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	 Object detection is one of the critical technologies in intelligent remote sensing, integrating 
sensor design, image acquisition, and analysis to locate targets in images, especially crucial for 
the perception and communication of unmanned aerial vehicle (UAV) systems. In recent years, 
significant progress has been made in object detection based on deep learning, such as 
convolutional neural networks (CNNs). However, existing methods, particularly in adapting to 
remote sensing sensor systems, still face two main challenges: deep learning framework 
overfitting and inefficient multiscale object detection. To bridge the gap between remote sensing 
sensor design and image analysis algorithms, we propose a lightweight detector based on context 
feature adaptive redetecting, ReAC-DETR, an enhanced version of the baseline detector Faster-
RCNN. ReAC-DETR further improves with Fast-RCNN by optimizing the feature extraction 
and fusion branches, making it more suitable for small object detection. It also alleviates the 
problem of vague object features in remote sensing perception through an object saliency 
enhancement algorithm. Finally, we propose a spatial context adaptive analysis algorithm to 
enhance the detector’s capability to adjust to multiscale object detection and improve detection 
precision. ReAC-DETR can provide a more robust detection technology for remote sensing, 
enabling the system to adapt to various shooting devices, methods, targets, and environments. 
We tested ReAC-DETR on two challenging datasets and achieved excellent performance.

1.	 Introduction

	 Drones are widely used to acquire remote sensing images owing to their high maneuverability, 
rapid deployment capability, and broad surveillance range.(1) Drone technology is a cross-cutting 
field, including drone platforms, sensors, and computer vision. With the development of related 
research, drone-based object detection has been widely deployed in scenes such as road traffic, 
crop production, and search and rescue, and has far-reaching significance.(2,3) Such devices can 
collect remote sensing images in real time and extract important object information. 
	 In the modern field of computer vision, deep learning methods specifically designed for UAV 
sensors are crucial for enhancing object detection technologies. These methods emphasize 
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adapting to the needs of UAV sensors to more effectively perform tasks such as intelligent 
surveillance, autonomous driving, and motion capture. However, the UAV sensors also present 
challenges.(4) As shown in Fig. 1, the vibration of the drone while hovering changes in the zoom 
of the visual sensors, and the movements of the subject can all lead to object blurring; the size of 
the target and the shooting distance can result in different sizes of objects in the image; targets 
located at the edge, or being obscured, lead to targets being only partially visible or distorted.
	 Deep learning, particularly CNN technology, has become vital in addressing these 
challenges. By customizing deep learning models for UAV sensors, small object detection in 
complex environments can be effectively addressed.(5–7) These models adapt to the image 
characteristics captured by the sensors, such as changing backgrounds and lighting conditions, 
thereby improving the accuracy and efficiency of object detection. Therefore, enhanced R-CNN 
and its derivatives, such as Fast R-CNN and Faster R-CNN, can be employed to optimize these 
systems further.(8,9) These models handle high-resolution, multi-angle images captured by UAV 
sensors better and achieve rapid and accurate object detection based on them.
	 Considering the challenges of remote sensing systems, we have made three improvements to 
Faster R-CNN. The most significant challenge in remote sensing is the small target problem, for 
which we have focused on combining detailed and semantic information in visual information 
analysis.(10) To address the issue of non-prominent object features caused by blurring, we 

Fig. 1.	 (Color online) Challenges faced by the intelligent remote sensing system.
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perform saliency enhancement based on detail-enhanced feature maps. Finally, redetection is 
conducted for less reliable targets on the basis of contextual information. Ultimately, this deep 
learning method ReAC-DETR, specially designed for UAV sensors, not only improves the 
performance of object detection technology but also brings revolutionary improvements to 
application fields such as intelligent surveillance and autonomous driving. By closely integrating 
deep learning algorithms and UAV sensor technology, we can capture, process, and analyze 
remote sensing images more effectively, achieving efficient object detection in various 
environments and conditions.
	 The main contributions of this paper can be summarized as follows:
(1)	We propose an intelligent remote sensing system. The communication methods and 

connections between UAVs, visual sensors, and processors are designed to achieve the real-
time object detection and transmission of remote sensing images.

