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	 In traditional machine tool thermal error detection, eddy current or capacitive probes are 
mainly used. We propose a new data sensing architecture consisting of two main components: a 
thermal error sensing model and a temperature sensing module. The thermal error sensing 
model is composed of two quadrant detectors forming a 3D displacement error sensing module. 
The temperature sensing module consists mainly of multiple PT100 sensors. In the thermal rise 
experiment, spindle XYZ directional thermal errors are detected by the displacement error 
sensing module, while temperature changes at various locations are detected by the PT100 
sensors. The experimental results show that the main thermal errors of the spindle are in the YZ 
direction. Therefore, we introduce four neural network algorithm methods [Temporal 
Convolutional Network (TCN), Generative Adversarial Network (GAN), Long Short-Term 
Memory (LSTM), and Bi-directional LSTM (BiLSTM)] to establish various models for 
predicting the spindle’s thermal errors in the YZ direction. The predictive results indicate that 
Z-direction predictions are more accurate, with model accuracy maintained up to 70% after six 
months. In the Y-direction thermal error model, significant improvements in prediction results 
were observed after the RPM parameter was incorporated into the model. Among the various 
models compared, TCN and BiLSTM show the best performance in terms of accuracy over 
extended periods and across different thermal error directions.

1.	 Introduction

	 Machine tool errors can be classified into three categories: structural, dynamic, and static 
errors, with thermal error constituting over 50% of the total error. Among these, spindle thermal 
error is the most significant contributor to thermal error.(1) Thus, thermal error compensation 
has always been a widely discussed topic. The main development directions for thermal error 
compensation technology include several areas, such as developing new thermal error 
measurement methods, creating new sensor selection methods, and developing new thermal 
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error models. These approaches have demonstrated significant improvements in prediction 
accuracy and error reduction with the incorporation of neural network algorithms.
	 In the past, many scholars have experimented with different sensor selection and thermal 
error measurement methods. Jywe and colleagues proposed an optical five-axis measurement 
system (LASER R-TEST) that uses a laser and sensors to obtain X, Y, and Z position signals. 
LASER R-TEST can measure machine tool eccentricity, rotational axis positioning errors, and 
spindle thermal errors.(2–4) Lu et al. used the Spearman correlation coefficient and reduced the 
number of sensors from 16 to 7.(5) They then established a prediction model using Long Short-
Term Memory (LSTM) and General Regression Neural Network (GRNN), resulting in a 
decrease in RMSE from 4.29 to 1.57 µm.(5) Zheng et al. used the Pearson correlation coefficient 
for temperature feature selection.(6) By using sensor selection methods, the number of sensors 
can be reduced, thereby lowering the cost of future sensor installations on the machine. Liu et al. 
used variational mode decomposition (VMD), LSTM, and the grey wolf (GW) optimizer to 
establish a thermal error model.(7) They found that VMD-GW-LSTM was superior to VMD-
LSTM and recurrent neural networks (RNNs), with compensation rates of 77.78, 75, and 77.78% 
for three different sizes.(7) Chen used the Spearman correlation coefficient for sensor selection 
and established an LSTM-based thermal error model and a compensation method, while the 
actual cutting residual was 22 µm with compensation thermal error.(8) Liu et al. presented a 
novel method that combines key temperature point (KTP) selection and LSTM modeling for 
accurate spindle thermal displacement prediction in machine tools.(9) Liu et al. introduced a Bi-
directional LSTM (BiLSTM) deep learning model for thermal error prediction in computer 
numerical control (CNC) machining, considerably enhancing machining accuracy and 
workpiece precision.(10) Zhang et al. introduced a Generative Adversarial Network (GAN)-
Support Vector Regression method for predicting the angle of tube-bending rebound.(11) They 
addressed the issue of insufficient data for metal tube-bending samples by using Wasserstein 
distance in the GAN for data augmentation, resulting in higher prediction accuracy and 
addressing the problem of gradient vanishing during training.(11) Yoon et al. proposed Time 
GAN, a novel framework that combines supervised and adversarial training to generate realistic 
time series data.(12) Wu et al. proposed a GAN-based framework with piecewise linear 
representation (PLR) to improve stock prediction by learning trading actions (buying, selling, 
and holding). PLR forms guided trading sequences for the GAN discriminator, while the GAN 
generator predicts daily actions. This approach outperforms LSTM networks.(13) Ravuri et al. 
trained a model on a corpus of precipitation events using radar data.(14) Their model allowed for 
fast, full-resolution nowcasts and outperformed several baselines in predicting meteorologically 
challenging events.(14)

