
3257Sensors and Materials, Vol. 36, No. 8 (2024) 3257–3273
MYU Tokyo

S & M 3731

*Corresponding author: e-mail: louweidong66@outlook.com
https://doi.org/10.18494/SAM4814

ISSN 0914-4935 © MYU K.K.
https://myukk.org/

DSTLNet: Dynamic Spatial-Temporal Correlation Learning 
Network for Traffic Sensor Signal Prediction

Yuxiang Shan, Hailiang Lu, and Weidong Lou*

China Tobacco Zhejiang Industrial Company Limited, Hangzhou 311500, China

(Received December 19, 2023; accepted February 5, 2024)

Keywords:	 traffic prediction, artificial intelligence, path planning, graph convolutional network

	 Intelligent transportation systems based on sensor signals are crucial in addressing 
contemporary transportation issues, accomplishing dynamic traffic management, and 
facilitating route planning. However, the highly dynamic and intricate nature of traffic sensor 
signals presents difficulties for traffic prediction, with current models for traffic prediction 
inadequate in meeting the requirements of both long-term and short-term prediction tasks. In 
this paper, we propose a novel deep-learning framework called dynamic spatial-temporal 
correlation learning network (DSTLNet) that jointly leverages dynamical spatial and temporal 
features of traffic sensor signals to further improve the accuracy of long- and short-term traffic 
modeling and route planning. Specifically, we leverage the temporal convolutional network to 
capture long-term correlations. In addition, a spatial graph convolutional network is developed to 
dynamically model spatial features, and long- and short-term fusion layers are used to fuse the 
extracted long- and short-term temporal features, respectively. Experimental results on real-
world datasets show that DSTLNet is competitive with the state-of-the-art, especially for long-
term traffic prediction.

1.	 Introduction

	 With the advancement of embedded and intelligent technologies, there has been growing 
interest in intelligent transportation systems designed to effectively manage urban traffic and 
navigation. Their key components, namely, traffic signals, traffic modeling, and navigation, play 
an increasingly important role in traffic management. Previous studies have focused on 
developing efficient methods based on traffic sensor signals for traffic modeling and route 
planning. Traffic modeling and route planning require accurate predictions of future traffic 
conditions (such as traffic volume, speed, and density) within a specific time frame that are 
based on historical traffic observations. By accurately and efficiently predicting traffic 
conditions in advance, issues such as traffic congestion and accidents can be better addressed. 
However, owing to the complex spatial and temporal characteristics of traffic-sensing signals, 
precise traffic modeling and route planning remain challenging tasks in navigation.
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	 In recent years, many efficient approaches have been proposed for traffic modeling and 
forecasting.(1,2) Forecasting tasks in traffic can be classified into short-term (5–30 min) and long-
term (30–60 min), depending on the length of the forecasting time interval. To efficiently extract 
temporal and spatial correlations, key techniques are required in traffic modeling and 
forecasting.
	 The current methods for traffic modeling and forecasting can be broadly classified into two 
categories: statistical methods and deep-learning-based methods. Although conventional 
methods such as Kalman filtering(3) have exhibited good prediction performance, they make 
static assumptions that limit their performance in solving long-term forecasting tasks, where 
traffic observations vary over a long-term interval. On the other hand, neural networks have 
shown potential for capturing the temporal and spatial structures of training data.
	 As deep-learning techniques have developed, some deep-learning-based traffic modeling and 
forecasting approaches have been presented. Among them, recurrent neural networks (RNNs) 
are widely used for modeling temporal features.(4–7) However, RNNs and their variants such as 
long short-term memory (LSTM) and gated recurrent units (GRUs) are usually based on 
sequential processing; thus, they only remember the latest information and cannot adapt to solve 
long-term sequences. Convolutional neural networks (CNNs) are widely used to model spatial 
features,(8) although they have unsatisfactory performance when solving non-Euclidean spatial 
features. By integrating RNNs and CNNs, some studies have extracted spatial and temporal 
features simultaneously and achieved excellent modeling and forecasting performance.(9)