(2)	To prevent missed detection, we enhance details and object saliency. On the basis of Faster 
R-CNN, we designed multilevel feature fusion and proposals, rationally using the relationship 
between features and collected data. Subsequently, after feature fusion, the estimated objects 
undergo feature enhancement, generating feature map proposals.

(3)	We adjust detection results by incorporating spatial context information. The spatial 
relationships between similar or dissimilar objects serve as spatial context information, 
which changes the confidence of less reliable objects to optimize detection accuracy.

(4)	Experiments are conducted on two UAV image datasets, the CARPK and Visdrone datasets. 
Compared with other advanced detectors, ReAC-DETR is more effective in addressing the 
challenges faced by remote sensing.

2.	 Related Works

2.1	 Object detection for remote sensing

	 We present a synopsis of several significant research contributions made in recent years to 
encapsulate the rapid advancements and diverse approaches in object detection for remote 
sensing. Below is a detailed overview of these pivotal research endeavors:
	 Chen et al.(11) introduced the Domain Adaptation Faster R-CNN to address data scarcity in 
remote sensing images. This work utilized adversarial training to combat overfitting, proving 
effective under low-light conditions and enhancing accuracy for low-quality images. Dong et 
al.(12) integrated deformable convolution lateral connection modules and attention-based 
multilevel feature fusion modules for managing diverse shapes and enhancing feature fusion. 
Liu et al.(2) detected salient objects in remote sensing images by improving multilevel 
information flow and fusing global and local attention, showing superior performance on public 
datasets. Aside from CNNs, Transformer has been explored to enhance object detection. Li et 
al.(5) customized Transformer for global spatial relationship capture with an attention-based 
transfer CNN. Zhang et al.(6) proposed EIA-pyramid Vision Transformer, which included an 
adaptive multigrained routing mechanism, a compact dual-path encoding architecture, and an 
angle tokenization technique. 
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	 In the ever-evolving domain of remote sensing, detecting small objects presents a unique set 
of challenges, primarily due to their minute size and often complex backgrounds. Recent 
research has made significant strides in this area, leveraging advanced deep-learning models 
and innovative techniques to enhance detection accuracy and efficiency.(13) 
	 Xiaolin et al.(14) used a super-resolution enhancement module to improve the SA-NET 
network for small objects. Zhang et al.(15) utilized an improved data augmentation method, 
multigranular deformable convolution, and a High-Resolution Block-based Feature Pyramid for 
efficient feature extraction. Unlike the above method, some designed one-stage object detectors. 
Wang et al.(16) optimized the YOLOv8 model by creating Wise Intersection over Union (IoU) v3 
for bounding box regression loss, a BiFormer attention mechanism for enhanced backbone 
networks, and a Focal FasterNet block for multiscale feature fusion. This task has also used 
generative adversarial networks (GANs). Bosquet et al.(17) introduced a comprehensive data 
augmentation pipeline based on small object detection. The DS-GAN architecture generates 
realistic small objects, alleviating the scarcity of small object instances in datasets.
	 Each of these studies contributes uniquely to remote sensing object detection, showcasing 
innovations in model architecture, data handling, and algorithmic efficiency. These 
advancements collectively push the boundaries of accuracy and performance in detecting 
various objects in remote sensing imagery.

2.2	 Robust object detection in loT

	 IoT is rapidly expanding, with robust object detection becoming an increasingly critical 
component in various IoT applications.(18) This requirement stems from the need to ensure the 
accurate and reliable identification of objects in diverse and often challenging environments. 
	 For precise object detection in remote surveillance, Gautam and Singh(19) proposed a 
framework that integrates the YOLO-Lite + SPP model and IoT. Zhang et al.(20) incorporated 
spatial attention into the YOLOv3 framework. Dong et al.(21) modified YOLOv5 by containing 
low-computational ghost modules and a streamlined backbone network. Different from the 
above methods, Hu and Ni(22) focused on intelligent vehicle license plate recognition and vehicle 
detection; their unified method efficiently identified high-energy frequency areas in images, 
facilitating rapid and accurate object detection. Gao et al.(23) introduced the Spatial Attention-
powered Multi-domain Network by incorporating spatial attention and a multidomain network. 
Fu et al.(24) presented a framework that offloads computation to edge nodes for improved 
reliability, real-time capability, and flexibility compared with cloud computing. Moreover, 
Petros et al.(25) investigated a cooperative task execution system in edge computing for IoT 
applications. The proposed system offloads workloads to end devices, collaboratively executing 
object detection on transmitted sets of images. For multiple object detection, Imran et al.(26) 
employed a collaborative approach involving drones, deep learning, and IoT to enhance 
surveillance applications in smart cities. Deep learning is coupled with data augmentation and 
transfer learning.
	 Collectively, these research efforts represent significant advancements in robust object 
detection for IoT applications. Our work builds on previous work experience to further enhance 
the robustness of remote sensing.
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3.	 Proposed Method

