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 This study is aimed at developing an intelligent factory control system for improving 
environment quality and reducing electricity consumption. By automating intelligent equipment 
and leveraging internet networks, the system enables the remote monitoring and management of 
environmental conditions. We combine the fuzzy method and deep reinforcement learning 
(DRL) to handle complex factory data and optimize decision-making. The fuzzy method uses 
fuzzy sets and rules to generate accurate outputs from the data. On the other hand, the DRL 
system learns optimal policies by interacting with the environment using environment quality, 
central air conditioner (AC), and alarm data. Hardware implementation uses an ESP32-S 
microcontroller to send data to Google’s Firebase cloud for seamless management and 
monitoring through a mobile app or website. The study involves developing 36 fuzzy rules and 
creating 10 models with different combinations of hidden layers, epochs, and learning rate 
values. Among the fuzzy inference system (FIS)-DRL modeling results, the fourth model stands 
out as the preferred option to proceed with the experiment, as it achieves the highest accuracy of 
91.16%. Note that this model also exhibits a loss value of 1.64% and an incredibly short inference 
time of only 3 ms. The proposed system offers benefits such as enhanced energy efficiency and 
reduced costs, making it ideal for intelligent factories. By optimizing resource usage, it will 
contribute to sustainable development in various industries.

1. Introduction

 A factory is an industrial workplace that can be found throughout the world. Factories 
provide jobs to a large number of employees. However, it is important to ensure that the working 
environment in the factory meets applicable safety, health, and legal compliance standards.(1) 
Efforts to protect workers and enforce environmental sustainability are also important focuses in 
carrying out factory operations in a responsible manner. The most prominent task in knowing 
whether or not factory conditions are good is ensuring good air condition in the factory. The air 
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condition in the factory is very important to the safety, health, and comfort of workers. Factors 
that must be considered in relation to the air condition in the factory are, for example, indoor air 
quality (IAQ), temperature and humidity, ventilation, dust, and smoke control.(2) The factory 
must comply with applicable occupational safety regulations and standards regarding indoor air 
conditions and take the necessary precautions to maintain healthy air quality in the work 
environment. According to the Decree of the Minister of Health of the Republic of Indonesia 
number 1405/MENKES/SK/XI/2002 Concerning Environmental Health Requirements for 
Office and Industrial Work, to prevent health problems and environmental pollution in offices 
and industry, a suitable room temperature is 18–28 ℃ and a suitable humidity is 40–60%. It is 
also necessary to prohibit smoking in the workspace.(3)

 A fuzzy inference system (FIS) for air quality allows the handling of uncertainty and 
ambiguity associated with air quality measurement. FIS classifies parameters by a reasoning 
process and integrates them into an air quality index.(4) The data generated by the sensors in a 
multisensor system is coordinated by the FIS. FIS is used to model human knowledge and 
address uncertainties in air quality data.(5) Assimakopoulos et al.(2) applied the fuzzy logic 
approach to assess the level of indoor air pollution to determine the comfortable IAQ level. 
 Deep reinforcement learning (DRL) is an alternative method of selection that can be used to 
make decisions based on raw data from sensors that measure environmental quality parameters. 
DRL is a branch of machine learning (ML) that combines two main approaches, namely, 
reinforcement learning (RL) and deep learning (DL). DRL focuses on teaching agents to take 
action in a dynamic environment to achieve certain goals and receive positive or negative 
rewards in accordance with the actions they take.(6) Heo et al.(7) used the DRL deep Q-network 
(DQN) algorithm to design ventilation control systems, where the energy consumption was 
reduced by up to 14.4% for validation dataset time intervals and IAQ was raised from an 
unhealthy to acceptable level. Hu et al.(8) designed an air scope to monitor IAQ sensing using 
DRL, where distributed deep Q-learning (DDQL) was employed. The proposed DDQL 
algorithm performed 8% better than greedy algorithms and 24% better than random strategies. 
Valladares et al.(9) also used DRL in their research to investigate how CO2 levels IAQ. Their 
results showed that the proposed agent in their system has a superior predicted mean vote index 
and that the CO2 level is 10% lower than in current control systems while consuming about 
4–5% less energy.
 In this study, the readings from each sensor are transmitted to the microcontroller, which is 
connected to Wi-Fi. Once connected, the data are transferred to the cloud utilizing Firebase’s 
real-time database as the cloud platform. The system developed in this study combines FIS and 
DRL as an environment quality classification system in a factory environment. This combination 
leverages the strengths of DRL in learning from complex data and situations, and FIS in 
handling uncertainty and simplifying output interpretation. As a result, a more accurate, 
adaptive, and comprehensible environment quality classification system is achieved.
 The multisensor system continuously collects data that are then input into FIS. The collected 
data are converted into fuzzy variables, and fuzzy rules are established on the basis of these 
variables. The fuzzy inference process, implemented by the Mamdani method, considers the 
fuzzy inputs and rules to generate a set of fuzzy outputs. These fuzzy outputs are combined and 
aggregated to produce an overall environment quality index.
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 Defuzzification is then performed to convert the fuzzy output set into crisp values, making 
them easily understandable. This can be achieved by methods such as the centroid or weighted 
average method. Subsequently, DRL modeling is conducted, providing output to factory workers 
regarding the observed behavior of the factory objects. The data integrated by FIS is further 
processed within the DRL framework in the subsequent stage.
 In this study, the action taken is the determination of the environment quality conditions and 
the improvement of air circulation by automatically turning on the central air conditioner (AC), 
as well as the activation of a buzzer as an alarm when the factory conditions are exceptionally 
poor. By implementing the DRL stage after the FIS stage, the system can learn and optimize 
adaptive and intelligent decision-making policies using the observed environmental conditions 
and FIS results. It dynamically adjusts environmental parameters to achieve the desired 
environment quality in the factory.