	 In recent studies, traffic prediction solutions have explored graph learning extensively to 
model the time-varying traffic topology.(10,11) For example, the dynamic multi-faceted spatial-
temporal graph convolution network (DMSTGCN)(12) constructs a tensor to capture spatial 
correlations by studying the dynamic graph structure at each time. Additionally, it incorporates 
primary and auxiliary feature extraction structures. The multi-task graph neural network 
(MTGNN)(13) utilizes a graph learning and inception structure to improve the accuracy of 
modeling and prediction. It also uses mask techniques to aggregate the graph structure. However, 
existing traffic prediction methods face challenges in solving both short-term and long-term 
modeling and forecasting simultaneously. Moreover, the spatial and temporal correlations in the 
traffic network are difficult to capture together. To address these challenges, in this paper, we 
propose a novel deep-learning framework that focuses on short-term and long-term traffic 
modeling and forecasting by capturing varying spatial-temporal correlations simultaneously.
	 To address the aforementioned challenges, this paper focuses on the issue of predicting short- 
and long-term traffic patterns. It proposes a novel deep-learning framework called the dynamic 
spatial-temporal correlation learning network (DSTLNet) to forecast future traffic conditions 
within specific time intervals. DSTLNet effectively captures the spatial properties and both 
short- and long-term temporal attributes of traffic data. The system initially splits the input 
traffic sequence into two categories, namely, long-term and short-term sequences, and processes 
each category independently. DSTLNet utilizes a temporal convolutional network (TCN) to 
handle the long-term sequence and subsequently encodes both short- and long-term temporal 
correlations through recurrent networks in the encoder. Then, a spatial graph convolutional 
network (GCN) is employed to capture sophisticated spatial relationships. Finally, the spatial and 
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temporal features are extracted and integrated into the prediction layer for forecasting future 
traffic conditions. This integration of AI and robotics not only enhances the accuracy of traffic 
modeling and forecasting but also significantly contributes to the development of intelligent and 
efficient traffic management systems. The key findings and contributions outlined in this paper 
can be shown as follows.
(1)	A long short-term temporal processing module is proposed to model periodic dependences of 

data. In particular, the module contains a TCN and a long short-term fusion component. The 
TCN is used to extract periodic features from long-term data. The long short-term fusion 
component is used to generate attention scores for both long- and short-term data, enabling 
the model to learn long-term and short-term dependences of the data, respectively.

(2)	A spatial graph convolution module is presented to adaptively model the time-varying spatial 
correlations among nodes that demonstrate comparable patterns in geographic locations with 
a flexible adjacency matrix.

(3)	The efficacy of the proposed approach was tested on real traffic datasets, with experimental 
outcomes indicating that it outperforms the most sophisticated techniques.

	 The rest of the paper is organized as follows. Section 2 briefly reviews existing approaches 
for traffic prediction. Section 3 develops some definitions of traffic prediction and formalizes 
the problem. Section 4 elaborates on the proposed DSTLNet model. Section 5 reports extensive 
experiments conducted on real-world traffic datasets to evaluate DSTLNet. Finally, we conclude 
this paper and discuss further work in Sect. 6.

2.	 Related Work

	 This section provides an overview of existing studies in the field of traffic prediction. 
Considering the components of our proposed model, we review related works from two aspects: 
GCN-based traffic prediction and attention-mechanism-based traffic prediction. We conclude by 
highlighting the distinctions between our study and existing surveys.

2.1	 GCN-based traffic prediction

	 Numerous studies have considered a traffic network as a graph structure and implemented a 
GCN to leverage the spatial correlations. Many GCN-based traffic prediction models have been 
proposed and have obtained excellent prediction results. In particular, Chen et al.(14) designed an 
LSTM network based on a stacked structure, in which a GCN was used to obtain multiple 
features to realize model complex spatial dependences. Zhao et al.(5) proposed the integration of 
a GRU and a GCN model for traffic prediction. Zhang et al.(15) employed a GCN module to 
model the dynamic spatial dependences among traffic segments. Li et al.(6) utilized a random 
walk strategy to model spatial correlations of traffic networks. Zhang et al.(16) combined a GCN 
module and a feedforward neural network to realize traffic forecasting. Wu et al.(17) integrated a 
GCN and a TCN to solve traffic forecasting tasks.
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2.2	 Attention-mechanism-based traffic prediction

