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 Autonomous vehicles are a pivotal technology in today’s intelligent transportation systems, 
improving traffic conditions by enhancing road safety, reducing congestion, conserving energy, 
decreasing emissions, and boosting travel efficiency and comfort. The key to achieving these 
objectives is to enable autonomous vehicles to perceive their surroundings in real time, with 
accuracy and stability, and to make appropriate decisions and controls on the basis of this 
perception. This perception relies on onboard sensors such as cameras, radars, lidars, and 
ultrasonic sensors. Radar sensors, one of the most frequently used perception devices in 
autonomous vehicles, are known for their strong anti-interference ability, effectiveness under 
occlusion, accurate range measurement, and wide coverage. However, radar sensors are limited 
by low resolution, high cost, large data volume, and difficulty in identifying object types and 
colors. Therefore, compensating for the inadequacies of radar sensing technology and enhancing 
the perceptual abilities of autonomous vehicles are ongoing challenges. In this paper, we 
introduce a novel image signal-based perception and transmission technology, aimed at 
overcoming the limitations of radar sensing and improving the perception efficiency and quality 
of autonomous vehicles. This technology employs image signals as the information medium, 
transmitting road information from the perception end to the processing end via wireless 
communication, thus enabling road condition perception. Compared with radar sensing 
technology, this image-based perception transmission technology is more cost-effective, as it 
only requires standard cameras and eliminates the need for expensive radar equipment. It 
captures a richer array of information, including object shape, size, position, direction, color, and 
texture, rather than just distance and velocity. The processing is more flexible, utilizing existing 
image processing and machine learning technologies for image signal compression, encoding, 
decoding, recognition, and analysis, thereby enhancing the accuracy and real-time capabilities 
of perception.
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1. Introduction

 In the context of intelligent transportation systems, the accurate prediction of traffic elements 
is crucial for enhancing road safety and traffic efficiency. In this study, we aim to explore the 
latest advancements in this field. Currently, the mainstream method for traffic element prediction 
is object detection, which plays a vital role in several aspects. Firstly, object detection technology 
can effectively identify and locate key elements such as vehicles and pedestrians in complex 
road environments, providing timely environmental information(1) to drivers. Secondly, this 
method is essential for implementing safety features such as collision warnings and automatic 
emergency braking systems. Lastly, object detection is critical in real-time traffic monitoring 
and management, helping to reduce traffic congestion and accidents. However, with the 
development of intelligent transportation systems, semantic segmentation has shown more 
forward-looking and practical applications than traditional object detection.(2) Unlike object 
detection, which merely draws bounding boxes around objects, semantic segmentation 
recognizes and categorizes each pixel in an image, offering more detailed and comprehensive 
environmental information. Firstly, semantic segmentation accurately delineates the shape of 
roads, sidewalks, and other key areas, providing essential information for path planning in 
autonomous vehicles. Secondly, it is more effective in dealing with occluded and overlapping 
targets, offering more accurate scene understanding. Lastly, semantic segmentation is 
particularly useful in complex urban environments, adapting better to varying road conditions 
and different weather situations.
 Although semantic segmentation has broad prospects in intelligent transportation systems, 
achieving accurate semantic prediction is more challenging than achieving accurate object 
detection.(3) Firstly, semantic segmentation requires classifying each pixel in an image, which is 
computationally more complex and demands greater computational power. Secondly, given the 
highly dynamic nature of road environments, accurately predicting future semantic(4)

information requires models to have higher environmental adaptability and time sensitivity. In 
the background of intelligent transportation systems, research based on converting images into 
bird’s-eye view (BEV) maps,(5) particularly in conjunction with sensors that recognize road 
signs, is especially cutting-edge and important. Such research utilizes monocular or binocular 
cameras(6) to capture road scenes and transforms them into BEVs through projection 
transformations. This conversion provides richer spatial information for autonomous driving 
systems, including the position, direction, and speed of vehicles, as well as the geometric shape 
and topology of roads, which is crucial for understanding and responding to road signs. Current 
research on image-to-BEV map conversion mainly falls into two categories: geometry-based  
and deep-learning-based methods.(7) The geometry-based method requires accurate knowledge 
of camera intrinsic and extrinsic parameters and the equation of the road plane, using principles 
of perspective projection for transformation. This method is very effective in dealing with 
known environments and standard road signs. However, its limitations become apparent when 
faced with complex road conditions and diverse road signs.
 On the other hand, the deep-learning-based method learns the transformation function 
directly from images through neural networks without explicitly using camera parameters or the 
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road plane. This method exhibits higher flexibility and robustness in handling complex road 
scenes and various road signs. Although it requires a large amount of training data and a large 
number of computational resources, this method can effectively identify and parse various road 
signs, especially in nonstandardized road environments.
 In conclusion, by combining traditional sensors with image-based BEV map conversion 
technologies, intelligent transportation systems can more comprehensively understand and react 
to various situations on the road, including rapidly and accurately identifying road signs. This 
not only enhances the safety and efficiency of autonomous vehicles but also brings revolutionary 
progress to the entire intelligent transportation system. In this paper, we propose a novel method 
for image generation: (1) The generation of BEV maps from images is presented as a set of one-
dimensional sequence-to-sequence transformations. We introduce a novel task of cross-view 
semantic segmentation, which aids in flexibly perceiving the surrounding environment for 
robots and extracting target and category information from original images. (2) We propose a 
framework with a view parsing network that effectively learns and aggregates features from 
multi-angle and modal first-view observations, transforming them into a semantic map from the 
BEV perspective. (3) We introduce a transformation module that converts the output of the 
object detection branch into the input of the semantic prediction branch, facilitating information 
fusion and complementarity between the two branches. An adaptive loss function is utilized to 
adjust loss weights, thereby improving the accuracy and robustness of semantic prediction.