2. Literature Review

 In this section, we describe the system literature including explanations of previous research, 
fuzzy methods, Markov decision processes (MDPs), and DRL in environment quality systems.

2.1 Related work

 In related work, Haydari et al.(10) used the DRL model to control urban traffic signals in San 
Francisco. According to their study, there are several factors that affect the controllability of the 
DRL system, one of which is the reward function. On the other hand, Shahbazi et al.(11) used a 
DRL system combined with a block chain in the development of smart home security. According 
to their study, DRL is a learning-based algorithm that has the most effective aspects to improve 
system performance to an accuracy higher than 96.9%, which was previously obtained by them. 
Next, Kumar et al.(12) controlled a dynamic and intelligent traffic light control system using a 
combination of DRL and FIS models. DRL is dedicated to dynamically generating traffic light 
phases, whereas FIS is dedicated to analyzing traffic behavior, heterogeneity, and dynamism 
where DRL is in a deep state. The results proved that using this system results in high efficiency 
and effectiveness. In this study, DRL combined with FIS was implemented to optimally control 
and monitor the factory environment quality by examining environmental conditions in terms of 
temperature, humidity, smoke, and dust.

2.2 Fuzzy method

 The fuzzy method in FIS is to use fuzzy logic to make decisions referring to predetermined 
rules. Fuzzy Mamdani (FM), often called the max–min method, is one of the most commonly 
used types of FIS.(13) FM is implemented in the development of our system. FM was first 
developed by Ebrahim Mamdani in 1975.(14) The FIS architecture is shown in Fig. 1; it consists 
of several stages, namely, fuzzification, fuzzy data rule base, inference, and defuzzification.(15) 
Fuzzification, the first stage, is a process of transforming crisp input into real fuzzy sets. The 
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second stage involves the rule base data, where the combining function allows the rule 
application function to be realized by obtaining the maximum rule value from the fuzzy set and 
applying it to the output using the AND operator. Equation (1) shows the process of combining 
membership functions using the max operator. 

 ( ) ( ) ( )( )max ,sf i sf i kf ix x xµ µ µ=  (1)

The max operator is used to determine the maximum membership degree between μsf(xi) and 
μkf(xi). μsf(xi) represents the membership function for a particular fuzzy set, and μkf(xi) represents 
the membership function for another fuzzy set. The third stage is inference, where mapping is 
performed from the input to the output using fuzzy logic. The last stage in the fuzzy method is 
the defuzzification of the combined fuzzy set converted into crisp values that can be used as 
system output. The process of determining the fuzzy center point is expressed by

 ( )
( )

z z z dz
Z
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µ
µ

∫ ⋅
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Z represents the result of defuzzification or the center point of the fuzzy area, and μ(z) represents 
the membership value resulting from the fuzzification process. dz is used to separate z variables 
in the integral process The integral of zμ(z)dz expresses the moments for all regions resulting 
from composition rules.

2.3 MDP

 MDP is an important component in DRL. MDP is a mathematical model used to describe 
decisions taken in contexts that may change over time.(16) MDP is implemented in this study as a 
framework for modeling and optimizing action decisions made by learning agents contained in 
DRL. Theoretically, the MDP formulation refers to the Bellman equation represented by

 ( ) ( ) ( ){ },
, | ,action s r

Value s MAx P s r s a r Value sγ
′

= ×  + ×  ′ ′∑ . (3)

Fig. 1. (Color online) Fuzzy inference system.
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Value(s) represents the value of state s, where, in this study, s indicates dust particles, smoke 
content, temperature, or humidity. The maximum possible number of actions is represented 
by MAxaction. In the Bellman equation, ( ) ( ),

, | ,
s r

P s r s a r Value sγ
′

×  + ×  ′ ′∑ , which is the 
sequential probability of changing s to s′, is integrated through the reward r when action a is 
performed. γ states the discount factor generated to balance the direct and future rewards.

2.4 DRL

 DRL is a combination of DL and RL and has complex computational dimensions. DRL 
works on conditions in the environment and acts through actions processed by agents that are 
integrated with DL.(16) DL or the deep neural network (DNN) is a neural network that mimics 
the function of neurons in the human brain. DL training uses a neural network layer to collect 
and process input data and output a specific output layer.(17) In a neural network, there is an input 
layer and one or more hidden layers that are connected sequentially through connections that 
have weights.(18) Weight update can be completed using

 ( ) ( )1ij ij
ij

CW t W t n
W
∂

∆ + = ∆ +
∂

. (4)

Here, ∆Wij(t + 1) is the change in weight between the two networks at time iteration t + 1. ΔWij(t) 
is the change in weight that occurred in the previous iteration and is added to n, which is the 
learning rate. The higher the learning rate, the faster the system can adapt to changing conditions 
or demands in the factory. ∂C/∂Wij is a partial derivative to measure changes in weight to 
changes in cost function by providing information on the size of the weight change needed to 
achieve the system objectives.
 In this study, five layers are used: one input layer, three hidden layers, and one output layer. 
In the input layer, there are four parts, namely, temperature, humidity, smoke, and dust particles. 
Figure 2 shows the neural network architecture in DL.
 Moreover, RL is trained using data originating from the interaction of the agent and the 
subject’s environment,(19) where the agent receives a reward for the best achievement. DQN is an 
approach in RL, where a neural network models and estimates the Q value function in MDP and 
then updates the Q value estimate on the basis of experience. In conclusion, DQN is one of the 
RL approaches used to solve the MDP problem.