	 The attention mechanism is efficient and effective for time series modeling and prediction, as 
it can focus on important features to enhance accuracy. For example, Zeng et al.(18) implemented 
the attention mechanism to leverage spatial dependences in an entire traffic network. Similarly, 
Bai et al.(19) utilized the attention mechanism and a spatial-temporal dynamic network to extract 
time-varying correlations in a traffic system. Liang et al.(20) proposed a hierarchical multi-level 
attention-mechanism-based framework to model dynamic spatial and temporal correlations. 
Zhang et al.(21) approached the modeling problem by considering both spatial and temporal 
dimensions. Finally, Kong et al.(22) adopted a multi-head attention-mechanism-based model to 
capture both global and local spatial dependences.
	 In summary, a GCN, a TCN, and the attention mechanism are efficient in modeling spatial 
and temporal dependences for traffic prediction. Nonetheless, most existing models fail to 
perform well in both long- and short-term predictions. Therefore, in this study, we propose a 
novel framework for traffic prediction that addresses this issue. Our proposed model exhibits 
excellent performance, as demonstrated by experiments on real-world datasets.

3.	 Preliminaries

	 In this section, we begin by presenting the definitions utilized in this paper. Following this, 
we formalize the traffic flow prediction problem.

3.1	 Definitions 

Definition 1 (road network)

	 Given an undigraph G = (V, E, A) as the road network, V = {vi}i=1,2,...,N is the set of nodes, 
E = eij is the set of edges, and A ∈ RN×N is the adjacency matrix.

Definition 2 (traffic flow)

	 Given an undigraph G = (V, E, A), the nodes represent the corresponding positions of the 
sensors in the road network. The traffic data collected from the road network are denoted as 
X ∈ RN×T. In particular, X(t)  is the traffic data at the time step t. In this paper, we focus on traffic 
speed data without sacrificing any generality.

3.2	 Problem formalization

	 Given the graph G = (V, E, A) and T historical traffic observations {X(1), ..., X(T)}∈ RN×T, our 
goal is to learn a function f(●) that can estimate the most probable traffic conditions for the next 
time step {X(T+1), ..., X(T+H)}∈ RN×H:
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4.	 Methodology

	 In this section, we introduce DSTLNet, a novel approach for modeling and forecasting traffic. 
The architecture of DSTLNet is displayed in Fig. 1 and comprises six components: a fully 
connected layer, a temporal convolution layer, long- and short-term fusion layers, a spatial-
temporal convolution layer, and a prediction layer. We elaborate on the design of each component 
in the subsequent sections.

4.1	 Input component

	 Most current research focuses on using the entire traffic sequence as the input to train 
models, which are then used to predict future traffic conditions across the network. However, 
traffic data for both short- and long-term periods may have multi-scale temporal features. As 
illustrated in Fig. 1, we designate the short- and long-term sequences, which are then integrated 
into the model. The lengths of the short- and long-term sequences are respectively denoted as Ls 
and Ll. Specifically, the short-term sequence is defined as

	 (1, ) ( 1, ) ( , ){ ,..., ,, }n T n Ts n Ts
SX X X X−= 	 (2)

where XS ∈ RnTs×N, Ts is the number of time steps in the proposed model, and X(Ts,n) is the traffic 
data collected at Ts in the short-term period. The long-term sequence is defined as

	 (1,1) (2,1) ( ,1) (1,2) ( , ){ , ,..., , ,... ,, }Ts Ts n T
LX X X X X X= 	 (3)

where XL ∈ RnTs×N, X(Ts,N) is the traffic data collected at Ts in the nth period. For simplicity, we 
use Tp to denote the number of the period.

Fig. 1.	 (Color online) Architecture of DSTLNet. Its structure comprises stacked feature extraction blocks and a 
prediction layer. Each extraction block incorporates a TCN and a spatial GCN, which work together to capture both 
temporal and spatial correlations. To incorporate multi-scale spatial and temporal features, long- and short-term 
fusion is implemented.
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4.2	 Fully connected layer

	 The long-term sequence XL and short-term sequence XS are first fed into the fully connected 
layer to exploit the features of the input sequence. The operations are formulated as

	 ( )1 1

2 2

( ) ,
( ) ( ),

S c S S

L c L L

Z f X ReLU X w b
Z f X ReLU X w b

= = +
= = +

	 (4)

where w1, w2, b1, and b2 are learnable parameters, and ZS and ZL are the outputs of the fully 
connected layer. ZL is then fed into the next temporal convolution layer to extract the long-term 
temporal correlations.