2. Related Work

2.1 Research on radar information transmission

 Radar information transmission technology is significant in studying intelligent 
transportation systems and traffic element detection, particularly in integrating deep learning. In 
the realm of intelligent transportation system research, the application of radar technology has 
become a crucial component. Radar systems operate by emitting radio waves(8) and receiving 
the waves reflected, detecting the position and speed of objects. This technology is widely used 
in automotive, aviation, aerospace, and maritime fields. Radar systems capture information such 
as the distance, speed, angle, and size of objects and transmit this data via radio waves, which 
are then captured and interpreted by radar receivers. In traffic element detection, radar 
technology plays a vital role. It is used to detect and track surrounding vehicles’ positions and 
speeds in autonomous and assisted driving systems.(9) It also identifies pedestrians and other 
obstacles, thereby enhancing road safety. Particularly in complex road environments, radar 
provides key environmental perception capabilities,(10) especially under limited visibility 
conditions.
 In recent years, combining radar data with other sensor data(11) (such as cameras and LiDAR) 
and using deep learning techniques for data fusion have become hot research directions. More 
accurate detection and comprehensive environmental perception are achieved by using deep 
learning algorithms (such as convolutional neural networks) to extract features from radar 
signals and perform object classification and recognition. Furthermore, deep learning models 
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can process radar data in real time, providing immediate decision support for autonomous 
vehicles.(12)

 Despite significant progress in traffic element detection with radar technology, challenges 
remain, such as handling radar signal noise, optimizing multisensor data fusion,(13) and 
maintaining stability and accuracy under different weather and lighting conditions. Future 
research may focus on improving radar system resolution, optimizing deep learning models for 
more effective radar data processing, and developing advanced data fusion and processing 
techniques to further enhance the performance and reliability of intelligent transportation 
systems. In the research fields of intelligent transportation systems and autonomous vehicles, 
radar information transmission technology is increasingly attracting attention. This technology, 
utilizing radar signals for wireless communication, not only enhances the safety and efficiency 
of autonomous vehicles but also conserves valuable spectrum resources. Radar information 
transmission is closely related to the deep learning detection of traffic elements. As essential 
perception tools in autonomous driving, they complement and integrate, enhancing perception 
accuracy and robustness.
 Radar information transmission technology utilizes the multidimensional features of radar 
waveforms, such as frequency, phase, polarization, and coding, to convey information, achieving 
dual functions of radar and communication. This transmission can occur between autonomous 
vehicles or vehicles and infrastructure, exchanging information such as position, speed, 
direction, and intention, thereby enhancing cooperative driving capabilities.(14) Additionally, 
radar information transmission can be an auxiliary perception method, fused with data from 
sensors such as visual cameras and LiDAR, to improve detection and recognition capabilities for 
dynamic and static objects. The deep learning detection of traffic elements refers to using deep 
neural networks to detect and recognize traffic elements, such as vehicles, pedestrians, lane 
lines, and traffic signs, from the data collected by onboard cameras or LiDAR sensors. This core 
perception task in autonomous driving directly impacts decision-making and planning. To tackle 
issues such as occlusion, variations in lighting, small objects, and scenarios involving multiple 
scales and classes, appropriate network structures, loss functions, and optimization methods(15) 
must be designed to enhance detection accuracy and speed. The relationship between radar 
information transmission and the deep learning detection of traffic elements is primarily 
manifested in the following aspects: (1) Radar information transmission provides additional 
information for deep learning detection, such as target distance, speed, and direction, improving 
detection accuracy and robustness. (2) Radar information transmission and deep learning 
detection can be jointly optimized, for instance, using deep learning to design radar waveforms, 
or transmitting parameters or output results of deep learning models via radar information 
transmission, thereby enhancing system performance and efficiency. (3) Radar information 
transmission and deep learning detection can achieve data fusion, such as using multimodal data 
to train deep neural networks or fusing features at different levels, thus improving the system’s 
generalization ability and adaptability. These research directions showcase the cutting-edge 
nature of radar information transmission technology and indicate potential pathways for 
enhancing the perception capabilities of autonomous driving systems.
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2.2 Research on image signal transmission