3.1	 Remote sensing systems

	 As shown in Fig. 2(a), in an intelligent remote sensing system, the drone serves as the 
carrying platform for the visual sensor. The processor performs object detection on the collected 
images and enhances the entire system’s performance through a built-in optimization algorithm. 
The drone model used in this system is DJI S900. It is a professional-grade drone with various 
advanced flight control systems and a three-axis gimbal, ensuring stability and flexibility 
during filming. It is a hexacopter with a lightweight and high-strength frame design, allowing it 
to carry relatively heavy equipment. It achieves long-distance communication via Lightbridge. 
The visual sensor model is GoPro HERO4 Black, known for its compact size and robust 
performance. It is a portable camera capable of capturing high-quality videos and stills under 
extreme conditions. It has a 12-megapixel camera for still images with a burst mode of 30 photos 
per second. It is mounted on the drone and controlled through the drone’s remote controller or 
flight control system.
	 Edge computing can reduce communication delays, increasing response speed. Additionally, 
it does not rely on ground infrastructure, which improves operational capabilities in remote or 
poor network areas. The AI computing platform model is NVIDIA Jetson AGX Xavier, equipped 
with a high-performance processor and supporting various popular AI frameworks and libraries, 
making it suitable for complex deep learning. Despite its powerful performance, it is designed 
for energy efficiency with relatively low power consumption. It provides various I/O and 
connectivity options for easy integration with visual sensor and ground control terminal devices. 

Fig. 2.	 (Color online) (a) System flowchart and (b) ReAC-DETR algorithm framework.

(a)

(b)
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We integrate the AI computing platform with 4G/LTE modules, providing stable remote data 
transmission.
	 Traditional drone visual data acquisition systems often face challenges such as multiscale 
objects or blurred images. This system improves the detection capability of the visual sensing 
system through methods such as enhancing detail features, enhancing object saliency, and 
spatial context analysis. Specifically, we have improved the traditional object detector Faster 
RCNN. The proposed algorithm is primarily deployed on the processor, enhancing the 
robustness of the target detector, thereby improving the adaptability and accuracy of the entire 
system to the shooting environment. The proposed lightweight detector ReAC-DETR is shown 
in Fig. 2(b). This algorithm enhances details through multilevel feature extraction and multilevel 
feature map proposal, improving the system’s ability to detect small objects. It performs object 
saliency enhancement on the expanded feature maps to alleviate the issue of missed detection 
due to unclear or small-scale object features. On the basis of the distance information of similar 
and dissimilar reliable objects, the confidence of less reliable objects is adjusted to enhance the 
system’s detection ability for complex objects. ReAC-DETR mainly consists of an object detector 
and a context redetection algorithm, which will be introduced in the following two subsections.