4.3	 Temporal convolution for long-term temporal correlations

	 Traffic conditions during an interval are correlated with historical observations; thus, it is 
beneficial to incorporate temporal correlations into traffic forecasting models. Recent studies 
have presented the advantage of TCNs in processing time series data, We therefore utilize a 
TCN to learn the long-term temporal correlations. Inspired by Wu et al.,(17) we design the 
temporal convolution layer using stacking dilated convolution layers with progressively larger 
dilation factors, which can capture the multi-scale temporal correlations and obtain the receptive 
field. Moreover, to adaptively adjust the flows from different dilated convolution layers, we add 
a gating mechanism. The following is the definition:

	 1 2tanh( ) ( ),LT L LH W Z W Zσ= ∗ ∗ 	 (5)

where w1 and w2 are learnable parameters.  is an elementwise multiplication operator, σ(●) 
denotes the sigmoid function, * is used to denote the dilated convolution operation, and HLT is 
the output of the temporal convolution layer.
	 Given an input sequence ZL, the dilated convolution operation is defined as

	 ( ) ( ) ( )1 10
,L k k Li

Z f s f i Z s d i× ×=
∗ = − ×∑ 	 (6)

where d is the dilation factor, k is the convolution kernel size, and f1×k. denotes the 1D convolution 
operator. When the network requires a large receptive field, the dilated convolution is efficient 
owing to its reduced computational burden.

4.4	 Long- and short-term fusion layers

	 The long- and short-term fusion layers are responsible for further extracting multi-scale 
temporal features by integrating the output of the temporal convolution layer HLT and the short-



Sensors and Materials, Vol. 36, No. 8 (2024)	 3263

term sequence ZS. These branches operate in parallel and capture temporal dependences at 
different scales. The fusion process is formulated as follows.
	 First, the short-term sequence ZS is processed through two convolution operations α1 and α2, 
followed by a softmax operation. The result is multiplied elementwise with the original short-
term sequence ZS and passed through a nonlinear activation function F. This process is expressed 
as

	 ( ) ( )( )1 2
k

S Ss F Z softmax Zα α = ×  .	 (7)

	 Similarly, the long-term representation HLT is processed through two convolution operations, 
λ1 and λ2. The results of these convolutions are passed through a softmax operation and 
multiplied elementwise. The resulting vector is then passed through the nonlinear activation 
function F. This process is expressed as

	 ( )( )( ) ( )( )1 22 2k
LT LTl F softmax H Hλ λ = ×  .	 (8)

	 Next, the obtained weight vectors sk and lk are multiplied elementwise with the short-term 
sequence ZS and the long-term representation HLT, respectively. The operator s

  denotes a 
channelwise multiplication and l

  denotes a spatialwise multiplication. This fusion operation is 
expressed as.

	 k s k l
F LTH s Z l H= + S .	 (9)

	 Specifically, the channelwise multiplication operator is applied to the short-term sequence ZS 
and the weight vector sk. It performs an elementwise multiplication between the corresponding 
elements of the two vectors across the channel dimension. The purpose of this operation is to 
assign different weights to different channels of the short-term sequence, enabling selective 
emphasis on specific features or channels based on their relevance or importance. By multiplying 
the weight vector with the short-term sequence, the fusion process can enhance channel-specific 
information, allowing the model to focus on the most relevant information for the fusion result. 
Moreover, the spatialwise multiplication operator is applied to the long-term representation HLT 
and the weight vector lk. It performs an elementwise multiplication between the corresponding 
elements of the two vectors across the spatial dimensions. The purpose of this operation is to 
assign different weights to different spatial locations or positions in the long-term representation. 
This allows the fusion process to selectively emphasize the contribution of specific spatial 
locations or positions in the long-term representation. By multiplying the weight vector with the 
long-term representation, the fusion process can de-emphasize certain spatial information, 
enabling the model to focus on the most relevant spatial aspects for the fusion result .
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4.5	 Spatial-temporal convolution module

