleneck for generating oriented proposals.

At present, many algorithms based on the YOLO series are being proposed for object
detection in remote sensing images, and they have outstanding accuracy and speed. Xu and
Wu(3?) employed the combination of YOLOv3(!®) and DenseNet,3? where DenseNet was adopted
as the feature extractor and YOLOvV3 was adopted as the main detection architecture.
Considering the characteristics of remote sensing images, DenseNet has a better ability to
extract the feature of tiny objects. However, its structure is too complex, so the speed is
degraded. Cao et al.®% added the pyramid pooling module (PPM)3% based on YOLOv4(4 and
replaced the Mish function with the original activation function, which improved the accuracy
and recall rate of aircraft and dockyard in remote sensing images. Wan et al.(% applied multiple
layers of the feature pyramid, a multi-detection-head strategy, and a hybrid attention module
based on YOLOVS to improve the effect of the object detection network used in optical remote
sensing images. Liu et al.®7) introduced the coordinate attention mechanism into YOLOVS to
enhance the feature and location information extraction ability of the shallow layer of the model
and optimize the feature extraction ability of the model for different scale targets. The CSLG®)
method simplifies the oriented angle prediction as a classification problem, handling the oriented
angle in the training process with consideration of its periodicity and continuity.

In contrast with the methods above, we employed the channel and spatial contextual features
in different regions of feature maps, thereby enabling our detector to obtain more discriminative
feature representation. Extensively, the head structure is decoupled into four independent
subnetworks for different prediction tasks.

3. Methodology

Our approach is based on YOLOvS5 with PAFPN®? and has a backbone of CSPDatknet.(4)
Figure 1 shows the overview of the proposed improved YOLOvVS, where the improved modules
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Fig. 1. (Color online) Overview of improved YOLOVS.

are marked with red. The structure of the improved YOLOVS5 consists of three primary
components: the backbone, neck, and heads. The backbone is used for extracting high-quality
features using its CBL, C3, and SPPF modules. The neck, including both bottom-up and top-
down connections, can fuse features from the backbone of different scales. The regression and
classification tasks are finished in heads using fused features from the neck.

In view of the various directions of oriented detection in remote sensing images, OBB is a
better choice for fitting object contours and reducing the overlap of bounding boxes in the dense
area. In this research, OBB prediction is decoupled as horizontal bounding box (HBB) regression
and oriented angle classification tasks. HBB regression consists of the regression tasks of the
center position and the long and short sides of the bounding box. The oriented angle is defined as
the angle between the long side and the horizontal line.

3.1 Decoupled head

In the original YOLOVS algorithm, all regressions and classifications were completed in a
head with a single convolutional layer. Therefore, conflicts between regressions and
classifications may be generated in the learning process of our detector. Obviously, it is
unreasonable to make use of identical heads for different tasks.

Following other proposed approaches,(!3174041) the decoupled head is designed for reducing
these conflicts. Figure 2 shows the structure of the decoupled head. The fully convolutional
networks, containing 1 x 1 and 3 x 3 convolutional layers, are designed for object, category, and
angle classification, and bounding box regression respectively.

3.2 Dimensional attention module

Each category of objects in remote sensing images usually has a specific foreground and
background in terms of its special imaging pattern. For example, an airplane is always associated
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Fig. 2.  (Color online) Structure of decoupled head.

with an airport, not a harbor or road. Swimming pools are usually blue rather than anything else.
Both the spatial and channel contextual information play an important role in distinguishing
between different object categories.

The DAM is discovered to obtain the spatial and channel contextual information, which can
tell the detector where to focus to promote the representation of interest in remote sensing
images. DAM consists of two cascaded submodules: a channel attention module (CAM) and a
spatial attention module (SAM). The structure of DAM is shown in Fig. 3.

CAM focuses on meaningful content in each given image. Inspired by CBAM,?® we use the
average and max pooling layers to improve the efficiency of channel attention computation. The
average pooling layer can extract the spatial feature, while the max pooling layer can obtain
unique object information. In this regard, CAM can obtain more refined channel attention
weights using combined features from average and max pooling layers. The overall process of
CAM is summarized as follows:

Jeam (F):O'(fc (fcbl(fmax(F))Jrfcbl(favg (F)))), )

where F denotes input feature maps. f,,4y> favg> feri» and f. denote max pooling, average pooling,
CBL, and convolutional processing, respectively. o is defined as sigmoid activation.