3.2	 Object detector suitable for remote sensing

	 As shown in Fig. 2(b), the object detector first performs feature extraction on the data 
collected by the airborne visual sensor. Considering the application of drone platforms, a 
lightweight network, MobileNet-v2, is required for feature extraction.(27) It has a higher 
universality than the recently published MobileNet-v3, as the latter’s higher accuracy is 
dependent on network architecture search to determine parameters. As shown in Fig. 3, to 
enhance the multiscale robustness of the collection system, we designed the feature extractor 
with a multilevel feature fusion structure. MobileNet-v2 is divided into four parts (C1, C2, C3, 
and C4), and the numbers in parentheses in Fig. 3 indicate the number of layers in each part. 
Then, the features extracted from each part are fused from top to bottom. We use 1 × 1 Conv to 
fix the number of channels to 256, which can be directly used for subsequent candidate box 
prediction, then use Content-Aware Feature Up-Sampling (CAFUS) to up-sample the previous 
feature layer two times.(28) This method introduces learnable parameters to fine-tune the 
interpolated image, thereby preserving the internal details of the image and enhancing the 
representation ability of the feature map; after the adjusted two-level features are added, 
Efficient Channel Attention (ECA) is used for the interaction of information between 
channels.(29) ECA significantly reduces the model complexity while maintaining performance 
by adaptively selecting the convolution kernel size.
	 Inspired by a study,(30) we enhance the detail features after fusion with object saliency 
enhancement, to enhance the ability of the drone visual information collection system to 
overcome object blurriness. This method measures the degree of membership of each feature 
point fp in the feature map F belonging to the foreground based on the estimated background 
mean:
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In this equation, T is a learnable tensor used to estimate the background area. The shape of this 
tensor is the same as that of feature F, with edge elements initialized to 1 and other elements to 0. 
The difference between each feature point and the mean of the background features represents 
the saliency of each feature point. Then, on the basis of the saliency, the feature map F is 
enhanced with object saliency enhancement:
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In this equation, features with a degree of membership greater than 0 are enhanced. On the basis 
of impact of hyperparameter α on model performance (measured by mAP), α is set to 0.3.
	 Then, the object detector uses the enhanced features to predict candidate boxes, mapping 
them onto the feature map for the final detection box regression. As shown in Fig. 4, for different 
candidate box sizes, we use feature points containing corresponding pixel information to 
generate the scores and coordinates of the candidate boxes, and regress them on the previous 
level feature map. Compared with the original method, our approach prevents the loss of 
information for small-scale objects. It ensures the completeness of information for large-scale 
objects, thereby preventing the missed detection caused by target blurriness or size. Specifically, 
we combine Region Proposal Network (RPN) and Region of Interest (RoI) Align into one 

Fig. 3.	 (Color online) Details of multilevel feature fusion.
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module, and the method used to generate proposal feature maps at each level is similar to the 
original method. The difference lies in using RoI Align to reduce the dual quantization error of 
RoI pooling.(31) Each module uses 3 × 3 Conv for feature extraction, followed by 1 × 1 Conv to 
generate candidate boxes of a specified size. RoIs filtered through a threshold are fed into RoI 
Align to generate proposal feature maps. We use three consecutive modules of the above type to 
generate proposal feature maps containing information on the corresponding scale images. 
Among these, the stride of 3 × 3 Conv in the first two modules is 2 to achieve down-sampling; in 
the last module, the stride is 1 to prevent missed detection.
	 Finally, on the basis of the proposal feature maps, two fully connected layers are used to 
regress the category confidence and coordinate offsets of the detection boxes, thereby completing 
the entire object detection.

3.3	 Context redetecting algorithm

	 Inspired by a previous work,(32) in drone-captured scenes, objects have a specific distribution 
pattern due to human conventions, i.e., objects belonging to the same or similar categories are 
often closer than those belonging to different categories. Therefore, we incorporate the spatial 
relationship of targets into the context redetecting algorithm. Objects with a confidence level 
between 0.4 and 0.6 are considered less reliable, whereas those with a confidence level above 
this range are considered reliable. By calculating the inter- and intraclass distances between 
different object instances as spatial context, we achieve the redetection of less reliable objects 
using detection objects with high category confidence. This effectively alleviates the problem of 
missed detection caused by multiscale targets or blurriness. To the target object a, let the same 
category set of reliable objects be B and the different category set be C. The process of the 
context redetecting algorithm is shown in Fig. 5.
	 First, measure the distance between objects in B and C and target a. Use the Euclidean 
distance of the center points of the bounding boxes to measure the distance between non-

Fig. 4.	 (Color online) Details of multilevel feature map proposal.
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overlapping objects. For overlapping objects, their distance is affected by the size and ratio of the 
bounding boxes, so using the above method will produce errors. Therefore, we introduce IoU to 
measure the distance between overlapping objects, calculated as

