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	 With the development of computer vision and remote sensor devices, object detection in 
aerial images has drawn considerable attention because of its ability to provide a wide field of 
view and a large amount of information. Despite this, object detection in aerial images is a 
challenging task owing to densely packed objects, oriented diversity, and complex background. 
In this study, we optimized three aspects of the YOLOv5 algorithm to detect arbitrary oriented 
objects in remote sensing images, including head structure, features from the backbone, and 
angle prediction. To improve the head structure, we decoupled it into four submodules, which 
are used for object localization, foreground, category, and oriented angle classification. To 
increase the accuracy of the features from the backbone, we designed a block dimensional 
attention module, which is developed by splitting the image into smaller patches based on a 
dimensional attention module. Compared with the original YOLOv5 algorithm, our approach 
has a better performance for oriented object detection—the mAP on DOTA-v1.5 is increased by 
1.25%. It was tested to be effective on DOTA-v1.0, HRSC2016, and DIOR-R datasets as well. 

1.	 Introduction

	 With the rapid expansion of artificial satellites and unmanned aerial vehicles, high-resolution 
remote sensing images are easily available and widely introduced to smart city systems,(1,2) 
environment monitoring,(3) intelligent traffic system,(4–7) and other technical fields. Generally 
speaking, remote sensing images contain a great deal of information and a large field of view, as 
they are captured from a high altitude and vertical perspective.(8) Therefore, how to automatically 
detect and identify the objects in these images has become a hot topic in current research.
	 Currently, many high-performance detectors have been proposed, which can generally be 
divided into two types: two-stage and one-stage object detectors. Two-stage detectors have 
achieved promising results on various benchmarks, whereas one-stage detectors maintain a 
faster detection speed.
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	 General horizontal detectors have fundamental limitations in many practical applications of 
remote sensing object detection owing to their various scales, high density, and arbitrary 
orientation. Therefore, many oriented detectors are designed to address these issues.
	 As discussed above, we designed a one-stage method based on YOLOv5 to improve the 
performance of oriented object detection in remote sensing images. This method has both high 
detection accuracy and real-time performance. Extensively, we evaluated the proposed approach 
on two public datasets, namely, DOTA(9) and HRSC2016.(10) In summary, our contributions are  
as follows.
•	 We decoupled the detection head of YOLOv5 to alleviate the conflict between classification 

and regression.
•	 We designed a dimensional attention module (DAM) to make better use of the relationship 

between channel and spatial information.
•	 On the basis of the characteristics of remote sensing images, we developed a block 

dimensional attention module (BDAM) based on the DAM by block processing.
•	 We evaluated the state-of-the-art performance on two public datasets. Experiments showed 

that the strategies we proposed can be easily embedded into any detection framework with 
significant performance.