	 In contrast, some studies have explored novel methodologies for thermal error prediction. 
These alternative methods offer diverse perspectives and contribute to the broader understanding 
of thermal error analysis in manufacturing. Jia et al. introduced a novel one-dimensional 
convolutional neural network (CNN)-gated recurrent unit (GRU)-attention model for spindle 
thermal error prediction, achieving an accuracy of 81.53% and an RMSE that is 40% lower than 
those of traditional methods.(15) This model integrates convolutional, GRU, and attention 
mechanisms for effective feature extraction and error prediction.(15) Kuo et al. presented a 
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machine learning method using a bi-directional GRU neural network optimized by Logistic 
Random Generator Time-Varying Acceleration Coefficient Particle Swarm Optimization, 
offering the high-accuracy prediction of thermal displacement in manufacturing.(16) Tan et al. 
developed a CNN and an informer-based model for the accurate temperature prediction of 
spindle bearings under variable operating conditions.(17) Chen and Wang proposed a method 
using B-P neural network modeling to predict and compensate for thermal error in NC 
machining, significantly improving machining accuracy and process capability index (CPK).(18) 
Similarly, Yin et al. introduced a Segment Fusion Least Squares Support Vector Machine 
method for a more accurate thermal error prediction in CNC machining, which is related to 
multiple linear regression models (MLR).(19) Guo et al. introduced an attention-based CNN 
model for predicting spindle thermal errors in NC machines, enhancing accuracy and 
overcoming the Artificial Neural Network’s local minimum problem.(20) Wu et al. developed a 
CNN model integrating thermal images and thermocouple data for accurate spindle thermal 
error prediction in CNC machining.(21) Li et al. presented an Improved Binary Grasshopper 
Optimization Algorithm-feature selection method for identifying temperature-sensitive points in 
the thermal error modeling of machine tools, enhancing prediction accuracy.(22) 

	 We aim to use temperature sensors and a 3D sensing module to collect input and output data 
for the spindle thermal error model. We tested two selection mechanisms, the Spearman 
correlation coefficient and XGBoost, to select feature parameters that are highly correlated with 
thermal error, eliminate redundant parameters, and then apply neural network algorithm 
methods to establish thermal error models. The system enables spindle thermal error 
measurement and model establishment, providing users with higher accuracy and improved 
competitiveness. The rest of the paper is organized into four sections: Section 2 includes 
principles of research and the setup and verification of the measurement system. Section 3 
delves into data collection, selection mechanisms, and the compensation model. In Sect. 4, the 
results are analyzed, highlighting improvements made in predicting thermal errors. Lastly, 
Sect. 5 provides a summary of the key findings.

2.	 Research Principles, Framework, and Methods

2.1	 Principles of research

	 In this study, the thermal error of a spindle was collected using a 3D sensing module, while 
temperature data were gathered using a PT100 sensor. The spindle rotational speed was captured 
through the Internet of Things technology connected to a CNC controller.(1) Then, we used four 
different neural network algorithm methods (LSTM, BiLSTM, TCN, and GAN) to establish 
thermal error models. Finally, these thermal error models were utilized to predict the thermal 
error displacement of the spindle. The following parts will elaborate on the details of the 
measurement system used. 
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2.2	 LASER R-TEST verification

2.2.1	 LASER R-TEST

	 LASER R-TEST is divided into two parts, as shown in Fig. 1. The first part consists of a 3D 
sensing module, which utilizes two sets of laser light and two photoelectric quadrant detectors 
(QDs). The second part comprises a standard rod, which includes a cutter arbor, a metal rod, and 
a spherical lens. The measurement involves mounting the standard rod on the CNC spindle and 
aligning the center of the spherical lens in the standard rod with the spindle. Subsequently, the 
3D sensing module is installed on the work platform, aligning the intersection point of the two 
orthogonal laser light sources in the 3D sensing module with the center of the spherical lens. 
Once the setup is complete, the spherical lens undergoes rotational motion as the spindle rotates. 
The positional signals for the X–Z and Y–Z directions of the center of the spherical lens are 
individually detected by the two sets of QDs. This method enables the sensing of XYZ 
coordinate variations during the spindle’s rotation.
	 Currently, the system operates at a sampling frequency of 1 kHz. During sampling, the least 
squares circle method is employed to accurately calculate the thermal error in the XYZ directions 
of the center of the spherical lens. 
	 As the system employs QD sensors with small voltage signals as output signals, it is necessary 
to undergo calibration and conversion to obtain the calibration factor K. After obtaining the 
value of K, high-precision machine tools are utilized for the calibration of the 3D sensing 
module. This calibration involves entering standard coordinate displacements into the machine 
tool, sequentially moving in the XYZ directions, and comparing the differences between the 
input position signals and the 3D sensing module displacement signals. This process confirms 
the accuracy and precision of the sensing module. The calibration and comparison results are 
illustrated in Table 1.
	 After calibrating the 3D sensing module, it is installed on the CNC workstation. Next, the 
standard rod is mounted on the spindle of the CNC machine tool, ensuring that there is no 
eccentricity between the standard rod and the spindle, as shown in Fig. 2. The spindle is then 
rotated at a speed of 8000 rpm. Finally, the CNC machine tool is moved along the XYZ axes to 

Fig. 1.	 (Color online) 3D sensing module and standard rod.(3)
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verify whether the 3D sensing module can accurately sense displacements in all three directions. 
The verification results are depicted in Table 2.