3064 Sensors and Materials, Vol. 36, No. 7 (2024)

Maxpool
= Concate [ Corw1xiac} Dutpst
Sagrrad
L
-—
= - _ —_.O—
L in, o, 20 W, M, W, €] mwg

o)

Coma1x150)

Rathue
—
Mt rutipicatios Comlala) Dutpst
g
meo
—

i, Cw)

Reakaps Corm Lelat)
LN 2. W, W] W0
W,
—
[ A=}

(LA

YA

Fig. 3. (Color online) Structure of DAM.

Unlike CAM, SAM can tell the detector where the important area is in an input image. For
the directional characteristics of objects in remote sensing images, SAM involves two
submodules: a height attention module (HAM) and a width attention module (WAM), which can
collect the global features of vertical and horizontal dimensions. The computation of SAM is
defined as follows:

Srant (F)= fopr (Rh,c (F)),
Swart (F)= fopt (Rye (F)), )

Ssam (F)=U(fHAM (F)+fWAM (F)),

where R;, . and R,, . denote reshape operations between height, width, and channel, respectively.
Fran(F) and fi43,F) denote the computing processes of HAM and WAM, respectively. f /1S
the overall function of SAM.

The output of DAM is treated as a weight to determine how much attention needs to be paid
in different areas for a given image. Therefore, the whole process of DAM is defined as

Ipan (F)=F x feung (F)* fsa (F) ?3)
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3.3 Blocked dimensional attention module

The difference between remote sensing and ordinary images is that remote sensing images
usually have a larger field of view. As the distance between two pixels in a remote sensing image
increases, their relationship will become faded in practice. The dependences of pixels are more
important in nearby regions than in distant regions. In this regard, calculating the relationship
between pixels that are far apart from each other is unnecessary and unreasonable. If we only
compute the global attention of a whole remote sensing image, the relationship that should not
exist between two pixels may be wrongly received by our detector, so that the detection accuracy
is negatively affected.

To solve or alleviate the problem above, block processing is selected to establish the pixel
dependency relationships in this study. As shown in Fig. 4, the input feature map is separated
into patches of N x N, where we set N to be 8. All separated patches are processed by DAM and
reorganized to give the subsequent network. By adding BDAM to a small local area of the
feature maps, in this study, we focused on the calculation of the correlation between the pixels of
neighboring areas. On the one hand, it is more in line with the characteristics of the remote
sensing images; on the other hand, it can also improve the computing efficiency.

4. Experiment
4.1 Dataset
Three public datasets, DOTA,® DIOR-R,#? and HRSC2016,(19 are used for the evaluation of

our method. To prevent from overfitting, we employ various data augmentation strategies
including Mosaic, Mixup,® and rotated augmentation.
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Fig. 4. (Color online) Structure of BDAM.
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DOTA has two different versions, DOTA-v1.0 and DOTA-v1.5, both of which are based on
the same images from Google Earth, GF-2, and JL-1 satellites. DOTA-v1.0 has 15 categories:
plane (PL), baseball diamond (BD), bridge (BR), ground track field (GTF), small vehicle (SV),
large vehicle (LV), ship (SH), tennis court (TC), basketball court (BC), storage tank (ST), soccer-
ball field (SBF), roundabout (RA), harbor (HA), swimming pool (SP), and helicopter (HC).
Improved from DOTA-v1.0, the container crane (CC) class joins the categories of DOTA-v1.5.
Objects smaller than 10 pixels are annotated exhaustively by DOTA-v1.5. Thus, DOTA-v1.5 is a
more challenging dataset for oriented detection in remote sensing images.

The DIOR-R dataset, extended from the DIOR dataset, is a large-scale publicly available
oriented object detection dataset. It contains 23463 images and 192518 instances. Twenty object
categories are annotated in the dataset: airplane (APL), airport (APO), baseball field (BF),
basketball court (BC), bridge (BR), chimney (CH), dam (DAM), expressway service area (ESA),
expressway toll station (ETS), golf field (GF), ground track field (GTF), harbor (HA), overpass
(OP), ship (SH), stadium (STA), storage tank (STO), tennis court (TC), train station (TS), vehicle
(VE), and windmill (WM). The size of all the images of DIOR-R is 800 x 800 pixels and the
spatial resolution ranges from 0.5 to 30 m.