2.	 Related Work

	 In recent years, deep learning has subverted the field of traditional object detection by its 
own efforts.(11) In particular, the convolutional neural network (CNN) has made a great deal of 
achievement and has emerged as a powerful strategy for learning feature representations directly 
from data. The existing deep detection framework can be summarized into two categories: one- 
and two-stage frameworks. The one-stage framework directly predicts the object bounding box 
and label category including the You Only Look Once (YOLO) series,(12–15) single shot 
detector,(16) RetinaNet,(17) and SqueezeDet.(18) The two-stage framework consists of two steps. 
The first step is to roughly generate proposal bounding boxes using the region proposal network 
(RPN). The second step is to predict object category and fine-tune the bounding boxes. The two-
stage framework is presented by using such methods as Mask R-CNN,(19) Fast R-CNN,(20) and 
Faster R-CNN.(21) Compared with the one-stage framework, most methods based on the two-
stage framework have better detection accuracy, whereas the one-stage framework has better 
real-time performance because of its simple network structure.
	 Unlike nature images, objects in remote sensing images have characteristics of scale 
variance, high density, oriented diversity, and complex background, all of which make it of great 
difficulty to locate and identify objects in remote sensing images. Recently, numerous 
approaches have been proposed as solutions to these issues. Li et al.(22) proposed the object-wise 
semantic representation (OWSR), which combines the enhanced feature pyramid network 
(eFPN) and semantic segmentation module to deal with the issue of scale variance. Cheng et 
al.(23) proposed the rotation-invariant CNN (RICNN) model to address the oriented diversity of 
objects in remote sensing images. To alleviate the disturbances of complex background, Ding et 
al.(24) designed the region of interest (RoI) transformer to generate the rotated RoI (RRoI). As 
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inspired by the RoI transformer, ReDet(25) was designed to improve the robustness of features 
for both oriented diversity and complex ground by obtaining the rotation-invariant features via 
the rotation-invariant network based on e2cnn(26) and the RiRoI align module. There are a large 
number of small objects in remote sensing images, which may pose challenges to deep detectors, 
because of their deficiency of information. To improve small object detection, Wu et al.(8) 
designed CDD-Net, whose local context feature network (LCFN) can cause the fusion of objects 
and their neighbor information, significantly increasing the amount of information about small 
objects. All the methods mentioned above are based on the two-stage framework, and they are 
always limited by their speed. Therefore, we tend to use one-stage framework methods when 
facing situations with high real-time demands. For example, Qu et al.(27) employed the 
convolutional block attention module (CBAM)(28) and adaptive feature fusion (AFFF) module(16) 
to YOLOv3 for the improvement of features in remote sensing images. R3Det(29) introduced the 
regression of oriented object angle to RetinaNet for oriented object detection. Inspired by 
CornerNet, Chen et al.(30) proposed an anchor-free method for oriented bounding box (OBB) 
detection by searching corners of objects in remote sensing images. Oriented R-CNN(31) is 
designed on the basis of proposal-based oriented object detection methods, designing a high-
efficiency oriented RPN to break the computational bottleneck for generating oriented proposals. 
	 At present, many algorithms based on the YOLO series are being proposed for object 
detection in remote sensing images, and they have outstanding accuracy and speed. Xu and 
Wu(32) employed the combination of YOLOv3(13) and DenseNet,(33) where DenseNet was adopted 
as the feature extractor and YOLOv3 was adopted as the main detection architecture. 
Considering the characteristics of remote sensing images, DenseNet has a better ability to 
extract the feature of tiny objects. However, its structure is too complex, so the speed is 
degraded. Cao et al.(34) added the pyramid pooling module (PPM)(35) based on YOLOv4(14) and 
replaced the Mish function with the original activation function, which improved the accuracy 
and recall rate of aircraft and dockyard in remote sensing images. Wan et al.(36) applied multiple 
layers of the feature pyramid, a multi-detection-head strategy, and a hybrid attention module 
based on YOLOv5 to improve the effect of the object detection network used in optical remote 
sensing images. Liu et al.(37) introduced the coordinate attention mechanism into YOLOv5 to 
enhance the feature and location information extraction ability of the shallow layer of the model 
and optimize the feature extraction ability of the model for different scale targets. The CSL(38) 
method simplifies the oriented angle prediction as a classification problem, handling the oriented 
angle in the training process with consideration of its periodicity and continuity.
	 In contrast with the methods above, we employed the channel and spatial contextual features 
in different regions of feature maps, thereby enabling our detector to obtain more discriminative 
feature representation. Extensively, the head structure is decoupled into four independent 
subnetworks for different prediction tasks. 

3.	 Methodology

	 Our approach is based on YOLOv5 with PAFPN(39) and has a backbone of CSPDatknet.(14) 
Figure 1 shows the overview of the proposed improved YOLOv5, where the improved modules 
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are marked with red. The structure of the improved YOLOv5 consists of three primary 
components: the backbone, neck, and heads. The backbone is used for extracting high-quality 
features using its CBL, C3, and SPPF modules. The neck, including both bottom-up and top-
down connections, can fuse features from the backbone of different scales. The regression and 
classification tasks are finished in heads using fused features from the neck.
	 In view of the various directions of oriented detection in remote sensing images, OBB is a 
better choice for fitting object contours and reducing the overlap of bounding boxes in the dense 
area. In this research, OBB prediction is decoupled as horizontal bounding box (HBB) regression 
and oriented angle classification tasks. HBB regression consists of the regression tasks of the 
center position and the long and short sides of the bounding box. The oriented angle is defined as 
the angle between the long side and the horizontal line.
	