 Q(s,a) = (1 − α) × Q(s,a) + α × (r + γ × max(Q(s',a'))) (5)

In Eq. (5), Q(s,a) is the Q function used to estimate the expected cumulative reward value when 
in state s and taking action a. The (1 − α) learning rate controls the extent of updating the Q 
value in each iteration. The reward r is the reward received when taking action a in state s. γ is a 
discount factor comparing how much r is obtained now and in the future. max(Q) is the 
maximum expected cumulative reward when in state s' and taking action a', and is based on the 
new state and action generated after performing a and being in state s.
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 RL can be used to adjust neural network parameters adaptively on the basis of feedback or 
rewards obtained from the environment. Neural networks can learn interactively and produce 
better decisions.(20) The stages in DRL in this context involve several elements, namely, the state 
space represented by s, action space a, transition function t, and reward function r. RL 
architecture can be seen in Fig. 3. DRL will depict the control environment of the factory 
environment quality as s, where each state represents specific environmental conditions such as 
dust particle level, smoke level, temperature, and humidity. In action space a, the agent can 
choose actions to control the central AC system. The agent determines not only the condition of 
AC on and off, but also the conditions of action for environment quality by sending notifications 
through the mobile application and buzzer as alarms so that the whole is integrated into one 
complete action. The transition function describes the changing state of the factory environment 
on the basis of the actions taken by the agent. Changes in factory conditions can be affected by 
the operation of the control system. The final stage involves the reward function r, which 
provides feedback to the agent on the basis of the environmental state and actions taken. This 
reward function is designed to encourage the agent to perform actions that result in good 
environment quality and minimize pollution in the workspace.

3. Materials and Method

 Here, we describe the system architecture, model configuration, hardware and software, and 
the experimental results that will be applied to this study.

Fig. 2. (Color online) DL architecture implemented in an intelligent factory.
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3.1 System architecture

 The system architecture is shown in Fig. 4. There are four layers, namely, the (1) physical 
layer, (2) network layer, (3) data analysis layer, and (4) application layer. The physical layer 
comprises the combination of the microcontroller and temperature, humidity, smoke, and dust 
sensors. The data of the environmental conditions are obtained by the sensors and transmitted to 
the microcontroller. The results of data processing by the microcontroller are then sent to the 
network layer via the Wi-Fi module connection. The Wi-Fi module is connected to the internet 
network to transmit real-time data of factory environmental conditions to Firebase cloud. Data 
of the real-time conditions are transmitted from the sensors to the data analysis layer. In the data 
analysis layer, FIS receives and processes the data from sensors by making rules to output 
decisions in the form of an environment quality index. On the DRL side, the actions to be taken 
by the agent are determined from the results of FIS decision rules by updating and improving 
control policies using the feedback received. DRL can optimize control policies on the basis of 
the rewards received for factory environmental conditions. Furthermore, the output value is 
displayed by the application layer, namely, a mobile-based application that monitors and controls 
factory conditions. In addition, since the microcontroller cannot directly control high-voltage 
electrical appliances, a relay is used. The application layer also includes a relay that controls the 
central AC turn-on and turn-off operations and a buzzer that provides a notification of any error 
that may occur in the factory conditions.

3.2 Fuzzy architecture 

 As explained in the previous section, in this study, we utilize the FM method. In the Mamdani 
process, it is important to determine the input membership function (IMF) and output 
membership function (OMF). A membership function is a mathematical function that determines 
how much each linguistic set contributes to the membership value, where each membership 
function has a fuzzy variable that is converted into a membership value. IMF converts the fuzzy 
input values into membership values used in the inference process, while OMF converts the 
fuzzy output values into membership values used in the defuzzification process to obtain a 
concrete output value.(13) With the help of IMF and OMF, the defuzzification process is 

Fig. 3. (Color online) RL architecture.
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performed by calculating the weighted average of all linguistic set contributions to an output 
fuzzy set, resulting in a more concrete and understandable output value. Figure 5 shows the 
member functions of FIS Mamdani. The Mamdani fuzzy method comprises four IMFs: 
temperature, humidity, dust particle, and smoke. There are also three OMFs: environment 
quality, central AC, and buzzer. Each IMF has specific conditions based on its characteristics; 
the detailed range of each IMF can be found in Table 1, while Table 2 shows the OMF categories.
 In the fuzzification stage, the IMFs for temperature, humidity, dust particle, and smoke are 
transformed into fuzzy sets using membership functions. For instance, the dust particle levels 
are labeled as normal and risk. After determining the range of each fuzzy set, the subsequent 
step involves creating fuzzy rules based on Eq. (6), where x represents the IMF, A is the IMF 
range, and y represents the OMF category B in the fuzzy rules.

 If x is A, then y is B. (6)

 Each fuzzy rule is applied by considering the degree of membership of the input, and the 
degree of membership of the output is generated. An example of rules in the system we employ 
are shown in Eq. (7).

 If temperature is hot, humidity is dry, then central AC is On． (7)

 The final stage is defuzzification, where the fuzzy output set is transformed into a crisp value 
that can be used for decision-making and controlling devices in the environment quality system. 
Mathematically, a crisp value can be expressed as

Fig. 4. (Color online) Proposed system architecture.
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where ui represents the membership degree in category i and xi represents the crisp value for 
each category i. In environment quality, if the crisp value generated falls within the range of 
0–50, it can be categorized as “Poor”. If the crisp value falls within the range of 51–70, it is 
categorized as “Moderate”. If the crisp value is above 71, then the environment quality is 
categorized as “Good”. To determine the range, the defuzzification process uses the centroid 

Fig. 5. (Color online) Membership functions of FIS.