 In the context of intelligent transportation systems and road information prediction research, 
the integrated application of data image signal transmission(16) and perception is emerging as a 
significant focus(17) in image processing. Combining these technologies enhances the efficiency 
and quality of image data transmission and optimizes the use of spectrum resources. In 
intelligent transportation systems, this integrated application is particularly crucial for improving 
road monitoring images’ perceptual capability and application value.
 Specifically, data image signal transmission technology utilizes the multidimensional 
features of image signals, such as grayscale, color, texture, and shape, for information encoding 
and decoding. This technology can facilitate information exchange between image-capturing 
devices or with infrastructure, effectively improving image transmission efficiency and quality. 
In intelligent transportation systems, images depicting road conditions, such as traffic flow and 
accidents, can be transmitted and processed with greater speed and precision, leading to more 
timely and precise responses. Simultaneously, data perception technology, which involves 
collecting image data through sensors or cameras, is the front-end part of image processing. It 
includes steps such as image acquisition, preprocessing, and enhancement and works with data 
image signal transmission technology. In intelligent transportation systems, data perception 
provides high-quality image data, such as clear, stable, and complete road scene images, and 
enhances the effectiveness(18) and performance of data image signal transmission.(19) Moreover, 
data image signal transmission technology provides effective image encoding and decoding 
methods for data perception, such as image compression, encryption, and verification, enhancing 
the security and reliability of image data processing. In intelligent transportation systems, this 
bidirectional optimization not only improves the accuracy of road information prediction but 
also enhances the system’s overall performance.
 In summary, combining data image signal transmission and data perception provides a 
powerful tool for intelligent transportation systems, enabling more effective processing and 
analysis of road information, thereby bringing significant benefits to autonomous driving and 
traffic management.(20) This integrated application’s development reflects technological 
innovation and showcases the future direction of intelligent transportation systems.

2.3	 Semantic	prediction	of	traffic	elements

 The semantic prediction of traffic elements uses deep learning models to segment and 
recognize road elements such as roads, vehicles, pedestrians, and traffic signs from the data 
collected by onboard cameras or LiDAR sensors. This is a core perceptual task in autonomous 
driving and directly affects the effectiveness of decision-making and planning. Addressing the 
challenges of complex scenes in traffic element semantic prediction,(21) such as occlusion, 
changes in illumination, small objects, and multiscale and multiclass scenarios, necessitates the 
design of appropriate network structures, loss functions, and optimization methods to enhance 
the accuracy and speed of segmentation.
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 Bird’s eye view (BEV) is a perspective that projects objects from three-dimensional space 
onto a two-dimensional plane, providing a more intuitive and comprehensive view of the scene, 
and is beneficial for the semantic prediction of traffic elements. Research on BEV primarily 
includes two aspects: the generation and segmentation of BEV. BEV generation involves using 
sensor data, such as images, point clouds, and radar, to construct a scene representation from the 
BEV perspective. There are generally two methods: geometry-based(22) and learning-based.(23) 
Geometry-based methods transform the coordinates of objects in three-dimensional space into 
planar coordinates in the BEV perspective based on the intrinsic and extrinsic parameters of the 
sensors. This approach is simple and fast but requires precise sensor calibration and is susceptible 
to noise and occlusion. Learning-based methods use deep neural networks to learn scene 
representations from the BEV perspective from sensor data. This approach can overcome sensor 
calibration errors and allows for multimodal data fusion. However, it requires extensive 
annotated data for model training and has a high computational demand. BEV segmentation 
refers to using deep learning models to segment and recognize the types and locations of traffic 
elements from the scene representation in the BEV perspective. There are typically two methods: 
detection-based and segmentation-based. Detection-based methods first use object detection 
models, such as YOLO and SSD, to detect bounding boxes of traffic elements in the BEV scene, 
followed by classification models such as ResNet and VGG to classify objects within each box. 
This method can accurately locate traffic elements but does not reflect the shape and details of 
objects nor distinguish overlapping and occlusion between objects. Segmentation-based methods 
use semantic segmentation models, such as FCN, U-Net, and PSPNet, to generate pixel-level 
semantic maps from the BEV scene directly. This method preserves the shape and details of 
objects and distinguishes between overlapping and occlusion but requires higher resolution and 
computational resources.