	 ( ) ( )
( ) ( )

1 .IoU
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∪
	 (3)

In this equation, R() is the area of the object-bounding box and the ratio of the overlapping area 
to the combined area of two object-bounding boxes is the IoU.
	 Then, on the basis of the category and spatial relationship of objects, adjust the score S() of 
the less reliable object a. The main principle is as follows: If a less reliable object within a certain 

Fig. 5.	 (Color online) Process of the context redetecting algorithm.
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distance has reliable objects of the same category nearby, then the confidence of the object’s 
existence will be higher. The distance threshold d is set to 500 pixels on the basis of the average 
distance between different object instances. In this case, the formula for adjusting the confidence 
is
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In this equation, D̂() is the normalized distance between objects to [0, 1]. To emphasize the effect 
of the same-category object, we set the influence weight λ = 0.25. In the formula, we use the 
weighted average distance of reliable objects of the same and different categories within the 
radius d of object a, which increases the confidence score of object a.
	 Conversely, if there are no reliable objects within the radius d of object a, but there are 
reliable objects of the same category outside the radius d, then the confidence of the object’s 
existence will be lower. In this case, the formula for adjusting the confidence is
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In this equation, N is the number of same- or different-category reliable objects outside the 
radius d of object a.

4.	 Experiments and Discussion

4.1	 Datasets and evaluation indexes

4.1.1	 Dataset introduction

	 To validate the performance of the model, we conducted experiments on two representative 
datasets of UAV images.
(1)	CARPK dataset for car detection.(33) This dataset is the largest drone-view parking lot 

dataset, comprising 1,448 aerial images collected by drones from four parking lots. The 
dataset only contains a single car target and records the top-left and bottom-right points of 
each car’s bounding box. These images were collected at about 40 m, with a resolution of 
1280 pixels × 720 pixels, totaling 89777 cars. We use 989 images for training and validation 
and the remaining for testing.

(2)	Visdrone dataset for multiclass object detection.(34) This challenging dataset was collected 
using different drone platforms and cameras under various scenes and weather and lighting 
conditions. The objects in the dataset are divided into ten categories, including some less 
numerous vehicles, such as awning-tricycles, tricycles, and buses. The dataset contains 10209 
static images, of which 6471 are used for training, 548 for validation, and 3190 for testing. 
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The dataset presents several difficulties: dense detection objects, small-scale objects, uneven 
data distribution, and severe target occlusion.

4.1.2	 Evaluation indices

	 We set different evaluation metrics for other datasets to measure the model’s performance:
For the binary CARPK dataset, we use Precision and Recall to measure detection accuracy. 
Precision indicates the proportion of actual positive samples among the predicted positive 
samples; Recall suggests the proportion of actual positive samples in the expected positive 
results to all positive samples. Additionally, we use mAP@0.5:0.95 and mAP@0.5 to measure 
this dataset. At a fixed IoU threshold, a PR curve can be obtained with Precision values on the 
y-axis and Recall values on the x-axis. Average precision (AP) is calculated by integrating the 
Precision values on the PR curve, while mAP is the mean of the AP for all categories. mAP@0.5 
sets the IoU to 0.5; mAP@0.5:0.95 represents the average mAP at different IoU thresholds (from 
0.5 to 0.95, in steps of 0.05). The general formula for mAP is as follows:

	 ( )11 ,
CC

cc cc
P r drAP

mAP
C C

=== =
∑∑ ∫ 	 (6)

where C represents the total number of categories and Pc(r) stands for the PR curve for category 
c.
	 For the multiclass Visdrone dataset, we use the COCO evaluation metrics: AP, AP@0.5, 
AP@0.75. AP, as previously described, is the mean of mAP values at different IoU thresholds 
(from 0.5 to 0.95, in steps of 0.05) and is the primary challenge metric; AP@0.5 is the AP value 
at IoU = 0.5, a Pascal VOC metric; AP@0.75 is the AP value at IoU = 0.75, a strict metric.