Table 1
Ranges of IMFs.
IMF Range of IMF 

Temperature (℃)
Cool 0–20

Normal 21–28
Hot >28

Humidity (%)
Dry 0–45

Normal 46–65
Humid 66–100

Dust particle (µg/Nm3) Normal 0–10
Risk 11–40

Smoke (µg/m3) Normal 0–500
Risk 501–10000

Table 2
Categories of OMFs.
OMF Categories Range of values 

Environment quality
Poor 1–50

Moderate 50–70
Good 70–100

Central AC On 1
Off 0

Buzzer On 1
Off 0
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method, where category i is determined on the basis of the center of gravity of the curve of each 
membership category; the resulting value will represent the median value of each category. 
Then, objective decisions can be made on the basis of the information provided by FIS. The 
equation of the centroid method is

 ( ) .
abx x dx

X
A
µ∫ ×

=  (9)

  The variable X is a point in the interval [a, b], where a is the maximum crisp value and b the 
minimum crisp value. μ(x) is the membership function at point x. A is the area under the 
membership function curve between the interval values a and b. Using the centroid method in 
the defuzzification process, FIS can determine the center value of the area under the OMF 
curve. This results in an output point that represents the value of the output variable expected on 
the basis of the given input. Figure 6 shows the rule viewer in Matlab. FIS helps determine the 
center value of the OMF. Thus, FIS can help determine the value of each category in the 
membership accurately and is not affected by bias. To ensure that there is no bias in the 
defuzzification process, it is important to ensure that the membership function and 
defuzzification method used correspond to the predetermined value ranges. For example, in 
Table 2, the “Poor” category of the OMF Environment Quality has a value in the range of 1–50. 
In the defuzzification process, if the crisp value is classified as “Poor”, then the membership 
level in the “Poor” category will be high, while the membership levels in the “Moderate” and 
“Good” categories will be low. A similar effect occurs in the “Moderate” category with a value 
in the range of 50–70: an increase in membership level in the “Moderate” category will cause a 
decrease in membership level in other categories. Likewise, in the “Good” category with values 
in the range of 70–100, an increase in membership level in the “Good” category will result in a 

Fig. 6. (Color online) Rule viewer of environment quality system.
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decrease in membership level in other categories. Thus, it is important to design membership 
functions and defuzzification methods carefully in order to minimize potential bias and produce 
objective results in determining crisp values.

3.3 Hardware system 

 Figure 7 shows the hardware system integration diagram. It contains BME/BMP280, MQ-2, 
and GP2Y1010AU0F sensors used to measure temperature, humidity, smoke, and dust in the 
factory production area. Each sensor is connected to the ESP32 microcontroller board. A 
microcontroller is a chip in which the central processing unit (CPU), memory, and I/O devices 
are integrated to control electronic systems or devices that will be programmed into it to run 
various applications or systems such as that for environmental quality in a factory. The wiring 
layout for each sensor is as follows: the VCC pins of all sensors are connected to a power source 
of 3.3 V, and the ground (GND) pin is connected to the GND pin on ESP32. Next, the SDA and 
SCL pins of the BME/BMP280 sensor must be connected to the GPIO36 and GPIO35 pins. For 
the MQ-2 sensor, the analog output (AO) is connected to the GPIO05 pin on ESP32. Moreover, 
for the GP2Y1010AU0F sensor, the analog input is connected to the GPIO08 pin and the output 
for controlling the LED is connected to the GPIO15 pin. This microcontroller ESP32 is 
connected to a relay to control the central AC in the factory. Because microcontrollers cannot 
directly control electrical equipment with high voltage, relays are used. When the indoor 
environmental quality deteriorates, the buzzer will function as an automatic alarm to warn 
people if the environment is unhealthy.

3.3.1 ESP32-S

 A microcontroller is an Internet of Things (IoT) device that can function as a publisher and 
subscriber. The publisher will send the data to the server, and the subscriber will look at it and 

Fig. 7. (Color online) Hardware system integration diagram.
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compare the errors and time it takes to transmit and process the entire data received by the 
microcontroller.(21) In this study, we use ESP32 as the microcontroller as shown in Fig. 8. ESP32 
is made by Espressif Systems, a company based in Shanghai, China. TSMC is used as a core 
producer and is 40 nm in size. ESP32 is an open-source and low-power microcontroller for 
economic and energy-efficient IoT needs. Equipped with integrated Wi-Fi and dual-mode 
Bluetooth, there is no need to use additional Wi-Fi or Bluetooth modules. The ESP32 series uses 
the Tensilica Xtensa LX6 microprocessor as the core, and it is available in both single-core and 
dual-core modes. ESP32 integrates an antenna switch, an RF balun, a power amplifier, a low-
noise receiver amplifier, a filter, and a power management module. It has clock frequencies of 
80, 160, and 240 MHz. This microcontroller contains 520 kB of RAM and 4 MB of flash 
memory for storing data and programs. It is perfect for IoT projects because of its high processing 
power.