2.4 Attention and transformer-driven image translation

 Attention and Transformer are two neural network models based on the self-attention 
mechanism, which have significantly advanced Natural Language Processing (NLP) and 
computer vision (CV) in recent years. Attention is a technique for enhancing the representational 
capability of neural networks and capturing long-range dependences. It enables the model to 
automatically focus on essential parts of the input sequence while ignoring irrelevant parts. 
Transformer, a model entirely based on attention, functions as an encoder-decoder and 
effectively processes sequential data, such as text and images, without the need for recurrent 
neural networks (RNNs) or convolutional neural networks (CNNs). Originally developed to 
address machine translation issues in NLP, Attention and Transformer were first proposed in the 
2017 paper “Attention Is All You Need” and have since achieved remarkable results in various 
NLP tasks,(24) including text classification, text generation, question answering, and sentiment 
analysis. The advantages of Attention and Transformer are primarily reflected in their ability to 
utilize the global information of input sequences without being limited by local information, 
thereby enhancing the model’s semantic understanding and generalization capabilities; they can 
process input sequences in parallel rather than sequentially, which increases computational 
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efficiency and speed; and they can flexibly combine different attention mechanisms, such as 
self-attention, cross-attention, and multihead attention, to enhance the model’s expressive power 
and diversity. Inspired by the success of Attention and Transformer in NLP,(25) researchers 
began exploring their application in the CV field to address tasks such as image classification, 
object detection, and image segmentation. Given the significant differences between image and 
text data, such as dimensions, structure, and distribution, directly transferring Attention and 
Transformer to the CV field requires modifications and innovations. In the CV domain, the 
development of Attention and Transformer has mainly manifested in the following aspects:
1. To adapt to image data’s high dimensionality and resolution, some methods propose dividing 

images into multiple small patches, each treated as a token to be input into Transformer, 
thereby reducing computational complexity and memory consumption.

2. To cater to image data’s local structure and global semantics, some methods have introduced 
hybrid models combining CNNs and Transformer. These models use CNNs to extract low-
level features of images and Transformer to capture high-level features, enhancing the 
model’s representational ability and robustness.

3. To address the diversity and multimodality of image data, some methods utilize different 
attention mechanisms to process various data types, such as images, text, and videos, thereby 
improving the model’s generalization ability and multitasking capability.

 Attention and Transformer are two self-attention-based neural network models that have 
significantly propelled the development of NLP and CV. Initially introduced to solve machine 
translation problems in NLP, they have demonstrated significant effectiveness in various NLP 
tasks.  In CV, the evolution of Attention and Transformer is mainly evident in their ability to 
divide images into multiple small patches, integrate CNNs and Transformer in hybrid models, 
and use different attention mechanisms to handle various data types.

3. Methods

3.1 Encoder and decoder

 In a three-dimensional environment, we utilize multiple sensors to gather first-view 
observations from different angles and modalities, obtaining comprehensive information. These 
first-view observations are encoded by different encoders corresponding to various modalities. 
These CNN-based encoders extract multiple spatial feature maps for the first-view inputs. Then, 
all these feature maps are input into a view transformation module, which transforms these view 
feature maps from the first-view space to the BEV feature space and fuses them to produce a 
final feature map containing sufficient spatial information. Finally, we use a convolutional 
decoder to predict the semantic map of the BEV. The overall framework and flow chart are 
shown in Fig. 1. 
 Despite the huge success of the encoder-decoder structure in classic semantic segmentation, 
the experiments show that it performs poorly in cross-view semantic segmentation tasks. We 
speculate that this is because, in standard semantic segmentation structures, the receptive field 
of the output spatial feature maps roughly aligns with the input spatial feature maps. However, in 
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cross-view semantic segmentation, each pixel on the BEV should consider all the first-view 
feature maps of the inputs, not just the local receptive field areas. After considering the 
limitations of the current semantic segmentation structures, we designed a view transformation 
module to learn the dependences between all spatial positions of the first-view and BEV feature 
maps. This module does not alter the shape of the input feature maps, allowing it to be integrated 
into any existing encoder-decoder-type network architecture for classic semantic segmentation. 
It consists of a view relation module and a view fusion module.
 The lower half of Fig. 1 illustrates the entire process. First-view feature maps are initially 
flattened while keeping the channel dimension unchanged. We then employ a view relation 
module P to learn the relationship between any two pixel positions of the flattened first-view  
and BEV feature maps, where i, j ∈ [0, HW] is the index of the first view feature map f ∈ RHW×C 
along the flattening dimension of the top view feature map, whereas Pi simulates the relationship 
between the i th pixel on the top view feature map and each pixel on the first view feature map. 
In the view relation module P, we simply use a multilayer perceptron (MLP). Subsequently, the 
BEV feature map is reshaped back into H × W × C. Each first-view input has its own view 
relation module, producing a BEV feature map ti ∈ RH×W×C based on its observation. To aggregate 
information from all observation inputs, we use a view fusion module to merge these BEV 
feature maps ti.
 In terms of predicting the trajectories of target vehicles (TVs), we represent their future 
behavior as states they are expected to pass through, defined as

 { }1 1
, , , ,

Ni i i
TVs t t t m i

X X X X+ + =
= …  (1)

Fig. 1. (Color online) The compiler framework of cross-view semantic segmentation is applied to the prediction of 
road information in real-life intelligent traffic scenarios.
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where A denotes the state of vehicle i at time t (for example, position), N is the number of target 
vehicles, and m is the length of the prediction window. The goal is to compute the conditional 
distribution P(XTVs|YEV), where YEV is the observation available for environmental vehicles 
(EVs). This distribution is a joint distribution of sequences of states for multiple interdependent 
vehicles, which can be complex to handle. To reduce the computational demand of estimating 
P(XTVs|YEV), we assume that the future behaviors of the vehicles are independent. Therefore, the 
behavior of each target vehicle can be predicted separately, with a manageable computational 
requirement. At each step, select a P(XTVs|YEV) vehicle as the target vehicle and calculate its 
P(XTVs|YEV), where in Eq. (2), T is the selected target vehicle.