2.3	 Placement location of PT100(1)

	 PT100 sensors were primarily used to measure temperature changes. These sensors were 
installed at different locations on the spindle components, motors and the machine tool structure. 

Table 1
LASER R-TEST’s calibration results with the spindle stopped.

X Y Z
Target value Actual value Residual Actual value Residual Actual value Residual

100 100.2 −0.2 99.6 0.8 100.6 −0.6
90 89.7 0.3 89.2 0.8 90.3 −0.3
80 79.6 0.4 79.2 0.8 80.1 −0.1
70 69.6 0.4 69.5 0.5 70.3 −0.3
60 59.7 0.3 59.5 0.2 60.5 −0.5
50 49.1 0.9 49.8 −0.1 50.6 −0.6
40 40.1 −0.1 40.1 −0.1 40.6 −0.6
30 30.1 −0.1 30.1 −0.1 30.8 −0.8
20 20.1 −0.1 19.9 0.1 20.5 −0.5
10 10 0 9.6 0.4 10.4 −0.4
0 0 0 0 0 0 0

−10 −9.6 −0.4 −10.7 0.7 −9.8 −0.2
−20 −19.7 −0.3 −20.5 0.5 −20.2 0.2
−30 −29.5 −0.5 −30.5 0.5 −29.9 −0.1
−40 −39.2 −0.8 −40.3 0.3 −30.9 −0.1
−50 −49 −1 −50.2 0.2 −49.7 −0.3
−60 −59.1 −0.9 −60 0 −59.5 −0.5
−70 −69 −1 −70.2 0.2 −69.9 −0.1
−80 −79.6 −0.4 −80.4 0.4 −80.3 0.3
−90 −90 0 −90.3 0.3 −90.8 0.8

−100 −100.1 0.1 −100.7 0.7 −101.1 1.1

Fig. 2.	 (Color online) LASER R-TEST and tool holder setup.(1)
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When the spindle rotates at a high speed, temperature changes at different locations are sensed. 
The correlation coefficient between spindle thermal error and temperature changes at different 
locations can then be established using the Spearman correlation coefficient and XGBoost. In 
this experiment, the sensors were placed at 13 positions on the machine, as shown in Fig. 3.(1)

3.	 Spindle Thermal Error Prediction

	 The approach involves installing PT100 sensors on the machine for temperature data 
collection. Data transmission is carried out through the serial port. Laser R-Test (LRT) is used 
for thermal error data collection, with signal transmission occurring over Wi-Fi. Subsequently, 
an edge computer is utilized for data collection, and AI models are established on the basis of the 
temperature, speed, and displacement data collected. The system framework diagram is shown 
Fig. 4.
	 The following parts will be introducing the essential steps of thermal error prediction, 
including data collection, XGBoost for sensor selection, data normalization, and algorithms used 
in the thermal compensation model. 

3.1	 Data collection

	 To assess the long-term accuracy of various neural network algorithms, we have designed an 
experimental method by testing the model with data recorded on 2022/07/17, then comparing it 

Table 2
LASER R-TEST’s calibration results during spindle rotation.

X Y Z
Target value Actual value Residual Actual value Residual Actual value Residual

100 99.9 0.1 99.9 0.1 100.9 −0.9
90 89.8 0.2 89.7 0.3 90.5 −0.5
80 79.3 0.7 79.5 0.5 80.2 −0.2
70 69.2 0.8 69.6 0.4 70.2 −0.2
60 59.3 0.7 59.6 0.4 60.2 −0.2
50 49.6 0.4 49.8 0.2 50.3 −0.3
40 39.9 0.1 39.8 0.2 40.5 −0.5
30 30.1 −0.1 29.6 0.4 30.7 −0.7
20 20.2 −0.2 19.6 0.4 20.7 −0.7
10 10.3 0.3 9.7 0.3 10.5 −0.5
0 0 0 0 0 0 0

−10 −9.6 −0.4 −10.6 0.6 −10.3 0.3
−20 −19.7 −0.3 −20.7 0.7 −20.4 0.4
−30 −29.5 −0.5 −30.6 0.6 −30.4 0.4
−40 −39.3 −0.7 −40.5 0.5 −40.1 0.1
−50 −49.3 −0.7 −50.4 0.4 −49.9 −0.1
−60 −59.3 −0.7 −60.3 0.3 −60 0
−70 −69.3 −0.7 −70.5 0.5 −70.1 0.1
−80 −79.8 −0.2 −80.4 0.4 −80.3 0.3
−90 −90.1 0.1 −90.5 0.5 −90.7 0.7