3.3.2 BME/BMP280

 Robert Bosch is the world’s market leader for pressure sensors in automotive and consumer 
applications. Bosch provides the BME/BMP280 sensor breakout board featuring temperature, 
humidity, and barometric pressure sensors. BME/BMP280 is the next-generation sensor from 
Bosch, an upgraded version of BMP085/BMP180/BMP183 with a low noise height of 0.25 m and 
the same short transition time. This sensor is tiny, and has low power consumption. BME/
BMP280 is built on piezoresistive pressure sensor technology and features high accuracy, 
linearity, and stability. BME/BMP820 has a temperature sensor rating of ±1.0 hPa and a 
temperature measurement accuracy of ±1 ℃. The sensor dimensions are 2 × 2.5 × 0.95 mm3. Its 
operating pressure ranges from 300 to 1100 hPa, while its temperature measurement range 
extends from −40 to 85 ℉. The power voltage required for operation ranges from 1.2 to 3.6 V. 
BME/BMP280 is shown in Fig. 9.

3.3.3 MQ-2

 MQ-2 is a sensor module that can be used to detect flammable smoke or gases, such as 
liquefied petroleum gas (LPG), hydrogen (H2), methane (CH4), carbon monoxide (CO), alcohol, 

Fig. 9. (Color online) BME/BMP280.Fig. 8. (Color online) ESP32-S.
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smoke, and propane at concentrations between 200 and 10000 ppm. Moreover, MQ-2 can also be 
used as a tool for environment quality monitoring. MQ-2 is shown in Fig. 10.

3.3.4 GP2Y1014AU0F

 GP2Y1014AU0F is an optical environment quality sensor designed to sense dust particles in 
air. The internal diagonal installation of infrared light-emitting diodes and a photoelectric 
crystal allows it to detect the light reflected off dust in air. Even very small particles such as 
tobacco smoke particles can be detected. It is usually used in air purification systems. The 
sensor has very low current consumption (20 mA max; 11 mA typical) and can use up to 7 VDC. 
GP2Y1014AU0F is shown in Fig. 11.

3.3.5 Relay

 Figure 12 shows a relay module. Relay modules are the same as relays in general. There is a 
microcontroller board that allows us to control the relay module using a microcontroller, 
similarly to the way sensor node researchers use ESP32. Researchers use the relay module 

Fig. 10. (Color online) MQ-2. Fig. 11. (Color online) GP2Y1014AU0F.

Fig. 12. (Color online) Relay.
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Fig. 13. (Color online) Central AC unit. Fig. 14. (Color online) Buzzer.

because it can regulate a high-voltage electronic circuit using low-voltage signals and protect 
motors or other components from over-voltage or short circuits.

3.3.6 Central AC

 We use central AC in our research experiment. The average industrial plant uses central AC 
to cool the workspace. Central AC is a system in which air is cooled at a central location and 
distributed to and from rooms using one or more fans and ductwork. Figure 13 shows a central 
AC unit.

3.3.7 Buzzer

 The buzzer is an electronic component that can convert electrical voltage into sound that acts 
as a signal on the sensor. The most common uses of buzzers are as alarms, sound indicators, and 
timers. Figure 14 shows a buzzer.

3.4 Software

3.4.1 Firebase database

 Firebase has come a long way since joining Google in 2014. Firebase is undoubtedly one of 
the most popular backend-as-a-service (BaaS) platforms for app developers. Firebase is a cloud 
app development platform that supports Android, iOS, and web pages. The purpose of this 
system is to store a database of information for applications that require control and data. 
Information from messages can be stored in the local system database. This helps application 
developers to rapidly build back-end services in the cloud, provides a real-time database, 
shortens application development time, and helps developers focus more on front-end 
optimization. Figure 15 depicts the workflow of the Firebase database in this study.
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3.4.2 Android Studio

 Android Studio is an integrated development environment (IDE) designed for creating 
applications on the Android platform. It was released by Google I/O on May 16, 2013, and is 
freely available for developers to use. Android Studio is used to develop applications for Android 
smartphones because of its specialized programming capabilities. The intelligent code editor 
feature in Android Studio enables an easier code analysis, which helps researchers write better, 
faster, and more productive codes. Android Studio has strong support for integration with 
Firebase. Using the Firebase SDK, mobile apps can connect with Firebase services to access 
stored environment quality data, send data to a Firebase database, or receive real-time data from 
sensors in a factory. Fig. 16 illustrates the workflow of the android studio in this study.

3.4.3 Thonny

 Thonny is a software or IDE for Python designed for beginners. It was created by Aivar 
Annanamaa, an Estonian programmer. Thonny is often recommended for beginners who want 
to learn or develop skills in Python programming. Thonny supports multiple operating systems, 
including Windows, mac OS, and Linux. It also supports multiple versions of Python. In this 
study, it is used as an integrated tool to develop and test the FIS -DRL model for environment 
quality control in intelligent factories, as shown in Fig. 17. 

3.5	 Model	configuration

 As explained in the previous section, we will combine the FIS and DRL functions. The first 
step is to obtain accurate readings of the temperature, humidity, smoke, and dust sensors in real 
time as input values. Subsequently, the microcontroller reads and manages the sensor accuracy 
by conducting tests using the fuzzy method to make decisions on the basis of the sensor accuracy 
and produce output rules based on predetermined fuzzy rules. The output of the system at this 
time is used to determine environment quality, control the central AC, and activate the buzzer as 
an alarm when an error occurs in the system. After creating a rule in FIS Mamdani, it is 
necessary to create a model system using DRL. The factory workroom is the environment that 
will be tested in the context of central AC. Next, the state s of the environment is determined in 