3.1	 Decoupled head 

	 In the original YOLOv5 algorithm, all regressions and classifications were completed in a 
head with a single convolutional layer. Therefore, conf licts between regressions and 
classifications may be generated in the learning process of our detector. Obviously, it is 
unreasonable to make use of identical heads for different tasks.
	 Following other proposed approaches,(15,17,40,41) the decoupled head is designed for reducing 
these conflicts. Figure 2 shows the structure of the decoupled head. The fully convolutional 
networks, containing 1 × 1 and 3 × 3 convolutional layers, are designed for object, category, and 
angle classification, and bounding box regression respectively.

3.2	 Dimensional attention module

	 Each category of objects in remote sensing images usually has a specific foreground and 
background in terms of its special imaging pattern. For example, an airplane is always associated 

Fig. 1.	 (Color online) Overview of improved YOLOv5.
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with an airport, not a harbor or road. Swimming pools are usually blue rather than anything else. 
Both the spatial and channel contextual information play an important role in distinguishing 
between different object categories.
	 The DAM is discovered to obtain the spatial and channel contextual information, which can 
tell the detector where to focus to promote the representation of interest in remote sensing 
images. DAM consists of two cascaded submodules: a channel attention module (CAM) and a 
spatial attention module (SAM). The structure of DAM is shown in Fig. 3.
	 CAM focuses on meaningful content in each given image. Inspired by CBAM,(28) we use the 
average and max pooling layers to improve the efficiency of channel attention computation. The 
average pooling layer can extract the spatial feature, while the max pooling layer can obtain 
unique object information. In this regard, CAM can obtain more refined channel attention 
weights using combined features from average and max pooling layers. The overall process of 
CAM is summarized as follows:

	 ( ) ( )( ) ( )( )( )( ) ,CAM c cbl max cbl avgf f f f f fσ= +F F F 	 (1)

where F denotes input feature maps. fmax,  favg,  fcbl, and fc denote max pooling, average pooling, 
CBL, and convolutional processing, respectively. σ is defined as sigmoid activation.

Fig. 2.	 (Color online) Structure of decoupled head.
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	 Unlike CAM, SAM can tell the detector where the important area is in an input image. For 
the directional characteristics of objects in remote sensing images, SAM involves two 
submodules: a height attention module (HAM) and a width attention module (WAM), which can 
collect the global features of vertical and horizontal dimensions. The computation of SAM is 
defined as follows:

	 f f RHAM cbl h,cF F� � � � �� � ,

	 f f RWAM cbl w,cF F� � � � �� � ,	  (2)

	 ( ) ( ) ( )( )SAM HAM WAMf f fσ= +F F F ,

where Rh,c and Rw,c  denote reshape operations between height, width, and channel, respectively. 
fHAM(F) and fWAM(F) denote the computing processes of HAM and WAM, respectively. fSAM is 
the overall function of SAM.
	 The output of DAM is treated as a weight to determine how much attention needs to be paid 
in different areas for a given image. Therefore, the whole process of DAM is defined as

	 ( ) ( ) ( )DAM CAM SAMf f f= × ×F F F F .	 (3)

Fig. 3.	 (Color online) Structure of DAM.