HRSC2016 is designed for ship detection in aerial images. All the images are collected from
Google Earth. It contains 1061 images and more than 20 categories of ships, including Nimitz-
class aircraft carriers, Perry-class frigates, and medical ships. The sizes of the images range
from 300 x 300 to 1500 x 900. The amount of the HRSC2015 dataset is limited, but there are too
many categories. Therefore, we merged all ship classes into a single class for detection
performance.

4.2 Configuration details

Dataset preprocessing. All datasets containing DOTA-v1.0, DOTA-v1.5, and HRSC2016 are
split into image patches of 1024 x 1024. The gap of neighbor image patches is set as 200 pixels.
For fair and reasonable analysis, all experiments are performed under a single scale of original
datasets.

Parameter set. We applied YOLOvS as our baseline. The SGD optimizer with the
momentum of 0.937, learning rate of 0.01, and weight decay of 0.0005 was initialized in the
training process. We trained all the models in 150 epochs for DOTA-v1.0 and DOTA-v1.5, and
300 epochs for HRSC2016. We used a single GTX1080Ti for training with a batch size of 4 and
prediction with a single batch size.

4.3 Ablation studies

To sufficiently verify that the decoupled head and BDAM are significant, we performed a
series of ablation experiments over the DOTA-v1.5 dataset, as shown in Table 1.

To analyze the effect of BDAM given by different parameters N, Fig. 5 shows the object
confidence predictions of YOLOv5m, YOLOv5Sm-BDAM4, YOLOv5Sm-BDAMS, and
YOLOv5m-BDAMI16, where image A is the input image and the images B, C, D, and E are
feature maps of object confidence predictions from YOLOv5Sm, YOLOv5m-BDAM4,



Sensors and Materials, Vol. 36, No. 7 (2024) 3067

Table 1
Roadmap of ablation studies in terms of AP on DOTA-v1.5 test set evaluation. Measurements on latency are
performed without postprocessing.

Method mAP Latency Parameter size
YOLOv5-M 71.46 0.048 449
+BDAM 72.16 0.059 454
+Decoupled head 72.71 0.102 90.7

.

Fig. 5. (Color online) Feature map of object confidence prediction.

YOLOv5m-BDAMS, and YOLOv5Sm-BDAMI16, respectively. As shown in Fig. 6, we can see
that the activated area will be a better fit with the shape of objects when N of BDAM is set as 8
or 16. With the increment in N, the feature maps will be split into more tiles. Therefore, the
detector can obtain more and smaller contextual information. In the case of small object
detection, it is better to set N larger. However, if the parameter of N is set too large, some large
objects will be inappropriately divided into too many parts. Through the above analysis and
experiments, we set N of BDAM as 8 for a better balance between detections for small and large
objects.

In this research, we take YOLOvV5-M as the baseline with mAP of 71.46. BDAM can achieve
72.16 mAP with a slight improvement of prediction time and parameter size. In the case of using
decoupled heads, mAP on DOTA-v1.5 can be promoted to 72.71, but the parameter size and
prediction time are considerably increased.

4.4 Comparison with state-of-the-art methods

Results on DOTA. We report the full experimental results of single scale on DOTA datasets,
including DOTA-v1.0 and DOTA-v1.5, as shown in Tables 2 and 3, where the results in red
denote the best results and those in blue represent the second-best results in each column. With
SCPDarknet as our backbone, we achieved 78.06 and 74.32 mAP on DOTA-v1.0 and DOTA-v1.5,
respectively. The results of experiments verified the effectiveness of the proposed methods. In
particular, the performance on the container crane category of DOTA-v1.5, which contains
extremely few instances, is promoted significantly. The visualization of the oriented YOLOv5m-
BDAMS is shown as Fig. 6.
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Fig. 6.  (Color online) Visualization of oriented YOLOvVS on DOTAvV1.5.