	 Given graph G = (V, E, A) and node vi ∈ V on G, the correlations among vi  and its neighbor 
nodes are described using an adjacency matrix. The spatial-temporal convolution module is 
formulated as

	 ,S TH AH W= 	 (10)

where W is the model parameter matrix.(23)

	 The diffusion convolution has been widely used in the modeling of spatial and temporal 
characteristics.(6) According to the model, the diffusion process of graph signals is treated as K 
finite steps. Inspired by Wu et al.,(17) we thus formulate the diffusion convolution as

	
0

,k
S T kk

H P H W
=

= ∑ 	 (11)

where Pk = A/rowsum(A). The output HS is then fed into the prediction layer to obtain the final 
forecasting results.

4.6	 Prediction layer and loss function

	 The extracted temporal and spatial correlations are integrated into the prediction layer Fp to 
acquire the final forecasting results, which is presented as

	 ( ) ,ˆ
SFp H Y= 	 (12)

Specially, the operations of the prediction layer are defined as

	 1 1

2 2 ,

,

)ˆ
( ( ))

( ( )

HSY W G b

Y W Y b

σ

σ

′

′

= +

= +
	 (13)

where W1, W2, b1, and b2 are learnable parameters and σ is the activation function. To train 
DSTLNet to forecast the future traffic conditions Ŷ  given the historical traffic conditions Y, we 
choose the mean absolute error (MAE) as the loss function, which is defined as

	
0

ˆ( ) 1 / | |,
i

L n Y Yθ
=

= ∑ − 	 (14)

where θ denotes the learnable parameters in the proposed model.
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5.	 Experiments

	 In this section, we report the empirical assessment of DSTLNet and its competitive baselines 
on two publicly accessible traffic datasets. The essential concept behind DSTLNet is to acquire 
spatial and temporal traits from traffic observations by utilizing the extracted spatial-temporal 
correlations to forecast future traffic conditions. We present experimental findings to 
substantiate the efficiency of our proposed model.

5.1	 Experimental setup

5.1.1	 Dataset description

	 Our experiments utilize authentic traffic datasets, specifically the publicly available METR-
LA and PeMS-BAY datasets, which were collected from loop detectors located on highways in 
Los Angeles and California, respectively.(6) For more information on the datasets, refer to Table 
1.
•	 METR-LA: Traffic data collected between January 1 and May 31, 2017 by 207 loop detectors 

located in Los Angeles County.
•	 PeMS-BAY: Traffic data collected between January 1 and May 31, 2017 by 325 loop 

detectors located in the San Francisco Bay Area.

5.1.2	 Data preprocessing

	 Following previous studies, such as the one on Graph WaveNet,(17) the standard time intervals 
are set as 5 min. The datasets are partitioned into three components, consisting of 70% of the 
data for training the model, 20% for testing the model, and 10% for validating the model. Given 
that the datasets may have incomplete information, we employ linear interpolation to replace the 
missing values and use the Z-score method to standardize the input data. For the two datasets, 
the weighted adjacency matrix W is constructed as follows:

	

2 2

2 2exp(  ),   exp(  )

0 otherwise           

 and

    

 
i

ij ij

j

d d
i j

w
ε

η η


− ≠ − ≥= 


，

	 (15)

where wij represents the weight of the edge between the ith and jth road nodes, dij represents the 
distance between the ith and jth road nodes, and η and ε are parameters that control the 
distribution and sparsity of W.

Table 1
Details of the datasets used.
Dataset  Sensors Time horizon Time interval  Daily range
METR-LA 207  34272 5 min 00:00–24:00PeMS-BAY 325  52116
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5.2	 Evaluation metrics

	 To assess the prediction performance of various methods, we employed the following 
evaluation metrics to compare the discrepancy between the actual value Yt and the predicted 
outcome t̂Y :
1)	 Mean absolute error:

	
1

1 ˆ
n

t t
i

MAE Y Y
n =

= −∑ ,	 (16)

 
2) Mean absolute percentage error (MAPE):

	
1

ˆ1 ,
n t t

i t

Y Y
MAPE

n Y=

−
= ∑ 	 (17)

3)	 Root mean squared error (RMSE):

	 ( )2

1

1 ˆ ,
n

t t
i

RMSE Y Y
n =

= −∑ .	 (18)