Sensors and Materials, Vol. 36, No. 7 (2024)	 3065

3.3	 Blocked dimensional attention module

	 The difference between remote sensing and ordinary images is that remote sensing images 
usually have a larger field of view. As the distance between two pixels in a remote sensing image 
increases, their relationship will become faded in practice. The dependences of pixels are more 
important in nearby regions than in distant regions. In this regard, calculating the relationship 
between pixels that are far apart from each other is unnecessary and unreasonable. If we only 
compute the global attention of a whole remote sensing image, the relationship that should not 
exist between two pixels may be wrongly received by our detector, so that the detection accuracy 
is negatively affected.
	 To solve or alleviate the problem above, block processing is selected to establish the pixel 
dependency relationships in this study. As shown in Fig. 4, the input feature map is separated 
into patches of N × N, where we set N to be 8. All separated patches are processed by DAM and 
reorganized to give the subsequent network. By adding BDAM to a small local area of the 
feature maps, in this study, we focused on the calculation of the correlation between the pixels of 
neighboring areas. On the one hand, it is more in line with the characteristics of the remote 
sensing images; on the other hand, it can also improve the computing efficiency.

4.	 Experiment

4.1	 Dataset

	 Three public datasets, DOTA,(9) DIOR-R,(42) and HRSC2016,(10) are used for the evaluation of 
our method. To prevent from overfitting, we employ various data augmentation strategies 
including Mosaic,(14) Mixup,(43) and rotated augmentation.

Fig. 4.	 (Color online) Structure of BDAM.
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	 DOTA has two different versions, DOTA-v1.0 and DOTA-v1.5, both of which are based on 
the same images from Google Earth, GF-2, and JL-1 satellites. DOTA-v1.0 has 15 categories: 
plane (PL), baseball diamond (BD), bridge (BR), ground track field (GTF), small vehicle (SV), 
large vehicle (LV), ship (SH), tennis court (TC), basketball court (BC), storage tank (ST), soccer-
ball field (SBF), roundabout (RA), harbor (HA), swimming pool (SP), and helicopter (HC). 
Improved from DOTA-v1.0, the container crane (CC) class joins the categories of DOTA-v1.5. 
Objects smaller than 10 pixels are annotated exhaustively by DOTA-v1.5. Thus, DOTA-v1.5 is a 
more challenging dataset for oriented detection in remote sensing images.
	 The DIOR-R dataset, extended from the DIOR dataset, is a large-scale publicly available 
oriented object detection dataset. It contains 23463 images and 192518 instances. Twenty object 
categories are annotated in the dataset: airplane (APL), airport (APO), baseball field (BF), 
basketball court (BC), bridge (BR), chimney (CH), dam (DAM), expressway service area (ESA), 
expressway toll station (ETS), golf field (GF), ground track field (GTF), harbor (HA), overpass 
(OP), ship (SH), stadium (STA), storage tank (STO), tennis court (TC), train station (TS), vehicle 
(VE), and windmill (WM). The size of all the images of DIOR-R is 800 × 800 pixels and the 
spatial resolution ranges from 0.5 to 30 m.
	 HRSC2016 is designed for ship detection in aerial images. All the images are collected from 
Google Earth. It contains 1061 images and more than 20 categories of ships, including Nimitz-
class aircraft carriers, Perry-class frigates, and medical ships. The sizes of the images range 
from 300 × 300 to 1500 × 900. The amount of the HRSC2015 dataset is limited, but there are too 
many categories. Therefore, we merged all ship classes into a single class for detection 
performance.

4.2	 Configuration details

	 Dataset preprocessing. All datasets containing DOTA-v1.0, DOTA-v1.5, and HRSC2016 are 
split into image patches of 1024 × 1024. The gap of neighbor image patches is set as 200 pixels. 
For fair and reasonable analysis, all experiments are performed under a single scale of original 
datasets.
	 Parameter set. We applied YOLOv5 as our baseline. The SGD optimizer with the 
momentum of 0.937, learning rate of 0.01, and weight decay of 0.0005 was initialized in the 
training process. We trained all the models in 150 epochs for DOTA-v1.0 and DOTA-v1.5, and 
300 epochs for HRSC2016. We used a single GTX1080Ti for training with a batch size of 4 and 
prediction with a single batch size. 