4.2	 Main comparison results

	 In this experiment, we compared the proposed object detection model with other advanced 
detectors on two UAV image datasets to measure the object detection capability of the intelligent 
remote sensing system.
	 On the CARPK dataset, we compared the model on the basis of two types of evaluation. First, 
we compared on the basis of Precision and Recall, as shown in Table 1. The method proposed in 

Table 1
Comparison of results on the CARPK dataset, evaluated on the basis of Precision and Recall.
Method Precision (%) Recall (%)
Faster-RCNN(8) 84.85 81.27
SDD(35) 89.09 87.52
FCN8s(36) 89.02 86.03
SegNet(37) 87.77 86.89
U-Net(38) 91.43 89.61
FICLAR-Net(39) 94.19 90.14
ReAC-DETR 95.30 92.40
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this paper is the best among the seven models in both metrics, with Precision 1.11% higher than 
the second-best FICLAR-Net and Recall 2.26% higher.(39) Compared with the original model 
Faster-RCNN,(8) it is 10.45 and 11.13% higher in these two metrics, respectively, indicating the 
effectiveness of the improvement module. Then, the models are compared on the basis of mAP 
at different IoU thresholds, as shown in Table 2. Our model also ranks the best in both metrics.
	 As shown in Table 3, on the Visdrone dataset, we compared multicategory predictions using 
AP at three IoU thresholds. YOLOv8 is the latest generation of the popular object detection 
network YOLO series.(47) The YOLO series treats object detection as a single regression 
problem, directly predicting the image’s bounding boxes and class probabilities. Although the 
detection speed has been improved, the accuracy is relatively lower. The YOLOv8 algorithm has 
also been enhanced for small object detection. However, our method still shows an improvement 
of more than 7% in all three metrics compared with YOLOv8. In particular, AP@0.5 is improved 
by 12.2%. Compared with the most outstanding comparison model, AMRNet,(49) our method 
also shows improvements in all three metrics.

4.3	 Visualization results

	 To validate that the model can successfully address the many challenges in drone object 
detection, we selected representative challenging images for visualization and analyzed the 
contribution of each optimization algorithm.
	 Figure 6 shows small, isolated samples from the two datasets. The model’s ability to 
successfully detect these objects indicates its strong capability in small sample detection. 
Moreover, in Fig. 6(b), the isolated objects near the overpass are far from similar objects, 
exceeding 500 pixels. Thus, the context redetecting algorithm has a lesser effect. This illustrates 
that the multilevel feature extraction and feature map proposal positively enhance the system’s 

Table 2
Comparison of results on the CARPK dataset, evaluated on the basis of mAP.
Method mAP@0.5 (%) mAP@0.5:0.95 (%)
SF-SSD(40) 90.10 —
CD-YOLOv5(41) 95.80 63.10
Modified YOLOv5(42) 94.90 61.10
ReAC-DETR 96.60 64.40

Table 3
Comparison of results on the Visdrone dataset, evaluated on the basis of AP(COCO).
Method AP (%) AP@0.5 (%) AP@0.75 (%)
FSAF(43) 20.8 36.4 20.5
VFNet(44) 23.1 37.3 24.1
TOOD(45) 24.4 39.8 25.3
DDOD(46) 23.3 38.2 24.2
YOLOv8(47) 25.9 42.9 26.4
DroneNet(48) 29.6 50.4 29.6
AMRNet(49) 31.7 52.7 33.1
ReAC-DETR 33.5 55.1 34.7
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detection robustness across multiple scales. Object saliency enhancement is precisely the 
enhancement of small target object features through the detail-enhanced feature map output 
after multilevel fusion.
	 Figure 7 lists three examples from the CARPK dataset containing severely occluded vehicles. 
Our method effectively prevents the missed detection of occluded objects. In the first example, 
although the color of the vehicle is similar to the occluding object, it can still be effectively 
detected, and the detection box only includes the unobstructed part of the vehicle. This indicates 
that object saliency enhancement effectively distinguishes foreground and background, and 
enhances vehicle features. In the third example, the vehicle is severely impeded, retaining only a 
small part of the visual information. Owing to the model’s multilevel feature structure, this part 
of the feature is preserved, thus preventing missed detection. Furthermore, Fig. 8 lists vehicles at 
the edge of the image. These vehicles can still be correctly detected, even if only partially 
present in the frame. This is also a good demonstration of the model’s robustness to objects with 
weakened visual information. Additionally, this shows that object saliency enhancement, 
initialized with edge features as background features, has learned during training to distinguish 
between background and foreground correctly.
	 Figure 9 lists images from the two datasets containing densely packed objects. Dense 
distribution can lead to occlusion, feature confusion, and thus a higher false-positive rate. 
However, the context redetecting algorithm can adjust the confidence of less reliable objects 
using surrounding similar objects, thereby improving the object recall rate. For example, in Fig 
9(b)’s first image, some pedestrian objects overlap, but the object distinction is still well 
accomplished. In addition to dense distribution, the impact of the context redetecting algorithm 
is more significant, playing an essential role in detecting other challenging objects and 
effectively mitigating the problems of missed and false detections.