−100 −100.1 0.1 −100.5 0.5 −101.1 1.1
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Fig. 3.	 (Color online) Locations of PT100 sensors.(1) 

Fig. 4.	 (Color online) System framework diagram.
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with data recorded one month later (2022/08/15) and six months later (2023/04/18). The data 
from 2022/07/17 was used for module testing and feature selection. Before establishing the 
thermal error model(1), it is necessary to identify the factors that affect thermal error. This study 
employs a CNC machine tool with a maximum spindle speed of 8000 RPM. To better simulate 
the actual machining process, various speed ratios were used in the experiments. It was observed 
that, compared with temperature changes, displacement changes exhibited a prominent and 
immediate response to different rotational speeds. Therefore, rotational speed was selected as an 
input parameter in this experiment. The selected speed and operating time are shown in Fig. 5, 
with a time span of 11 h from Figs. 5–7. It can be observed that when the spindle starts operating, 
both temperature and thermal error increase. 
	 From the results shown in Fig. 7, it is observed that when the spindle rotates at a high speed 
and causes thermal error, the main directional errors at the tool tip point in the Z- and 
Y-directions are about 40–50 µm, while the error in the X-direction is 10 µm. The experimental 
results reveal that the phenomenon of thermal rise has the least impact on the X-direction of the 

Fig. 6.	 (Color online) Temperature data.(1)

Fig. 5.	 (Color online) Spindle speed configuration.(1,8)
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CNC machine. Consequently, we initially focus on modeling the Z- and Y-directions, which are 
the primary directions of thermal rise errors, to establish the relationship between temperature 
and thermal rise errors. The Y-direction thermal error primarily stems from changes in the 
mechanical structure of the CNC machine, and thus, lacks repeatability, leading to a relatively 
poor prediction result. On the other hand, the thermal error in the Z-direction mainly arises from 
the thermal expansion deformation of the spindle. The thermal error of a single component tends 
to be more repeatable than the total thermal error of the machine structure.

3.2	 Feature and sensor selection mechanism

	 In this study, we tested two selection mechanisms, the Spearman correlation coefficient and 
XGBoost, to select feature parameters that are highly correlated with thermal error and eliminate 
redundant parameters. The feature set from the experimental data was constructed, which 
includes temperature, spindle speed, and thermal displacement data. It can be observed from the 
results in Figs. 5–7 that compared with temperature changes, thermal displacement variations 
are very notable and immediate at different spindle speeds. The measurement results in Figs. 
5–7 suggest that the spindle speed feature is very important in the thermal error model. Then, 
two selection mechanisms are used for feature analysis and sensor selection, comparing whether 
the analysis results match the measurement results. According to the Spearman correlation 
coefficient’s feature analysis results shown in Fig. 8, we found that the correlation value between 
the spindle speed feature and thermal displacement is low. The result could lead to the removal 
of the spindle speed feature from future neural network models, which contradicts observations 
from the measurement results. However, as shown in Fig. 9, the XGBoost algorithm analysis 
highlighted the importance of the spindle speed feature in thermal displacement, aligning 
closely with the measurement results. Therefore, XGBoost was used to obtain the weight 
coefficients of each feature and sensor in this study; then, the optimal number and features for 
prediction were selected. This method of using XGBoost not only reduces the need for the sensor 
setup and model training time, but also effectively improves the accuracy of the thermal error 
model.

Fig. 7.	 (Color online) 11-h thermal error diagram of X-, Y-, and Z- directions.
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3.3	 Normalization(1,24)

	 To eliminate the effects of units and dimensions, and make the model converge, data 
normalization is performed. For the temperature data, to ensure that the model can be applied to 
different temperature conditions, the minimum and maximum values of the temperature range 
were set at −20 and 100, respectively, then scaled proportionally to the range of 0 to 1, which is 
known as min-max normalization:

Fig. 9.	 (Color online) 2022/07/15_XGBoost feature selection.(1)

Fig. 8.	 (Color online) 2022/07/15_Spearman feature selection.
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where Xmax is the maximum value and Xmin is the minimum value.
	 In this study, the thermal error is normalized to a range from 100 to 100 µm. The choice of 
this range is primarily because most CNC spindle thermal errors fall within this interval. To 
enhance the generalizability of subsequent data, we normalize all data on the basis of the same 
standard.