Fig. 15. (Color online) Firebase database.
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the form of a vector describing environmental conditions in terms of temperature t, humidity h, 
smoke sm, and particles of dust d. After determining the state values, the next step is to 
determine action a, which is the determination of the environment quality in the factory 
environment and the speed of the central AC. Reward r is positive or negative feedback on the 
agent’s decision and becomes a consideration for the agent to determine action a. The DRL 
model used is a DNN that supports learning and uses the RL method to carry out the training 
process. The model will interact with the environment and take action based on real-time 
conditions, receive rewards, and update decision-making strategies in accordance with the 
events and feedback received.
 In the previous section, we discussed the OMF category. The next step involves DNN 
modeling with multiple class conditions. The dataset in Table 3 represents a class in DNN. The 
environment quality values are categorized into three conditions: poor, moderate, and good. In 
the learning model, they are symbolized as 1, 2, and 3, respectively. For the central AC value, 
turn-on is symbolized as 1 and turn-off as 0. The buzzer value follows the same convention.
 During the modeling stage, DRL requires a dataset with optimal results, where, to find the 
optimal value, the hyperparameter tuning of the DNN architecture layer is carried out. 
Hyperparameters are tuned using a training dataset of 7200 samples and a testing dataset of 
1440 samples. Our study involves a scenario-based approach with 10 different variations of the 
model, considering factors such as the number of neurons in the three hidden layers, the number 
of epochs, and the learning rate. Table 4 presents the results of comparing 10 DNN models. The 
number of neurons or density in the hidden layer is random. Finding the optimal value for the 

Fig. 17. (Color online) Thonny IDE.

Fig. 16. (Color online) Android Studio.
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number of neurons in the hidden layer is very important for the model to learn the data well. 
There are several categories, where each category has a certain maximum value. For example, in 
model 1, all neurons have a maximum value of 256. Model 4 has a combination of the number of 
neurons from minimum to maximum values, namely, 32, 64, and 128. Moreover, in model 6, the 
number of neurons in each hidden layer is 32. Several other models have variations in the 
number of neurons in the hidden layer. From among the models with these various hidden layer 
variations, we will determine the model that provides optimal results. This hyperparameter 
tuning process affects the f1 score, how low the loss value is, how much memory is consumed, 
and the accuracy of the results.

3.6 Experiment setup

 Figure 18 shows a work system flowchart for our experiment. The initial stage involves 
integrating all the components, including temperature, humidity, smoke, and dust sensors, 
within the factory conditions. Subsequently, FIS is employed to develop fuzzy rules based on the 
received sensor values. Next, an implementing model is developed, consisting of 8640 datasets 
divided into a training dataset (83%) and a test dataset (17%). The learning model processing 
stage involves the analysis of the implemented model’s performance. DNN processing is utilized 
to compare several models and select one with the highest accuracy. If the accuracy falls below 
90%, the process returns to the learning model processing stage. If the accuracy reaches or 
exceeds 90%, the model is integrated into the DRL stage. The FIS and DRL methods are 

Table 3
Class dataset in DNN
OMF Class Binary class

Environment quality
Poor 1

Moderate 2
Good 3

Central AC On 1
Off 0

Buzzer On 1
Off 0

Table 4
Results for 10 DNN models.

Model name Hidden layer (neurons) Learning rate EpochH1 H2 H3
Model 1 256 256 256 0.0005 200
Model 2 128 128 128 0.0005 200
Model 3 128 64 32 0.0005 200
Model 4 32 64 128 0.0005 200
Model 5 64 64 64 0.0005 200
Model 6 32 32 32 0.0005 200
Model 7 32 64 128 0.005 300
Model 8 32 64 128 0.0005 300
Model 9 256 128 64 0.005 200
Model 10 128 128 128 0.005 200
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combined to generate output in the factory environment. The central AC and the buzzer operate 
in accordance with the actions determined by the optimal agent. Additionally, the system 
translates the environment quality conditions into categories such as poor, moderate, and good. 
These categories are displayed through the mobile application.

4. Results and Discussion

4.1 Analysis of fuzzy rule result

 In the previous section, the input values were determined on the basis of the factory 
conditions, and the output rule values were obtained using FIS. To avoid bias in each parameter 
result, the use of the FIS method can still provide benefits in handling uncertainty and vagueness 

Fig. 18. Flowchart of experimental process.
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in environmental data. Thus, FIS can help determine the value of each category in the 
membership accurately and unaffected by bias. In this study, there are three OMFs, namely, 
environment quality, AC control, and buzzer. These three outputs will later become actions in 
DRL modeling dependent on the state conditions in the environment. This stage represents the 
implementation of fuzzy inference utilizing the Mamdani method to apply fuzzy rules. The 
fuzzy rule set consists of 36 rules comprising four IMFs and three OMFs, as shown in Table 5. 

4.2	 Analysis	of	model	learning	implementation

 The action determined by DRL can be carried out by agents to determine the best conditions 
of environment air, AC, and buzzer so that the whole is integrated into one complete action. The 
DRL model is based on 36 rules generated at the FIS stage and triggered by the state conditions, 
namely, temperature, humidity, dust, and smoke. Within the agent, conditions related to 
environmental air, central AC, and the buzzer can be determined to integrate them into a unified 
action. In Table 6, the results of the trained model architecture evaluation using DNN to control 
environment quality are presented. The table shows the values of various performance metrics 
for each model, including accuracy, loss, memory usage, and inferencing time. The accuracy of 
each model reflects how well the model can produce outputs that match the expected targets 
under various conditions of, for example, environment quality, central AC, and buzzer. A lower 
loss percentage indicates higher performance in predicting environment quality control. 
Moreover, each model uses different levels of memory. Less memory usage implies a more 
efficient and less resource-intensive operation of the model. Inferencing time, measured in 
microseconds, indicates how rapidly each model can make decisions, and is a metric to consider 
in making more responsive and efficient control systems.