Fig. 6.	 (Color online) Small isolated samples were not missed (emphasized with red dashed lines): from the (a) 
CARPK and (b) Visdrone datasets.

(a)

(b)
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Fig. 8.	 (Color online) Incomplete objects at the edges were correctly detected (emphasized with red dashed lines), 
from the (a) CARPK and (b) Visdrone datasets.

Fig. 7.	 (Color online) Objects were disturbed but correctly detected.

(a)

(b)
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4.4	 Discussion

	 On the basis of the designed method, we improve the classic object detector Faster-RCNN 
and build ReAC-DETR. In comparison using the CARPK dataset, this method has improved 
Faster-RCNN’s Precision and Recall by more than 10%. To implement the detail enhancement 
strategy, we specifically utilize the characteristics of different levels of features, designing 
feature extraction and feature map proposals to use shallow detail information and deep 
semantic information fully. The detection results of isolated small samples in Fig. 6 verify that 
this strategy and implementation can effectively improve the system’s ability to detect small 
samples. To enhance object saliency, we assess the probability of foreground feature points on 
the detail-enhanced feature maps and assign values to regions accordingly. This strategy enables 
the system to detect objects with incomplete or unobvious visual information, as shown in the 
occluded samples in Fig. 7 and the insufficient edge samples in Fig. 8. After regressing detection 
boxes on the basis of proposal feature maps, we adjust the confidence of the regressed less 
reliable detection boxes on the basis of the distance information of similar and dissimilar reliable 
objects. In the dense object examples of Fig. 9, which contain many challenging samples such as 
occlusions, spatial context analysis mitigates the system’s problems of false negatives and false 
positives for such samples.

Fig. 9.	 (Color online) Detection of densely packed objects: from the (a) CARPK and (b) Visdrone datasets.

(a)

(b)
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	 With these strategies, this method enhances the system’s robustness against numerous 
challenges. To measure this method’s detection level, it was compared with several advanced 
models on the CARPK and Visdrone datasets. Our model achieved the best performance under 
multiple evaluation metrics, further proving the effectiveness of the three optimization strategies 
in this system and the overall advanced design of the system.

5.	 Conclusion

	 Remote sensing has been widely applied. We have designed an intelligent remote sensing 
system whose main components are drones, visual sensors, and an AI algorithm platform. In the 
system above, we elucidate these components’ interconnections and communication methods. 
Moreover, to address issues affecting the detection accuracy of the intelligence remote sensing 
system, such as blurred or multiscale collection objects, we proposed ReAC-DETR based on 
Faster-RCNN. The improvement strategies mainly include detail enhancement, object saliency 
enhancement, and spatial context analysis. These three strategies complement each other, 
enabling the system to effectively cope with the issues above.
	 To validate the proposed method, we conducted extensive experiments on the binary-class 
CARPK dataset, which contains many dense objects, and the multiclass Visdrone dataset, 
captured with various devices and scenarios. Our model achieved the best performance under 
multiple evaluation metrics compared with the state-of-the-art methods. Additionally, we 
visualized the detection results of different challenging samples, proving that each optimization 
method provides a positive impact on the system.
	 In our future work, we will consider an object detection architecture that better balances 
computational demands and accuracy to enhance the real-time performance of the intelligent 
remote sensing system. Furthermore, we plan to explore video-based object detection, utilizing 
temporal video information to improve detection accuracy.
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