3.4	 Neural network model(1)

	 In this section, we introduce four types of neural network models used in this study: TCN, 
GAN, LSTM, and BiLSTM. We first introduce TCN, which is a CNN variant that combines the 
architectures of RNN and CNN. The structure diagram of the TCN is shown in Fig. 10. The 
simple convolutional structure allows it to perform better than typical RNNs (such as LSTM) 
when it comes to multiple tasks and data, and it also exhibits longer effective memory.(1,25–27) 
Causal convolution is used in TCN, which defines that the output is only affected by past data 
instead of future data, and has memory of the past. In addition, the fully connected layer ensures 
that the input and output dimensions are the same. 
	 Second, GAN uses two neural networks, a generator and a discriminator, which compete 
against each other in a game. The generator learns to generate new data with the same statistics 
as the training set to fool the discriminator, whereas the discriminator learns to assess realities 
and fakes to win the game.
	 Third, LSTM is a type of RNN capable of learning long-term dependences. It contains an 
internal cell state that flows through time, allowing it to bridge longer gaps than conventional 
RNNs without forgetting earlier inputs. Lastly, BiLSTM combines the characteristics of LSTM 

Fig. 10.	 (Color online) TCN structure diagram.(26)
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and bi-directional RNN. It consists of two LSTM layers, one processing data from left to right 
and the other from right to left. BiLSTM is capable of simultaneously considering past and 
future information, enabling more precise predictions of temperature changes and thermal 
errors. This model is particularly effective in capturing dynamic changes in factors such as 
processing time and ambient temperature, thereby enhancing prediction accuracy. The structure 
diagram of BiLSTM is shown in Fig. 11.
	 We conducted hyperparameter tuning through random grid search. The hyperparameters 
under consideration for tuning included the number of neurons, learning rate, the number of 
epoch, batch size, and the type of optimizer, as shown in Table 3. For each hyper parameter, 
various types and values were listed, and then random selection and arrangement were 
performed for prediction. The best hyper parameter combination was determined by comparing 
prediction results.

4.	 Experiment and Model Prediction Results

	 In this study, the input data consists of 14 signals in total: 13 temperature data points collected 
from the PT100 module and one spindle speed data.(1) The measurement experiments showed 
that the thermal errors are mainly observed in the Z- and Y-directions. These signals can be 
acquired using LASER R-TEST developed in this study, and the data sampled on July 15, 2022 
was utilized as the training and validation dataset, including 19800 single-featured data points 
with an output frequency of two times per second. The data covered an 11-h duration of varying 
spindle speed. Subsequently, datasets one month after (2022/8/15) and six months after 
(2023/04/08) were used as the testing set to assess the long-term accuracy of the model.

Fig. 11.	 (Color online) BiLSTM structure diagram.(28)

Table 3
Hyperparameter tuning of models.

Number of layers Learning rate Number of epoch Batch size Type of optimizer
TCN 1 0.001 100 128 Adam
LSTM 2 0.001 100 128 Adam
GAN 2 0.001 100 160 Adam
BiLSTM 2 0.001 100 128 Adam
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	 In this research, we tested various commonly used machine learning algorithms such as 
TCN, LSTM, GAN, and BiLSTM. The aim was to evaluate the accuracy of different AI models 
with different feature parameters over an extended period. According to Table 4, the correlation 
coefficients between each temperature sensor and thermal error in the Y- and Z-directions of the 
spindle can be identified. The correlation coefficient is lower for the Y-direction of the spindle 
than for the Z-direction since thermal errors in the Y-direction are primarily affected by 
structural deformation and temperature rise. The correlation coefficient for the key parameter, 
which is the spindle speed, is only about 0.2, indicating that it may be excluded during feature 
selection. However, on the basis of previous experience and research, we understand that 
variations in spindle speed are important factors that affect spindle temperature rise. Therefore, 
we attempted to incorporate this factor into the model and found that it indeed resulted in better 
performance, with a 20% improvement. Table 5 indicates that most prediction results in higher 
Z-direction achieve an accuracy of more than 70% and an error range of less than 20 µm. The 
Y-direction prediction is poor since the thermal errors involve both structural and spindle 
thermal deformation errors. Moreover, the structure may have changed after six months of 
waiting. Therefore, to achieve higher prediction results for the Y-direction thermal error in the 
future, we may consider adding more temperature sensors at places such as on the lead screw of 
the drive system and on the Z-axis mounting surface to detect thermal errors resulting from 
structural deformations. The residuals of prediction results in the Z- and Y-directions are shown 
in Tables 5 and 6.
	 Overall, TCN produced residuals that were lower and more consistent than those produced by 
both the LSTM and GAN models across different datasets and numbers of sensors, indicating 
superior stability in forecasting time series data. As the number of sensors decreased, the 
prediction accuracy declined for all models, although the decline amplitude was smaller for TCN 
than for LSTM and GAN. The use of a temporal convolutional structure in TCN enables the 
more effective capture of long-term dependences.

Table 4
Order of parameters in each direction.