 { }1, , ,T T T
TV t t t mX X X X+ += …  （2）

 Sensors must be considered in the context of intelligent traffic and the detection and 
recognition of road traffic signals. Sensors are an essential component of intelligent traffic 
systems; they perceive, collect, transmit, and process traffic information, providing data support 
for traffic management and control. Depending on different detection principles and application 
scenarios, sensors can be categorized into various types, such as inductive loop detectors, image 
sensors, microwave radar sensors, and geomagnetic sensors. In the method, we primarily use 
image sensors to obtain observations of environmental vehicles because image sensors offer the 
following advantages:
1. Image sensors can provide rich visual information, including the position, shape, color, and 

type of vehicle, which helps improve the accuracy and robustness of the conditional 
distribution.

2. Image sensors can cover an extensive detection range, observing multiple lanes and directions 
of vehicles simultaneously, aiding in handling the interdependences among vehicles.

3. Image sensors can provide observations with different perspectives and modalities based on 
the behavior and maneuvers of vehicles, enhancing the multimodality of vehicle behaviors.

3.2 Image feature translation

 The method utilizes cross-view semantic segmentation to generate semantic maps of polar 
coordinate BEVs from multiple camera perspectives. The model implicitly learns the mapping 
from a single camera view to a polar coordinate BEV, employing a camera calibration-based 
cross-view attention mechanism. Each camera uses position embeddings dependent on its 
intrinsic and extrinsic parameters. These embeddings allow a transformer to learn mappings 
between different views without explicit geometric modeling. The model comprises a 
convolutional image encoder and a cross-view transformer layer to infer the polar coordinate 
BEF semantic segmentation. The model is simple, easily parallelizable, and capable of real-time 
operation. It achieves state-of-the-art performance on the NuScenes dataset.
 In the task of cross-view semantic segmentation, we consider the alignment between the 
semantic segmentation column of each camera view and its corresponding polar coordinate BEV 
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ground truth as a “hard” alignment, where each pixel on the polar coordinate ray corresponds to 
a semantic category in the camera view column. To achieve such a hard alignment, the only 
uncertainty to resolve is the depth of each pixel. However, while aligning in this manner, we 
need to assign features that contribute to solving both semantic and depth aspects. Therefore, a 
hard alignment is disadvantageous. Instead, we prefer a soft alignment, where each pixel on the 
polar coordinate ray is assigned a combination of elements from the camera view column, i.e., a 
context vector. Specifically, when generating each radial element ( )BEV

iSϕ , we want to give it a 
context ci based on the convex combination of elements in the camera view column SI and the 
radial position of element  ( )BEV

iSϕ  along the polar ray. This need for context allocation inspired us 
to use soft attention between the camera view column and its polar rays. Formally, let h ∈ RH×C 
represent the encoded “memory” of a camera view column of height H, and let y ∈ Rr×C represent 
a position query that encodes the relative position of a polar ray along a length r. We generate a 
context c based on the input sequence h and query y by the alignment a between the elements in 
the input sequence and their radial positions. First, in Eq. (3), the input sequence h and the 
position query y are projected by the matrices WM ∈ RC×D and WN ∈ RC×D to the corresponding 
representations Q and K:

 
( )
( )

,

.
i i M

i i N

M y y W

N h hW

=

=
 (3)

 We refer to Q and K as “query” and “key”, respectively. After projection, we use the scaled 
dot product to produce an unnormalized alignment score between each memory-query 
combination in Eq. (4):

 
( ) ( ){ }

,

,i j
i j

M y N h
e

D
= . (4)

Then, in Eq. (5), we use a softmax to normalize the energy scalar to a probability distribution on 
memory:

 
( )

( )
,

,

,1

exp

exp
i j

i j H
iK

e

e k
α

=

=
∑

. (5)

Finally, the context vector in Eq. (6) is computed as a weighted sum of K:

 ( )1
.H

i i jj
c N h

=
= ∂∑  (6)