5.3	 Parameter settings

	 We conducted all our experiments on a workstation equipped with an Intel(R) Core(TM) I7-
11700K CPU@2.50 GHz processor and an NVIDIA GeForce RTX 3060 system. To predict 
traffic flows in the next 15, 30, and 60 min (3, 6, and 12 time series, respectively), we utilized 
historical observations and optimized our model’s parameters on the validation set. Our best 
performance was achieved for K = 7. During the training phase, we used a batch size of 64 and 
an initial learning rate of 0.001, and we implemented dropout on the graph convolution layer. 
Dropout involves temporarily discarding neural network units from the network according to a 
certain probability (P = 0.3 in our case) during the training process of a deep-learning network. 
We set TS to 24 and the number of periods, n, to 7.

5.4	 Baselines

	 The competing baseline approaches were as follows:

Conventional models:
•	 HA: Uses the average of the previous observations as final results.
•	 ARIMA(24): Auto-regressive integrated moving average.
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Deep neural network models:
•	 FC-LSTM(25): Fully connected LSTM.
•	 DCRNN(6): Diffusion convolutional RNN.
•	 STGCN(26): Spatial-temporal GCN.
•	 GMAN(27): Graph multi-attention network.
•	 DMSTGCN(12): Dynamic multi-faceted spatial-temporal GCN.
•	 Graph WaveNet(17): Uses GCN and dilated casual convolution to model spatial-temporal 

correlations.
•	 S2TAT(28): Employs the attention mechanism and a GCN module to extract spatial-temporal 

correlations.

5.5	 Experimental results

5.5.1	 Results

	 Table 2 presents a comparison between the performance characteristics of DSTLNet and the 
baseline models for predicting 15, 30, and 60 min intervals on the METR-LA and PeMS-BAY 
datasets. From this table, we conclude the following:
(1)	The performance of conventional methods such as HA and ARIMA is unsatisfactory, 

implying that conventional methods have limited ability to model complex traffic data. In 
particular, DSTLNet outperforms ARIMA in capturing complex temporal patterns and 
handling long-term dependences. ARIMA relies on linear models and is limited in capturing 
nonlinear and spatial dependences present in traffic data, which DSTLNet effectively 
addresses.

(2)	Methods that consider only temporal features, including FC-LSTM and WaveNet, can 
achieve better results for short-term prediction tasks than for long-term prediction tasks. It 
was also observed that with increasing time interval, their prediction accuracy markedly 
decreases. Compared with the above methods, the methods that capture spatial-temporal 
correlations perform better, such as DCRNN, STGCN, GMAN, DMSTGCN, and Graph 
WaveNet. In particular, DSTLNet offers advantages over LSTM networks by incorporating a 
long short-term fusion component. This allows DSTLNet to explicitly model both long-term 
and short-term dependences, whereas LSTM networks primarily focus on capturing long-
term dependences. Although CNNs can capture spatial patterns, DSTLNet surpasses them 
by incorporating a spatial graph convolution module. This module adaptively models time-
varying spatial correlations among nodes, allowing DSTLNet to capture dynamic spatial 
relationships in traffic data more effectively.

(3)	DSTLNet outperforms the other baseline models in terms of prediction accuracy for both 
long-term and short-term predictions, with markedly improved performance on both datasets 
for all time periods, although the prediction accuracy decreased with increasing time 
period. We thus conclude that the framework based on complex spatial-temporal correlation 
modeling has excellent performance in processing spatial-temporal data. The most important 
contributions of DSTLNet lie in solving both long- and short-term traffic predictions. For 
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long-term prediction, the TCN component in DSTLNet efficiently extracts periodic features 
from long-term traffic data. This enables DSTLNet to capture long-term trends, seasonality, 
and periodic patterns, leading to improved long-term traffic prediction accuracy compared 
with models that solely focus on short-term dependences. On the other hand, for short-
term prediction, the long short-term fusion component in DSTLNet generates attention 
scores for both long- and short-term data. This allows the model to effectively learn short-
term dependences, enabling accurate short-term traffic prediction. DSTLNet combines the 
long-term and short-term modeling strengths, resulting in more accurate predictions across 
various time horizons.