Table 5
Membership function rules. 

Rule number
IMF OMF

Temperature
(℃)

Humidity 
(%)

Dust
(µg/Nm3)

Smoke
(µg/m3)

Environment 
quality Ac control Buzzer

1 Cool Normal Risk Risk Poor Off On
2 Cool Humid Normal Normal Moderate Off Off
3 Cool Humid Risk Risk Poor Off On
4 Normal Dry Normal Normal Good On Off
5 Normal Dry Risk Risk Moderate On On
6 Normal Normal Normal Normal Good Off Off
7 Normal Normal Risk Risk Moderate Off On
8 Normal Humid Normal Normal Good Off Off
9 Normal Humid Risk Risk Moderate Off On

10 Warm Dry Normal Normal Good On Off
11 Warm Dry Risk Risk Poor On On
12 Warm Normal Normal Normal Good On Off
13 Warm Normal Risk Risk Poor On On

…
36 Warm Humid Risk Risk Poor On On
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 From Table 6, we can observe that both models 4 and 10 show relatively high accuracies 
above 90% and low loss rates below 1.70%. However, model 4 outperforms model 10 in terms of 
memory usage and inference time. On the other hand, model 5 exhibits the shortest inference 
time of 3 ms and an efficient memory usage of 22.9 kB. Upon further observation, although 
model 5 has lower loss and memory usage, its average accuracy is much lower than that of model 
4. Specifically, model 4 is the best choice in this study, achieving an average accuracy of 91.16%, 
while model 5 only attains an average accuracy of 89.63%. Therefore, model 4 is highly suitable 
for controlling environment quality in intelligent factories. The differences in the top three 
model levels are shown in Table 7.
 In data visualization using model 4, there are three outputs: environment quality, central AC, 
and buzzer. In the data visualization for environment quality modeling, three different shades of 
green are used to represent correct conditions, while three different shades of red represent 
incorrect conditions in the modeling process. The errors in the environment quality conditions 
are more prominent because the accuracy in modeling environment quality only reaches 82.7%, 
as can be seen in Fig. 19.
 The visualization of the data from central AC modeling can be seen in Fig. 20. We can 
observe that data with a value of 0 are depicted in yellow, indicating the condition of central AC 
as turn-off, while data with a value of 1 are shown in green, indicating the condition of central 
AC as turn-on. The red and orange colors indicate inconsistencies or errors in the modeling 
process.
 The data visualization for the buzzer is shown in Fig. 21 and follows the same pattern as that 
for central AC. Data with a value of 0, representing the turn-off condition, are indicated in 
yellow, while data with a value of 1, indicating the turn-on condition, are indicated in green. 
However, similar to the central AC data visualization, there are also red and orange colors, 
which indicate inconsistencies or errors in the modeling process.

Table 6
Modeling results of 10 DNN models.

Model name
Accuracy (%)

Loss (%) Memory use 
(kB)

Inferencing 
time (ms)Environment 

quality  Central AC Buzzer

Model 1 83.1 91.9 98.6 3.55 146.5 33
Model 2 83.3 91.9 98.7 1.56 48.1 8
Model 3 81.5 92.1 98.8 1.85 25.2 3
Model 4 82.7 92.4 98.4 1.64 25.1 3
Model 5 82.3 88.1 98.5 1.35 22.9 3
Model 6 81.3 89.2 98.2 2.50 16.3 1
Model 7 80.3 92.2 98.9 1.66 25.0 3
Model 8 84.0 92.2 96.6 2.81 25.0 4
Model 9 77.8 91.9 98.6 1.24 56.6 11
Model 10 82.2 92.4 98.9 0.96 48.0 8
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Fig. 19. (Color online) Data visualization in modelling of environment quality.

Fig. 20. (Color online) Data visualization in modelling of central AC. 

Fig. 21. (Color online) Data visualization in modelling of buzzer.

Table 7
The top three ranking models.
Model name Average accuracy (%) Loss (%) Memory use (kB) Inferencing time (ms)
Model 4 91.17 1.64 25.1 3
Model 5 89.63 1.35 22.9 3
Model 10 91.17 0.96 48 8
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Table 8
Testing scenarios of FIS-DRL implemented for environment quality.

Number
Parameter FIS-DRL 

system Expected valueTemperature 
(℃) Humidity (%) Dust (µg/Nm3) Smoke (µg/m3)

1 24 67 10 467 Good Good
2 26 38 35 396 Good Good
3 25 68 9 286 Good Good
4 23 45 38 371 Good Good
5 22 49 17 7618 Good Moderate
6 25 87 1 23 Good Good
7 28 34 37 94 Good Good
8 28 76 7 58 Good Good
9 22 38 25 105 Good Good

10 24 0 31 266 Good Good
11 25 45 38 105 Good Good
12 22 14 23 193 Good Good
13 28 33 40 396 Good Good
14 27 82 5 81 Moderate Moderate
15 28 50 3 88 Moderate Moderate
16 34 59 5 319 Moderate Moderate
17 27 75 2 358 Moderate Moderate
18 28 56 5 9106 Moderate Poor
19 41 55 7 821 Moderate Moderate
20 28 58 4 1607 Moderate Moderate
21 38 65 7 1695 Moderate Moderate
22 24 47 25 965 Moderate Poor
23 24 73 2 357 Moderate Moderate
24 27 49 0 2154 Moderate Moderate
25 33 60 0 4311 Moderate Moderate
26 28 54 10 679 Moderate Moderate
27 30 59 6 8819 Moderate Moderate
28 27 60 34 679 Poor Poor
29 26 62 30 5999 Poor Poor
30 22 61 12 2228 Poor Poor