 The context is generated in such ri way that each radial slot ri independently collects relevant 
information from the camera view column and represents the initial allocation of components 
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from the image to their aerial view position. Such an initial allocation is similar to raising a pixel 
based on its depth. However, it is elevated to a depth of distribution and thus should be able to 
overcome the common problems of sparsity and elongated object cross sections. This means that 
the image context available for each radial slot is independent of its distance to the camera. 
Finally, to generate an aerial view feature ( )BEV

iSϕ  at radial position ri, in Eq. (7), we operate 
globally on the context c = {ci, ..., cr} assigned to all radial positions:

 ( ) ( )BEV
iS g c Xϕ = , (7)

where g(.) is a nonlinear function that deduces along the entire polar ray. We describe its role 
below.
 In this approach, the method addresses the everyday challenges of mapping camera views to 
their corresponding BEV positions. Using a transformer with soft attention mechanisms 
facilitates learning spatial relationships between the camera and the BEV. This model 
architecture enables efficient and accurate semantic segmentation, necessary for applications 
such as autonomous navigation and advanced driver-assistance systems. The global operation at 
the end consolidates the context information from all radial positions, ensuring a coherent and 
comprehensive representation of the BEV.

3.3 Loss design

 To provide a training signal for the predicted occupancy grid, while addressing the 
uncertainties in both semantics and location, we employ a multiscale loss function similar to Eq. 
(8). For each scale u and category k, the average loss is as described in Eq. (8):

 




1

211
N k kK

i ii
u K k kk i ii

y y
L

k y y=

= −
+ + ∈

∑∑
∑

, (8)

where k
iy  is the ground truth binary variable grid cell and k

iy  is the network’s predicted sigmoid 
output, a constant used to prevent division by zero.
 The loss function is used for image segmentation tasks. Its fundamental idea is to compute 
the overlap between the predicted and actual results, optimizing the model by minimizing the 
difference between them. Compared with the cross-entropy loss function, the Dice loss can 
better handle class imbalance issues, as it considers the weight of each pixel in the calculation 
rather than simply using the number of pixels as the weight. In the context of intelligent traffic 
and the detection and recognition of road traffic signals, using the Dice loss function can 
improve the performance of polar coordinate BEV semantic segmentation, as it can overcome 
common problems of sparsity and elongated object cross sections. We utilize sensors to acquire 
depth information in the scene and the direction and speed of vehicles, thereby achieving the 
mapping from a single camera view to a polar coordinate BEV. The sensors include stereo vision 
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systems, microwave radars, and geomagnetic sensors. These sensors assist us in detecting and 
tracking vehicles and collecting information on traffic flow, occupancy, and vehicle types.
 In summary, the approach leverages the multiscale loss function and a combination of various 
sensors to enhance the semantic segmentation performance from camera views to polar 
coordinate BEVs. This method improves the accuracy of vehicle detection and tracking and 
facilitates the collection of comprehensive traffic data, which is essential for intelligent traffic 
management and advanced driver-assistance systems. The use of the Dice loss function, in 
particular, addresses the challenges posed by sparse and elongated objects common in overhead 
views of traffic scenes.

4. Experiments and Discussion

4.1 Experimental settings and datasets

 In this study, two primary public datasets, Cityscapes and NuScenes, were utilized.  
Cityscapes is designed for urban street scenes, providing high-quality, pixel-level, and instance-
level semantic annotations from 50 European cities. It encompasses various road and urban 
environments, including static road information (such as traffic signs, signals, and pedestrian 
paths), roads, buildings, vehicles, and pedestrians. This dataset aims to evaluate and promote 
research and development in algorithms and models related to semantic image segmentation, 
object detection, and scene understanding in urban contexts, particularly in autonomous driving. 
Cityscapes also offers extensions such as a 3D vehicle detection benchmark and a 3D bounding 
box extension. It is an ideal dataset for research and development in urban scene understanding, 
providing a wealth of diverse scenes for areas such as autonomous driving, thereby aiding in 
improving visual perception capabilities within such systems. NuScenes comprises street scenes 
from Boston and Singapore, covering various traffic participants, complex traffic conditions, 
and diverse road conditions. Presented in a time-series format, this dataset supports 
understanding and predicting dynamic scenes. It also offers extensive annotated information, 
including labels for 23 object categories such as vehicles, pedestrians, and bicycles. Additional 
features such as map layers and raw sensor data are also provided. In developing intelligent 
traffic systems, the precise perception of vehicles, pedestrians, and roads is crucial for enhancing 
the performance and safety of autonomous driving systems. The core of this research is using six 
annular RGB cameras mounted on the vehicle, distributed around the vehicle to provide a 
360-degree panoramic view. These cameras capture the road environment in real time, 
generating a complete annular view that aids in the comprehensive perception of the vehicle’s 
surroundings.
 To analyze and utilize these image data effectively, metrics such as the “Intersection over 
Union” (IOU) are commonly employed to assess the performance of BEV map generation 
algorithms. IOU is an indicator measuring the overlap between maps generated by algorithms 
and the real-world environment. It is particularly suited for measuring the correspondence of 
objects (such as vehicles and pedestrians) in BEV maps to their actual counterparts. The higher 
the IOU value, the closer the algorithm-generated map is to the actual environment, indicating 
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higher accuracy. Therefore, in this study, we aim to develop a high-quality BEV map generation 
algorithm that can utilize the annular RGB cameras on vehicles to capture road conditions in real 
time and employ evaluation metrics such as IOU to verify the accuracy and performance of the 
generated BEV maps. This approach can significantly enhance autonomous driving systems’ 
environmental perception and path-planning capabilities, playing a crucial role in creating a 
safer and more efficient intelligent traffic system.
 Aside from IOU, we also employ Precision–Recall (P–R) curves to assess the model 
performance further. P–R curves depict the overall performance trend of a model by calculating 
precision and recall at different thresholds. The area under the curve, known as the AP value, 
represents the accuracy of model recognition. Overall, improvements in mAP (mean Average 
Precision across all categories) reflect an overall enhancement in model performance in object 
detection. In this study, we aim to provide more accurate and comprehensive technical support 
for road information prediction in intelligent traffic through these comprehensive evaluation 
methods.