	 Furthermore, we analyze the impact of various factors on model performance as follows.
a.	 Input data feature: DSTLNet is flexible and can handle various input data characteristics, 

such as traffic volume, speed, and historical patterns. By leveraging both temporal and 
spatial information, DSTLNet can adapt to different data patterns and capture the underlying 
dynamics.

b.	 Model architecture variations: DSTLNet’s modular architecture allows for flexibility in 
incorporating additional components or modifying existing ones. Experimenting with 
different architectures, such as varying the number of layers or the size of hidden units, can 
help optimize the model’s performance based on specific traffic prediction tasks.

c.	 Training strategies: The performance of DSTLNet can be affected by training strategies, such 
as the choice of optimization algorithms, learning rate schedules, and regularization 

Table 2
Performance comparison of different approaches on the METR-LA and PeMS-BAY datasets.

Model METR-LA (15/30/60 min)
MAE MAPE (%) RMSE

HA 4.16/4.16/4.16 13.00/13.00/13.00 7.80/7.80/7.80
ARIMA 3.99/5.15/6.90 9.60/12.70/17.40 8.21/10.45/13.23
FC-LSTM 3.44/3.77/4.37 9.60/10.90/13.20 6.30/7.23/8.69
DCRNN 2.77/3.15/3.60 7.30/8.80/10.50 5.38/6.45/7.60
STGCN 2.88/3.47/4.59 7.62/9.57/12.70 5.74/7.24/9.40
GMAN 4.04/4.59/5.33 10.26/11.69/13.60 8.53/9.85/11.21
DMSTGCN 2.85/3.26/3.72 7.54/9.19/10.96 5.54/6.56/7.55
Graph WaveNet 2.69/3.07/3.53 6.90/8.37/10.01 5.15/6.22/7.37
S2TAT 2.78/3.10/3.43 7.38/8.70/10.02 5.43/6.39/7.32
DSTLNet (ours) 2.65/2.98/3.40 6.83/8.34 /9.50 4.88/5.99/6.95

Model PeMS-BAY (15/30/60 min)
MAE MAPE (%) RMSE

HA 2.88/2.88/2.88 6.77/6.77/6.77 5.59/5.59/5.59
ARIMA 1.62/2.33/3.38 3.50/5.40/8.30 3.30/4.76/6.50
FC-LSTM 2.05/2.20/2.37 4.80/5.20/5.70 4.19/4.55/4.96
DCRNN 1.38/1.74/2.07 2.90/3.90/4.90 2.95/3.97/4.74
STGCN 1.36/1.81/2.49 2.90/4.17/5.79 2.96/4.27/5.69 
GMAN 1.34/1.62/1.86 2.81/3.63/4.31 2.82/3.72/4.32
DMSTGCN 1.33/1.67/1.99 2.80/3.81/4.78 2.83/3.79/4.54
Graph WaveNet 1.30/1.63/1.95 2.73/3.67/4.63 2.74/3.70/4.52
S2TAT 1.33/1.62/1.85 2.83/3.67/4.31 2.89/3.73/4.30
DSTLNet (ours) 1.20/1.52/1.82 2.64/3.08/3.95 2.65/3.45/4.12
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techniques. Fine-tuning these strategies can enhance the model’s generalization and improve 
its ability to capture temporal and spatial dependences in traffic data.

5.5.2	 Ablation study

	 We also conducted an ablation study to explore the effects of different components on 
DSTLNet for the METR-LA dataset. The three key parts of the mode are the spatial-temporal 
graph convolution module, the temporal convolution for long-term correlation module, and the 
long- and short-term fusion layer module. On the basis of the model, we propose three variants: 
DSTLNet-GCN, DSTLNet-TCN, and DSTLNet-LSF.
•	 DSTLNet-GCN: DSTLNet without the spatial-temporal graph convolution module.
•	 DSTLNet-TCN: DSTLNet without temporal convolution for the long-term correlation 

module.
•	 DSTLNet-LSF: DSTLNet without the long- and short-term fusion layer module.
	 Table 3 presents the ablation results for the models, which indicate that the spatial-temporal 
graph convolution module has the most significant impact on the prediction results among the 
components. Removing this module increases RMSE from 9.5 to 10.03 for the METR-LA 
dataset, suggesting that the spatial-temporal graph convolution module plays an important role 
in improving the model performance. The temporal convolution has the second highest impact 
on the prediction results, validating its effectiveness in modeling temporal features. The long- 
and short-term fusion layer module also affect the performance, as RMSE increases from 9.5 to 
9.61 when this module is removed.