Z-direction
Number of 
parameters Order of parameters

14 T9, T10, T2, T6, RPM, T1, T3, T11, T5, T12, T4, T7, T8, T13
10 T9, T10, T2, T6, RPM, T1, T3, T11, T5, T12
7 T9, T10, T2, T6, RPM, T1, T3

Y-direction
Number of 
parameters Order of parameters

14 T3, T11, T13, T5, T8, T12, T7, T2, T10, T6, T9, T4, RPM, T1
10 T3, T11, T13, T5, T8, T12, T7, T10, T6, RPM
7 T3, T11, T13, T5, T8, T12, RPM

Correlation coefficient
T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13

Y-direction 0.26 0.65 0.87 0.42 0.66 0.51 0.60 0.65 0.53 0.53 0.71 0.63 0.70
Z-direction 0.22 0.81 0.24 0.85 0.83 0.93 0.90 0.88 0.92 0.92 0.85 0.86 0.84
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	 GAN’s generator–discriminator relationship causes instability and inability to model 
complex time series distributions, resulting in the largest residual among the three models. Thus, 
the variation in models’ performance could be reasonably attributed to differences in their 
network architecture designs and how well suited each is for solving time series problems. 
Tables 5 and 6 further show the average prediction results of the three models for 2022/8/15 and 
2023/04/08. Figures 12–20 then show the output graphs of prediction results, with GAN 
oscillating the most. BiLSTM, with its bi-directional LSTM layers, can simultaneously consider 
both past and future information. The outputs of these two LSTM layers are combined; therefore, 
in the results presented above, BiLSTM can provide a comprehensive time series analysis when 
the data is complete, significantly improving prediction accuracy. This approach enhances the 
model’s adaptability to complex variations.

Table 6
Residuals of prediction results in Y-direction.

2022/08/15 prediction result 2023/04/18 prediction result

Number of sensor 
inputs

Actual thermal 
error (µm)

Residual of 
prediction 

(µm)

Improved 
efficiency (%)

Actual thermal 
error (µm)

Residual of 
prediction 

(µm)

Improved 
efficiency (%)

TCN
14

59.09

26.92 54.44

50.94

10.78 78.82
10 18.22 69.17 12.27 75.88
7 27.19 53.98 20.32 60.06

LSTM
14 23.51 60.21 16.37 67.83
10 24.48 58.57 20.65 59.41
7 20.22 65.79 23.31 49.59

GAN
14 24.08 59.208 18.58 57.18
10 23.96 59.512 26.77 47.456
7 25.88 56.229 28.03 45.088

BiLSTM
14 19.11 67.66 14.81 70.81
10 20.14 65.92 18.65 63.34
7 24.23 58.99 19.74 61.21

Table 5
Residuals of prediction results in Z-direction.

2022/08/15 prediction result 2023/04/18 prediction result

Number of 
sensor inputs

Actual thermal 
error (µm)

Residual of 
prediction 

(µm)

Improved 
efficiency (%)

Actual thermal 
error (µm)

Residual of 
prediction 

(µm)

Improved 
efficiency (%)

TCN
14

54.52

11.669 78.597

58.46

14.55 75.11
10 12.617 76.858 15.26 73.9
7 14.718 73.004 16.78 71.3

LSTM
14 15.436 71.687 10.7 81.7
10 16.827 69.136 12.06 79.37
7 15.497 71.576 14.19 75.73

GAN
14 12.962 76.276 14.80 74.622
10 16.865 69.051 16.61 71.598
7 16.498 69.763 19.51 66.610

BiLSTM
14 7.94 85.44 11.72 79.95
10 10.33 81.05 12.88 77.97
7 16.83 69.13 14.22 75.68
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Fig. 13.	 (Color online) LSTM_20220815 actual thermal error data and prediction results before/after sensor 
selection.

Fig. 12.	 (Color online) Comparing prediction results with and without using rpm parameter.
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Fig. 14.	 (Color online) LSTM_20230418 actual thermal error data and prediction results before/after sensor 
selection.

Fig. 15.	 (Color online) TCN_20220815 actual thermal error data and prediction results before/after sensor selection.
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Fig. 16.	 (Color online) TCN_20230418 actual thermal error data and prediction results before/after sensor selection.

Fig. 17.	 (Color online) GAN_20220815 actual thermal error data and prediction results before/after sensor 
selection.
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Fig. 18.	 (Color online) GAN_20230418 actual thermal error data and prediction results before/after sensor 
selection.