4.3 Comparison of FIS-DRL and conventional system

 After modeling the FIS-DRL system with model 4, the next step is to test the system to 
evaluate the performance of the developed model. Thirty scenarios are tested to compare the 
FIS-DRL system with conventional systems for environment quality assessment, as shown in 
Table 8. The test dataset consists of 13 records indicating a good environment quality situation, 
14 records representing a moderate environment quality situation, and three records reflecting a 
bad environment quality situation. The FIS-DRL modeling we conducted resulted in an accuracy 
of 91%. These records were collected randomly under various room conditions of temperature, 
humidity, dust, and smoke.
 Figure 22 shows the reward results for environment quality, AC settings, buzzer, and mean 
reward. From these reward results, it can be concluded that the agent is starting to learn the 
environment that it is supposed to control. In Fig. 22(a), we can see that although the agent learns 
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rapidly to recognize and respond to the buzzer, the final reward obtained is not higher than those 
of other devices. This suggests that, although the agent learns rapidly, its ability to understand 
and respond to emergency conditions may not be higher than those of other devices. On the other 
hand, for environment quality, as seen in Fig. 22(b), although the agent learns more slowly, the 
final reward obtained is higher. This suggests that the agent may need more time to understand 
the environment quality conditions in the environment, but is then able to take more effective 
actions based on that understanding. In Fig. 22(c), for the AC setting, the agent learns gradually, 
where in some episodes, it may stagnate in its learning. However, in more advanced episodes, 
the agent starts to learn better and the reward increases from that of the previous episode. This 
shows that the agent can learn from experience and improve its performance over time. 
Regarding the mean reward seen in Fig. 22(d), although there is a decrease when the buzzer has 
a learning decline, the system as a whole can still run well. This shows that, despite variations in 
the individual performance of the system components, the overall system can still achieve good 
performance. 
 Furthermore, an experiment is conducted to detect smoke by deliberately lighting a fire in the 
room for a certain duration. The aim of this experiment is to assess the system’s capability to 
detect and respond to smoke in real-world scenarios.
 The mobile application is developed using Android Studio IDE. Figure 23(a) illustrates the 
main menu design, while Fig. 23(b) shows the login menu design. To ensure system security and 
protect factory privacy, the application design requires users to enter an ID number and password 

Fig. 22. (Color online) Rewards of environment quality in factory. (a) Environment quality. (b) AC. (c) Buzzer. (d) 
Mean reward.
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to log in, as depicted in Fig. 23(b). The subsequent menu shown in Fig. 23(c) allows users to 
monitor various factory conditions, including temperature, humidity, smoke, dust, environment 
quality, central AC status, and an alarm represented by a buzzer.

4.4	 Cost	analysis	of	FIS-DRL	in	intelligent	factory	system

 The implementation of an intelligent factory control system that utilizes a combination of 
FIS-DRL technology has a significant impact on factory workers. It offers efficiency and ease in 
managing intelligent factories at a low cost. An analysis was conducted to compare the intelligent 
factory control system based on FIS-DRL technology with the utilization of human labor. This 
analysis was performed under typical conditions in Taiwan, where the electricity cost is NTD 
7.03 per kWh. The FIS-DRL device has a maximum power usage of 20 W and operates 
continuously for 24 h a day. On the other hand, the cost of human labor is NTD 1000 per day, 
with a working duration ranging from 3 to 5 h. In Taiwan, a maintenance fee of NTD 1500 per 
month is charged to ensure that the system is running properly and to detect any errors or issues 
that may arise during its operation. The maintenance fee covers regular checks and necessary 
repairs to maintain the system’s functionality and efficiency.
 The FIS-DRL and labor costs are shown in Table 9. It is evident that the FIS-DRL method 
incurs lower daily and monthly costs (NTD 6561.6) than labor costs (NTD 30000). When 
converted to USD, the FIS-DRL method costs USD 209.69, while the labor cost is USD 958.70. 
Therefore, implementing the FIS-DRL method appears to be more cost-effective and economical 
than the labor-intensive approach in this particular scenario. 

Fig. 23. (Color online) Mobile device application. (a) Main menu. (b) Login menu. (c) Monitoring and controlling 
menu.

(a) (b) (c)
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5. Conclusions

 In this study, the combination of FIS and DRL using DNN modeling in model 4 was proven 
to be highly suitable for implementing environment quality control or monitoring in intelligent 
factories. The model achieved satisfactory accuracies for each output, namely, 82.7% for 
environment quality, 92.4% for central AC, and an impressive 98.8% for the buzzer. Additionally, 
the memory usage for this model was low, specifically 25.1 kB. This implementation successfully 
demonstrated the potential to optimize resource usage, reduce labor costs, and enhance 
efficiency in controlling environment quality in factory environments.
 FIS was utilized to model and handle the uncertainty of factory environment data by 
employing sets and rules to generate output based on the given data. FIS used fuzzy sets and 
created 33 fuzzy rules to provide output based on the existing IMF.
 Through the integration of FIS and DRL, we obtained promising results in addressing the 
complex challenges of managing environment quality in intelligent factories. The resulting 
system improved efficiency, reduced operational costs, and enhanced safety and comfort levels 
in the factory environment. The results of this study significantly contribute to the development 
of environment quality control and monitoring systems in intelligent factories, with potential 
positive impacts across various industrial fields and work environments.
 The obtained results serve as a basis for further development in utilizing FIS and DRL 
technology to enhance overall system efficiency and performance, which will benefit numerous 
industries and work settings.
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