Table 2

(Color online) Performances on DOTA-v1.0 dataset.

Method PL BD BR GTF SV LV SH TC BC ST SBF RA HA SP HC mAP
FR-O@Y 794 771 177 64.0 353 38.0 371 894 69.6 592 50.3 529 478 474 463 54.1
RRPN®¥ 80.9 657 353 674 599 509 55.8 90.6 66.9 72.3 550 52.2 551 53.4 482 61.0
Yangetal® 812 714 36.5 674 611 509 56.6 90.6 68.0 72.3 550 55.6 62.4 534 51.5 62.2
RADet"® 794 769 48.0 658 654 744 68.8 897 78.1 749 499 64.6 66.1 71.6 62.2 69.0
Cascade-FF*? 899 80.4 517 774 682 752 75.6 90.8 78.8 84.4 62.3 64.6 577 694 50.1 718
DRN®® 88.9 80.2 43.5 633 734 70.6 84.9 90.1 83.8 84.1 50.1 584 67.6 68.6 52.5 707
CenterMap™®  88.8 81.2 53.1 60.6 78.6 66.5 78.1 88.8 77.8 83.6 493 66.1 72.1 72.3 587 717
R3Det® 89.4 81.1 50.5 66.1 709 78.6 78.2 90.8 85.2 84.2 61.8 63.7 68.1 69.8 67.2 73.7

RepPoints-O®”  89.1 82.3 56.7 749 807 837 87.6 90.8 871 858 63.6 68.6 75.9 73.5 63.7 77.6
Oriented
R-CNNGD
DODet®V 89.6 83.1 51.4 71.0 79.1 81.9 877 90.8 86.5 84.5 622 653 719 707 62.9 758
Oriented

YOLOVS5s

Oriented

YOLOvV5m

Oriented

YOLOVS5!

Oriented

YOLOv5x

88.8 834 552 769 742 82.1 875 909 855 853 655 66.8 743 70.1 572 76.2

89.0 84.5 49.6 63.7 81.2 84.6 883 90.8 86.2 87.6 59.5 67.6 751 814 64.8 769

88.1 85.1 53.3 63.5 81.3 849 883 90.6 873 88.2 60.9 619 76.7 817 63.7 771

89.1 855 50.6 63.3 81.2 84.6 885 90.8 86.2 87.8 59.5 67.6 76.2 814 698 773

88.5 86.0 56.2 63.7 81.2 85.5 88.6 90.8 875 879 60.8 64.2 773 809 71.3 78.1
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Results on DIOR-R. The DIOR-R dataset contains 20 categories in remote sensing images.
The size of all the images is set to 800 x 800. As shown in Table 4, our methods achieve the
state-of-the-art performance with mAP of 70.09 under voc2007 metrics. The accuracy of our
method is better than those of other methods in such categories as APL, APO, BF, BC, HA, OP,
SH, STO, TC, and VE. The mAP on APL, SH, and TC can reach over 90, which exceeds others
by at least 10. In particular, the mAP on ALP (29.82) is better than that on DODet.)

Results on HRSC2016. The HRSC2016 dataset contains many thin and long ship instances.
As shown in Table 5, our methods achieve the state-of-the-art performance with mAP of 93.27
under voc2007 metrics.

Table 3

(Color online) Performances on DOTA-v1.5 dataset.