4.3	 Ablation studies

	 To sufficiently verify that the decoupled head and BDAM are significant, we performed a 
series of ablation experiments over the DOTA-v1.5 dataset, as shown in Table 1.
	 To analyze the effect of BDAM given by different parameters N, Fig. 5 shows the object 
confidence predictions of YOLOv5m, YOLOv5m-BDAM4, YOLOv5m-BDAM8, and 
YOLOv5m-BDAM16, where image A is the input image and the images B, C, D, and E are 
feature maps of object confidence predictions from YOLOv5m, YOLOv5m-BDAM4, 
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Fig. 5.	 (Color online) Feature map of object confidence prediction.

Table 1 
Roadmap of ablation studies in terms of AP on DOTA-v1.5 test set evaluation. Measurements on latency are 
performed without postprocessing.
Method mAP Latency Parameter size
YOLOv5-M 71.46 0.048 44.9
+BDAM 72.16 0.059 45.4
+Decoupled head 72.71 0.102 90.7

YOLOv5m-BDAM8, and YOLOv5m-BDAM16, respectively. As shown in Fig. 6, we can see 
that the activated area will be a better fit with the shape of objects when N of BDAM is set as 8 
or 16. With the increment in N, the feature maps will be split into more tiles. Therefore, the 
detector can obtain more and smaller contextual information. In the case of small object 
detection, it is better to set N larger. However, if the parameter of N is set too large, some large 
objects will be inappropriately divided into too many parts. Through the above analysis and 
experiments, we set N of BDAM as 8 for a better balance between detections for small and large 
objects.
	 In this research, we take YOLOv5-M as the baseline with mAP of 71.46. BDAM can achieve 
72.16 mAP with a slight improvement of prediction time and parameter size. In the case of using 
decoupled heads, mAP on DOTA-v1.5 can be promoted to 72.71, but the parameter size and 
prediction time are considerably increased.

4.4	 Comparison with state-of-the-art methods

	 Results on DOTA. We report the full experimental results of single scale on DOTA datasets, 
including DOTA-v1.0 and DOTA-v1.5, as shown in Tables 2 and 3, where the results in red 
denote the best results and those in blue represent the second-best results in each column. With 
SCPDarknet as our backbone, we achieved 78.06 and 74.32 mAP on DOTA-v1.0 and DOTA-v1.5, 
respectively. The results of experiments verified the effectiveness of the proposed methods. In 
particular, the performance on the container crane category of DOTA-v1.5, which contains 
extremely few instances, is promoted significantly. The visualization of the oriented YOLOv5m-
BDAM8 is shown as Fig. 6.
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Fig. 6.	 (Color online) Visualization of oriented YOLOv5 on DOTAv1.5. 

Table 2
(Color online) Performances on DOTA-v1.0 dataset.
Method PL BD BR GTF SV LV SH TC BC ST SBF RA HA SP HC mAP
FR-O(21) 79.4 77.1 17.7 64.0 35.3 38.0 37.1 89.4 69.6 59.2 50.3 52.9 47.8 47.4 46.3 54.1
RRPN(44) 80.9 65.7 35.3 67.4 59.9 50.9 55.8 90.6 66.9 72.3 55.0 52.2 55.1 53.4 48.2 61.0
Yang et al.(45) 81.2 71.4 36.5 67.4 61.1 50.9 56.6 90.6 68.0 72.3 55.0 55.6 62.4 53.4 51.5 62.2
RADet(46) 79.4 76.9 48.0 65.8 65.4 74.4 68.8 89.7 78.1 74.9 49.9 64.6 66.1 71.6 62.2 69.0
Cascade-FF(47) 89.9 80.4 51.7 77.4 68.2 75.2 75.6 90.8 78.8 84.4 62.3 64.6 57.7 69.4 50.1 71.8
DRN(48) 88.9 80.2 43.5 63.3 73.4 70.6 84.9 90.1 83.8 84.1 50.1 58.4 67.6 68.6 52.5 70.7
CenterMap(49) 88.8 81.2 53.1 60.6 78.6 66.5 78.1 88.8 77.8 83.6 49.3 66.1 72.1 72.3 58.7 71.7
R3Det(29) 89.4 81.1 50.5 66.1 70.9 78.6 78.2 90.8 85.2 84.2 61.8 63.7 68.1 69.8 67.2 73.7
RepPoints-O(50) 89.1 82.3 56.7 74.9 80.7 83.7 87.6 90.8 87.1 85.8 63.6 68.6 75.9 73.5 63.7 77.6
Oriented 
R-CNN(31) 88.8 83.4 55.2 76.9 74.2 82.1 87.5 90.9 85.5 85.3 65.5 66.8 74.3 70.1 57.2 76.2