4.2 Comparison results and discussion

 In this study, we evaluated the performance of various semantic segmentation models in 
urban scenes, focusing on three key metrics: drivable area accuracy (drivable), vehicle detection 
accuracy (road markings), and pedestrian detection accuracy (ped), as illustrated in Table 1.
 To evaluate the performance of the approach, we conducted experiments in various urban 
scenarios, including highways, urban areas, and suburbs. We used metrics such as accuracy, 
recall, and F1 score to measure the predictive performance of the method on different categories 
of targets. The method was compared with several benchmark methods, including VED1, PON, 
STA-ST, and TIIM-ST. The method outperforms all other methods on all metrics, indicating that 
the method has high accuracy and robustness.

Table 1
The sensor achieves an accurate perception of urban vehicles, pedestrians, and roads from front and side 
perspectives. The road under intelligent transportation relies on the vehicle's six ring RGB cameras for perception. 
The main RGB view of the road is obtained in real time, and the algorithm of BEV map generation is studied and 
evaluated as Index IOU.
Model Drivable Road markings Ped
VED 58.7 7.4 7.7
PON 60 8.5 8.4
STA-ST 70.7 8.3 8.6
TIIM-ST 75.1 9.4 10
Our 81.2 13.2 13.3

Model Drivable Road markings Ped
VED 58.2 7.3 7.3
PON 60.4 8.4 8.8
STA-ST 70.1 8.6 9
TIIM-ST 75.9 9.2 10.4
Our 81 13.9 13.7
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 By comparing four existing models, VED, PON, STA-ST, and TIIM-ST, and the proposed 
new model, we found that the model outperformed the existing model on all metrics. Specifically, 
as shown in Table 2, the model achieves a positive accuracy of 33% and a lateral accuracy of 
32.7% on roadblock information, 18.1 and 18.2% higher than those of the existing best model 
IM-ST, respectively. In automobile detection, the front reaches 80.6% and the side reaches 
80.9%, which is 5.9% higher than the front of TIIM-ST. Positive results on traffic signal signs 
were 13.2 and 13.9, 3.5 and 4.7% higher than those of TIIM-ST, respectively. These results reveal 
that the model shows remarkable robustness and generalization ability when dealing with 
complex and diverse urban scenes, and the corresponding ROI curve is shown in Fig. 2.
 The model employs deep learning techniques and utilizes a large amount of data to train the 
model, enabling it to automatically learn the features of road information without the need for 
manually designed feature extractors. It uses a multiscale CNN to capture road information at 
different scales, enhancing the model’s generalization ability and detailed representation. The 
model employs an attention mechanism that can automatically focus on essential areas and 
ignore irrelevant areas, thereby improving the model’s efficiency and accuracy.
 In summary, the model can effectively predict the road conditions in front of and on the side 
of intelligent vehicles in the context of intelligent transportation and road information prediction. 
It outperforms existing models on eight indicators, highlighting its high accuracy and robustness. 
These advantages are mainly attributed to the model’s combination of advanced methods such as 
deep learning, multiscale CNNs, attention mechanisms, and multitask learning.

4.3 Qualitative results and discussion

 In this paper, a deep-learning-based method that utilizes sensors in the front and side of 
autonomous vehicles is proposed. The multi-object prediction shown in Fig. 3 is a task to predict 
the location and category of multiple objects in the scene. It performs real-time predictions of 

Table 2
IOU (%) of sensor for multitarget prediction (the table above is for the sensor side shot data, and the table below is 
for the sensor front shot data).