Method PL BD BR GTF SV LV SH TC BC ST SBF RA HA SP HC CC mAP
Retina-0!”) 714 77.6 42.1 64.6 443 567 73.3 90.8 76.0 59.9 46.9 69.2 59.6 64.5 48.0 0.8 59.1
FR-O@D 71.8 74.4 444 59.8 512 68.9 79.3 90.8 77.3 67.5 477 69.7 61.2 652 60.4 1.5 62.0
Mask-RCNN(?) 76.8 73.5 49.9 57.8 51.3 71.3 79.7 90.5 74.2 66.0 46.2 70.6 63.0 64.4 57.8 9.4 62.6
HTC®? 77.8 73.6 514 639 51.5 73.3 80.3 90.5 75.1 67.3 48.5 70.6 64.8 64.4 55.8 5.1 63.4
YOLOv5 CSL F®) 807 77.2 419 559 59.6 76.2 90.6 77.9 78.1 457 64.9 67.5 69.3 452 45.2 20.3 65.2
ReDet®> 79.2 82.8 51.9 71.4 52.3 757 80.9 90.8 75.8 68.6 49.2 72.0 73.3 70.5 63.3 11.5 66.8
FCOSR®% 80.5 85.2 51.1 70.8 577 76.7 81.1 90.9 78.0 77.6 51.9 68.7 75.8 72.6 69.3 31.0 69.9
Oriented YOLOv5s  80.7 84.9 47.3 617 65.2 80.9 88.8 90.9 77.6 79.0 55.8 73.4 71.2 76.5 62.8 34.4 70.7
Oriented YOLOv5Sm 80.9 85.7 52.8 63.0 66.8 82.1 89.4 90.9 79.4 853 55.0 72.8 74.9 773 71.6 35.0 727
Oriented YOLOvSl ~ 81.0 84.9 53.9 647 674 82.7 89.6 90.8 79.2 85.9 54.8 74.7 75.8 76.8 70.4 39.4 73.2
Oriented YOLOvV5x  89.1 85.6 54.4 647 67.7 82.9 89.7 90.8 83.4 857 55.3 75.6 75.9 77.1 76.5 34.4 743
Table 4
(Color online) Performances on DIOR dataset.
Method  APL APO BF BC BR CH DAM ETS ESA GF GIF HA OP SH STA STO TC TS VE WM mAP
FR-O®D 62.8 26.8 71.7 80.9 342 725 189 66.4 657 66.6 792 349 487 81.1 643 712 814 473 504 652 59.5
Retina-017 614 28.5 73.5 81.1 239 72.5 199 724 582 69.2 79.5 32.1 448 777 67.5 61.1 814 473 38.0 60.2 57.5
GV 653 28.8 749 813 33.8 743 195 707 647 723 78.6 372 49.6 802 692 61.1 81.4 447 477 650 60.0
RT®Y 63.3 378 717 875 40.6 72.6 268 787 68.1 68.6 827 477 55.6 81.0 782 70.2 81.6 54.8 43.2 65.5 63.8
AOPG™ 624 377 71.6 87.6 40.9 724 310 654 78.0 78.0 719 423 544 81.1 727 713 814 60.0 52.3 70.0 64.4
DODet®) 634 433 72.1 81.3 43.1 729 333 788 70.8 70.8 75.5 48.0 59.3 854 740 71.5 815 555 S51.8 66.4 65.1
Oriented o0 7 541 807 931 50.1 724 380 67.8 697 509 694 52.8 615 925 60.8 68.8 924 401 66.0 482 66.0
YOLOVSs
Oriented ) (607 832 943 58.1 82.9 433 690 772 574 765 588 662 935 617 717 930 493 684 53.5 70.5
YOLOv5m
Orented o\ | (15 810 937 548 798 440 70.5 751 61.5 745 562 662 931 63.2 739 92.5 487 681 610 70.6
YOLOVSI
Oriented )

93.2 67.5 81.8 94.4 322 444 458 707 754 61.1 752 584 66.6 933 66.8 70.9 93.6 46.6 67.9 52.3 70.1
YOLOv5x
Table 5
Performances on HRSC2016 dataset.
Method Ccpt® BL20% RC1CY RC209  RRPN®Y  csL®Y
mAP 55.7 69.6 757 75.7 79.6 89.62
Method RRD®?  Rol Trans®® R3Det®” Viilt(el;%gs) Redet® Y%i%lies(%x
mAP 84.3 86.2 89.26 88.2 90.46 93.27
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5. Conclusions

In this research, we proposed an improved method based on YOLOvVS to deal with object
detection tasks in remote sensing images. Considering the conflicts between different types of
regression and classification, the detector head is decoupled into four heads for boundary box
regression, object, category, and angle classification. DAM is designed to integrate channel and
spatial background features. On the basis of the analysis of remote sensing image features and
DAM, BDAM was developed using a block processing method and applied to our detection
algorithm. The effectiveness of our target detection method in remote sensing images was
verified through experiments on the DOTA, DIOR-R, and HRSC2016 datasets.
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