DODet(51) 89.6 83.1 51.4 71.0 79.1 81.9 87.7 90.8 86.5 84.5 62.2 65.3 71.9 70.7 62.9 75.8
Oriented 
YOLOv5s 89.0 84.5 49.6 63.7 81.2 84.6 88.3 90.8 86.2 87.6 59.5 67.6 75.1 81.4 64.8 76.9

Oriented 
YOLOv5m 88.1 85.1 53.3 63.5 81.3 84.9 88.3 90.6 87.3 88.2 60.9 61.9 76.7 81.7 63.7 77.1

Oriented 
YOLOv5l 89.1 85.5 50.6 63.3 81.2 84.6 88.5 90.8 86.2 87.8 59.5 67.6 76.2 81.4 69.8 77.3

Oriented 
YOLOv5x 88.5 86.0 56.2 63.7 81.2 85.5 88.6 90.8 87.5 87.9 60.8 64.2 77.3 80.9 71.3 78.1
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Table 4
(Color online) Performances on DIOR dataset.
Method APL APO BF BC BR CH DAM ETS ESA GF GTF HA OP SH STA STO TC TS VE WM mAP
FR-O(21) 62.8 26.8 71.7 80.9 34.2 72.5 18.9 66.4 65.7 66.6 79.2 34.9 48.7 81.1 64.3 71.2 81.4 47.3 50.4 65.2 59.5
Retina-O(17) 61.4 28.5 73.5 81.1 23.9 72.5 19.9 72.4 58.2 69.2 79.5 32.1 44.8 77.7 67.5 61.1 81.4 47.3 38.0 60.2 57.5
GV(55) 65.3 28.8 74.9 81.3 33.8 74.3 19.5 70.7 64.7 72.3 78.6 37.2 49.6 80.2 69.2 61.1 81.4 44.7 47.7 65.0 60.0
RT(24) 63.3 37.8 71.7 87.5 40.6 72.6 26.8 78.7 68.1 68.6 82.7 47.7 55.6 81.0 78.2 70.2 81.6 54.8 43.2 65.5 63.8
AOPG(42) 62.4 37.7 71.6 87.6 40.9 72.4 31.0 65.4 78.0 78.0 71.9 42.3 54.4 81.1 72.7 71.3 81.4 60.0 52.3 70.0 64.4
DODet(51) 63.4 43.3 72.1 81.3 43.1 72.9 33.3 78.8 70.8 70.8 75.5 48.0 59.3 85.4 74.0 71.5 81.5 55.5 51.8 66.4 65.1
Oriented 
YOLOv5s

89.7 54.1 80.7 93.1 50.1 72.4 38.0 67.8 69.7 50.9 69.4 52.8 61.5 92.5 60.8 68.8 92.4 40.1 66.0 48.2 66.0

Oriented 
YOLOv5m

91.6 60.7 83.2 94.3 58.1 82.9 43.3 69.0 77.2 57.4 76.5 58.8 66.2 93.5 61.7 71.7 93.0 49.3 68.4 53.5 70.5 

Oriented 
YOLOv5l

91.1 61.8 81.9 93.7 54.8 79.8 44.0 70.5 75.1 61.5 74.5 56.2 66.2 93.1 63.2 73.9 92.5 48.7 68.1 61.0 70.6 

Oriented 
YOLOv5x

93.2 67.5 81.8 94.4 32.2 44.4 45.8 70.7 75.4 61.1 75.2 58.4 66.6 93.3 66.8 70.9 93.6 46.6 67.9 52.3 70.1