Model Drivable Crossing Walkway Carpark Barricade Traffic 
signal Con.Veh Mean

VED 58.6 26.9 29.8 12.7 10.6 7.4 4.8 21.5
PON 59.8 28.3 31.2 18.3 8.4 8.6 12 23.8
STA-ST 71 30.6 32.7 33 14 8.3 12.3 28.8
TIIM-ST 74.7 37.1 35.4 31.5 14.5 9.7 14.3 31.1
Our 80.6 41.4 41.2 41.8 32.7 13.2 25.9 39.5

Model Drivable Crossing Walkway Carpark Barricade Traffic 
signal Con.Veh Mean

VED 58.5 26.7 30 12.4 11 7.3 5.3 21.6
PON 59.4 28.2 31.3 18.5 8.8 8.4 11.6 23.7
STA-ST 71.2 30.8 33.2 33.5 13.7 8.6 12.8 29.1
TIIM-ST 75 36.9 35.8 31.8 14.9 9.2 14 31.1
Our 80.9 41.7 41.5 42 33 13.9 23.6 39.5
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Fig. 2. (Color online) BEV map generation algorithm and index IOU (the image on the left shows the sensor front 
detection data, and the image on the right shows the sensor side detection data.).

Fig. 3. (Color online) The sensors self-compile qualitative results on the NuScenes and Cityscapes validation sets 
at any time of day and night, front and side.

information on the road, such as pedestrians, parking lot signs, drivable cars, buses, bicycles, 
zebra crossings, traffic signs, and roadblocks, and presents the prediction results in a visualized 
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manner on the vehicle’s display screen. The method can help autonomous vehicles perceive their 
surroundings better, improving safety and efficiency.
 In developing intelligent transportation systems, the accuracy of dynamic temporal prediction 
is crucial. In this study,  two large datasets are utilized, NuScenes and Cityscapes, to validate 
and demonstrate the performance of the prediction model in natural traffic environments.
 Through these two datasets, high-precision predictions of the motion trajectories of targets 
such as vehicles, pedestrians, and bicycles can be made, which is of considerable significance for 
enhancing the safety and efficiency of the transportation system.The model can precisely capture 
and predict the motion trajectories of targets, including the position, speed, shape, size, and 
direction of the targets. In NuScenes and Cityscapes, the automotive elements are predicted in 10 
consecutive keyframes, demonstrating the effectiveness and limitations of different models in 
handling complex traffic scenarios. The method integrates data from multiple perspectives to 
more accurately capture the dynamics of cars, including their trajectories and behavior patterns. 
In addition, the model considers historical data and future trends, generating smoother and more 
coherent motion trajectories when predicting the dynamics of automotive elements.
 Including Cityscapes further enhances the generalization ability of the model. By validating 
the model in different urban environments, its high accuracy and robustness in various traffic 
scenarios can be ensured. This cross-dataset analysis and application are crucial for 
understanding complex traffic conditions and making accurate driving decisions. These accurate 
predictions improve the safety of autonomous vehicles and help optimize traffic flow, reduce 
congestion, and improve the efficiency of the entire transportation system. The research provides 

Fig. 4. (Color online) Visualization comparison of different models predicting automotive elements on 10 
consecutive keyframes in NuScenes.
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strong technical support for efficient and safe traffic management in intelligent transportation 
systems based on visual perception, especially in predicting complex traffic environments based 
on BEVs. Through the model, intelligent transportation systems can better adapt and respond to 
various road conditions, providing more accurate and real-time data support for autonomous 
driving and traffic management. The visual comparison of different models of predictive 
automotive elements in NuScenes considering 10 consecutive keyframes of timing information 
is shown in Fig. 4.

5. Conclusion

 In this paper, we introduce a novel approach that combines object detection and semantic 
prediction (BEV) to produce high-quality intelligent traffic maps using the data collected from 
onboard cameras. Leveraging advanced sensor technology, including high-resolution cameras 
and multisensor fusion, detailed road scene information was captured, and precise data inputs 
were provided. Additionally, an efficient data transmission mechanism facilitated the real-time 
transmission of collected images and information to the central processing unit, ensuring the 
accuracy of the map generation process.
 Addressing challenges inherent in the semantic prediction (BEV) of traffic elements, such as 
long-distance and multiscale targets, as well as the precision of critical road sign shapes, the 
method demonstrates effectiveness. By effectively leveraging sensor perception capabilities, 
various traffic elements—vehicles, pedestrians, traffic signs, and roadblocks—were accurately 
identified and distinguished, and the obtained information was transmitted to the analysis 
algorithm. The innovative approach was validated through extensive experiments on Cityscapes 
and NuScenes, showcasing its superiority in generating BEV representations and handling 
relationships between multiple targets and categories in complex scenarios. Integrating advanced 
sensor data processing and transmission technologies, the method not only offers a novel 
solution for robotic vision tasks but also provides valuable insights for interdisciplinary fields 
reliant on visual information acquisition and understanding.
 In summary, this research presents a significant contribution—an effective method for 
generating accurate and information-rich intelligent traffic maps from the data captured by 
onboard cameras. Such advancements hold promise for furthering research and applications in 
intelligent transportation and autonomous driving realms.
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