5.5.3	 Effect of number of feature extraction blocks, k

	 We next investigated the effect of the number of stacked feature extraction blocks, k, on the 
prediction accuracy. Figure 2 shows the results for the METR-LA and PeMS-BAY datasets. It 
can be clearly observed that k affects the prediction accuracy, with the best performance 
obtained for K = 8. Note that k can be adjusted to improve the traffic forecasting performance.

5.5.4	 Effect of adaptive adjacency matrix

	 We also examined the impact of the learned adaptive adjacency matrix for the METR-LA 
dataset. The heat map in Fig. 3 illustrates the graph structure, revealing columns with high-value 

Table 3
Results of ablation study.

Model METR-LA (60 min)
MAE MAPE (%) RMSE

DSTLNet-GCN 3.54 10.03 7.26
DSTLNet-TCN 3.47 9.81 7.04
DSTLNet-LSF 3.42 9.61 6.98
DSTLNet (ours) 3.40 9.50 6.95
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nodes that have a higher effect on the other nodes in the graph. This suggests that mutual effects 
exist among nodes. It is evident that the adaptive adjacency matrix helps to capture spatial 
correlations, leading to improved prediction results.

5.5.5	 Computation time

	 Table 4 gives a comparison of the computational cost of different models for the METR-LA 
dataset. DSTLNet has a training speed about five times higher than that of DCRNN. It also has a 
higher speed than DMSTGCN and GMAN. STGCN outperforms all other models owing to its 
non-autoregressive nature. Overall, DSTLNet has the third lowest training time and the third 
lowest inference time. The table also indicates that the time cost of DSTLNet is competitive with 
that of Graph WaveNet. Although STGCN has the shortest training and inference times, it has 
low prediction performance. The model with the second-highest performance, Graph WaveNet 
(see Table 2), is outperformed by DSTLNet in both short- and long-term predictions.
	 When considering the trade-off between speed and accuracy in the prediction model, it is 
important to consider typically finding the right balance between the computational efficiency 

Fig. 2.	 (Color online) Effect of k for the METR-LA and PeMS-BAY datasets. (a) METR-LA and (b) PeMS-BAY.

Fig. 3.	 (Color online) Heat map of the graph structure.

(a) (b)
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of the model and the quality of the prediction it generates. It is observed that Graph WaveNet and 
DMSTGCN are better than the proposed DSTLNet in terms of inference speed. The reason is 
that the proposed DSTLNet might prioritize accuracy by incorporating additional layers and 
components, such as long and short-term fusion components, which enhance the model’s 
prediction capabilities for both long- and short-term predictions. Although this leads to improved 
prediction performance, it could result in slightly longer inference times compared to the faster 
models mentioned earlier.

6.	 Conclusions

	 In this paper, we have presented DSTLNet, a novel neural network framework that effectively 
addresses both long- and short-term traffic modeling and forecasting tasks. Our architecture 
incorporates temporal convolution to handle long-term traffic sequences, enabling the capture of 
multiple field features through dilated convolutions. Additionally, we have introduced long- and 
short-term fusion layers that combine temporal features from different time scales, along with a 
spatial graph convolution module that captures spatial characteristics using an adaptive 
adjacency matrix. The experimental results have demonstrated that DSTLNet performs 
comparably to existing baseline models when evaluated on public traffic datasets. This suggests 
the effectiveness of our proposed architecture in capturing both long- and short-term fluctuations 
in traffic conditions. 
	 However, it is important to acknowledge the limitations of DSTLNet. One limitation is the 
current exclusion of external factors, such as traffic accidents and weather conditions, which can 
significantly impact traffic patterns. In future research, we will consider incorporating these 
external factors into the model to improve its prediction performance. Furthermore, while our 
framework has shown promising results in traffic modeling and forecasting tasks, we plan to 
explore extending DSTLNet to a wider range of spatial-temporal prediction tasks beyond traffic. 
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