Table 5
Performances on HRSC2016 dataset.
Method CP(56) BL2(56) RC1(56) RC2(56) RRPN(44) CSL(38)

mAP 55.7 69.6 75.7 75.7 79.6 89.62

Method RRD(57) RoI Trans(24) R3Det(29) Gliding 
Vertex(55) Redet(25) Oriented 

YOLOv5-x
mAP 84.3 86.2 89.26 88.2 90.46 93.27

Table 3
(Color online) Performances on DOTA-v1.5 dataset.
Method PL BD BR GTF SV LV SH TC BC ST SBF RA HA SP HC CC mAP
Retina-O(17) 71.4 77.6 42.1 64.6 44.3 56.7 73.3 90.8 76.0 59.9 46.9 69.2 59.6 64.5 48.0 0.8 59.1
FR-O(21) 71.8 74.4 44.4 59.8 51.2 68.9 79.3 90.8 77.3 67.5 47.7 69.7 61.2 65.2 60.4 1.5 62.0
Mask-RCNN(19) 76.8 73.5 49.9 57.8 51.3 71.3 79.7 90.5 74.2 66.0 46.2 70.6 63.0 64.4 57.8 9.4 62.6
HTC(52) 77.8 73.6 51.4 63.9 51.5 73.3 80.3 90.5 75.1 67.3 48.5 70.6 64.8 64.4 55.8 5.1 63.4
YOLOv5_CSL_F(53) 80.7 77.2 41.9 55.9 59.6 76.2 90.6 77.9 78.1 45.7 64.9 67.5 69.3 45.2 45.2 20.3 65.2
ReDet(25) 79.2 82.8 51.9 71.4 52.3 75.7 80.9 90.8 75.8 68.6 49.2 72.0 73.3 70.5 63.3 11.5 66.8
FCOSR(54) 80.5 85.2 51.1 70.8 57.7 76.7 81.1 90.9 78.0 77.6 51.9 68.7 75.8 72.6 69.3 31.0 69.9
Oriented YOLOv5s 80.7 84.9 47.3 61.7 65.2 80.9 88.8 90.9 77.6 79.0 55.8 73.4 71.2 76.5 62.8 34.4 70.7
Oriented YOLOv5m 80.9 85.7 52.8 63.0 66.8 82.1 89.4 90.9 79.4 85.3 55.0 72.8 74.9 77.3 71.6 35.0 72.7
Oriented YOLOv5l 81.0 84.9 53.9 64.7 67.4 82.7 89.6 90.8 79.2 85.9 54.8 74.7 75.8 76.8 70.4 39.4 73.2
Oriented YOLOv5x 89.1 85.6 54.4 64.7 67.7 82.9 89.7 90.8 83.4 85.7 55.3 75.6 75.9 77.1 76.5 34.4 74.3

	 Results on DIOR-R. The DIOR-R dataset contains 20 categories in remote sensing images. 
The size of all the images is set to 800 × 800. As shown in Table 4, our methods achieve the 
state-of-the-art performance with mAP of 70.09 under voc2007 metrics. The accuracy of our 
method is better than those of other methods in such categories as APL, APO, BF, BC, HA, OP, 
SH, STO, TC, and VE. The mAP on APL, SH, and TC can reach over 90, which exceeds others 
by at least 10. In particular, the mAP on ALP (29.82) is better than that on DODet.(51)

	 Results on HRSC2016. The HRSC2016 dataset contains many thin and long ship instances. 
As shown in Table 5, our methods achieve the state-of-the-art performance with mAP of 93.27 
under voc2007 metrics.
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5.	 Conclusions

	 In this research, we proposed an improved method based on YOLOv5 to deal with object 
detection tasks in remote sensing images. Considering the conflicts between different types of 
regression and classification, the detector head is decoupled into four heads for boundary box 
regression, object, category, and angle classification. DAM is designed to integrate channel and 
spatial background features. On the basis of the analysis of remote sensing image features and 
DAM, BDAM was developed using a block processing method and applied to our detection 
algorithm. The effectiveness of our target detection method in remote sensing images was 
verified through experiments on the DOTA, DIOR-R, and HRSC2016 datasets.
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