Fig. 19.	 (Color online) BiLSTM_20220815 actual thermal error data and prediction results before/after sensor 
selection.
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5.	 Conclusions

	 We successfully developed LASER R-TEST using laser light sources, QD, and ball lenses. 
This system can accurately measure the thermal error in the XYZ direction during spindle 
rotation. Furthermore, we developed a temperature sensing module and introduced neural 
network algorithms such as LSTM, TCN, GAN, and BiLSTM to establish an AI model 
correlating temperature sensing signals with thermal errors. 
	 According to the experimental results, we found that with 14 input parameters, various 
models could achieve a prediction accuracy between 70 and 85% in the Z-direction. In this 
investigation, XGBoost was introduced as a feature selection mechanism, aiming to reduce the 
number of future sensor installations and associated costs, and identify truly key parameter 
factors. According to the experimental results, when the number of sensors was reduced from 14 
to 7, the prediction accuracy of the AI model could be maintained above 70% in the Z-direction. 
In terms of prediction accuracy in the Y-direction, the current accuracy is approximately 
between 60 and 70%, which is lower than that in the Z-direction, since Y-direction thermal 
errors mostly result from mechanical structure changes and the lack of repeatability. 
Additionally, after six months, there is a significant decline in the model’s prediction accuracy, 
possibly owing to the machine structure being more substantially affected by varying 
environmental temperatures. Through several months of data testing and training, this method 
was proven to satisfy adaptability in six months. The experimental results demonstrate that the 
BiLSTM model exhibits greater stability and longer temporal effectiveness than the other 
models. 

Fig. 20.	 (Color online) BiLSTM_20230418 actual thermal error data and prediction results before/after sensor 
selection.
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	 In the future, in the case of improving model failure, a pre-trained model can be established 
using TCN and BiLSTM. Once a model failure is detected or when the prediction performance 
deteriorates, transfer learning can be employed to fine-tune the model. This approach reduces 
the reliance on large amounts of labeled data and accelerates the training process. 

Acknowledgments

	 This paper is based on National Science and Technology Council project number MOST 111-
2218-E-002-033-. The authors would like to express their sincere gratitude to the Ministry of 
Science and Technology, members of the Smart Machinery and Intelligent Manufacturing 
Research Center at NFU, and the Ministry of Economic Affairs “Application of 5G Industrial 
Internet of Things to Promote Digital Transformation of CNC Machine Tool Industry and Cloud 
Value-added Service Plan” for their assistance. Also, the authors would like to express their 
sincere gratitude to Dr. Wen-Yuh Jywe for providing experimental equipment.

References

	 1	 T. H. Hsieh, W. Y. Jywe, H. Y. Lai, Y. H. Chou, and T. H. Wu: 2023 6th Int. Symp. Computer, Consumer and 
Control (IS3C, 2023) 5. https://doi.org/10.1109/IS3C57901.2023.00010

	 2	 C. S. Tran, T. H. Hsieh, and W. Y. Jywe: Appl. Sci. 11 (2021) 9507. https://www.mdpi.com/2076-3417/11/20/9507
	 3	 Optical detecting apparatus for detecting a degree of freedom error of a spindle and a detecting method thereof: 

https://patents.google.com/patent/EP3392609A1/en (accessed August 2023).
	 4	 W. Y. Jywe, T. H. Hsieh, J. M. Hsu, Y. W. Chang, S. Y. Huang, J. Y. Chiu, P. W. Lu, and J. J. Tseng: J. 

M e c h a t r o n i c  I n d u s t r y  4 6 8  ( 2 0 2 2)  2 0 .  h t t p s : / / w w w. a i r i t i l i b r a r y. c o m /A r t i c l e /
Detail?DocID=P20171221002-202203-202203010014-202203010014-20-27

	 5	 Y. S. Lu, T. W. Liu, M. Q. Hong, and M. S. Tsai: Instrum. Today 221 (2019) 56. https://www.airitilibrary.com/
Article/Detail?DocID=10195440-201912-201912300016-201912300016-56-70

	 6	 C. Y. Zheng, G. D. Zhou, and D. K. Liu: Eng. Mech. 38 (2021) 68. https://doi.org/10.6052/j.issn.1000-
4750.2020.05.0323

	 7	 J. L. Liu, C. Ma, H. Q. Gui, and S. L. Wang: Appl. Soft Comput. 102 (2021) 107094. https://doi.org/10.1016/j.
asoc.2021.107094

	 8	 Y. L. Chen: Using Laser R-Test to Develop Artificial Intelligence Thermal Temperature Rise Compensation 
System (Department of Automation Engineering Master’s Thesis, Taiwan, 2021). https://hdl.handle.
net/11296/3855nr

	 9	 Y. C. Liu, K. Y. Li, and Y. C. Tsai: Appl. Sci. 11 (2021) 5444. https://doi.org/10.3390/app11125444
	10	 P. L. Liu, Z. C. Du, X. B. Feng, M. Deng, and J. G. Yang: Adv. Manuf. 9 (2021) 235. https://doi.org/10.1007/

s40436-020-00342-x
	11	 P. F. Zhang, Z. L. Fang, L. Y. Li, and T. T. Yang: J. Sens. 2023 (2023). https://doi.org/10.1155/2023/6616607
	12	 J. Yoon, D. Jarrett, and M. Van Der Schaar: 33rd Conf. Neural Information Processing Systems (NerIPS, 2019).
	13	 J. L. Wu, X. R. Tang, and C. H. Hsu: Soft Comput. 27 (2023) 8209. https://doi.org/10.1007/s00500-022-07716-2
	14	 S. Ravuri, K. Lenc, M. Willson, D. Kangin, R. Lam, P. Mirowski, M. Fitzsimons, M. Athanassiadou, S. 

Kashem, S. Madge, R. Prudden, A. Mandhane, A. Clark, A. Brock, K. Simonyan, R. Hadsell, N. Robinson, E. 
Clancy, A. Arribas, and S. Mohamed: Nature 597 (2021) 672. https://doi.org/10.1038/s41586-021-03854-z

	15	 G. Jia, X. Zhang, X. Wang, X. Zhang, and N. Huang: Int. J. Adv. Manuf. Technol. 127 (2023) 1525. https://doi.
org/10.1007/s00170-023-11616-6

	16	 P. H. Kuo, Y. W. Chen, T. H. Hsieh, W. Y. Jywe, and H. T. Yau: IEEE Sens. J. 23 (2023) 12574. https://doi.
org/10.1109/JSEN.2023.3269064

	17	 F. Tan, G. Yin, K. Zheng, X. Wang, and X. Ma: Lubricants 11 (2023) 343. https://doi.org/10.3390/
lubricants11080343

	18	 J. Chen and X. Wang: 2021 IEEE 4th Advanced Information Management, Communicates Electronic and 
Automation Control Conf. (IMCEC, 2021) 324. https://doi.org/10.1109/IMCEC51613.2021.9482246

https://doi.org/10.1109/IS3C57901.2023.00010
https://www.mdpi.com/2076-3417/11/20/9507
https://patents.google.com/patent/EP3392609A1/en
https://www.airitilibrary.com/Article/Detail?DocID=P20171221002-202203-202203010014-202203010014-20-27
https://www.airitilibrary.com/Article/Detail?DocID=P20171221002-202203-202203010014-202203010014-20-27
https://www.airitilibrary.com/Article/Detail?DocID=10195440-201912-201912300016-201912300016-56-70
https://www.airitilibrary.com/Article/Detail?DocID=10195440-201912-201912300016-201912300016-56-70
https://doi.org/10.6052/j.issn.1000-4750.2020.05.0323
https://doi.org/10.6052/j.issn.1000-4750.2020.05.0323
https://doi.org/10.1016/j.asoc.2021.107094
https://doi.org/10.1016/j.asoc.2021.107094
https://hdl.handle.net/11296/3855nr
https://hdl.handle.net/11296/3855nr
https://doi.org/10.3390/app11125444
https://doi.org/10.1007/s40436-020-00342-x
https://doi.org/10.1007/s40436-020-00342-x
https://doi.org/10.1155/2023/6616607
https://doi.org/10.1007/s00500-022-07716-2
https://doi.org/10.1038/s41586-021-03854-z
https://doi.org/10.1007/s00170-023-11616-6
https://doi.org/10.1007/s00170-023-11616-6
https://doi.org/10.1109/JSEN.2023.3269064
https://doi.org/10.1109/JSEN.2023.3269064
https://doi.org/10.3390/lubricants11080343
https://doi.org/10.3390/lubricants11080343
https://doi.org/10.1109/IMCEC51613.2021.9482246


Sensors and Materials, Vol. 36, No. 8 (2024)	 3593

	19	 G. Yin, F. Tan, K. Zheng, and X. Wang: Int. J. Adv. Manuf. Technol. 116 (2021) 99. https://doi.org/10.1007/
s00170-021-07066-7

	20	 Q. Guo, S. Fan, R. Xu, X. Cheng, G. Zhao, and J. Yang: Chin. J. Mech. Eng. 30 (2017) 746. https://doi.
org/10.1007/s10033-017-0098-0

	21	 C. Wu, S. Xiang, and W. Xiang: J. Manuf. Syst. 59 (2021) 67. https://doi.org/10.1016/j.jmsy.2021.01.013
	22	 G. Li, X. Tang, Z. Li, K. Xu, and C. Li: Precis. Eng. 73 (2022) 140. https://doi.org/10.1016/j.

precisioneng.2021.08.021
	23	 C. Chen, H. Dai, C. Lee, T. H. Hsieh, W. Hung, and W. Y. Jywe : Int. J. Adv. Manuf. Technol. 130 (2024) 2423. 

https://doi.org/10.1007/s00170-023-12778-z
	24	 Database Systems: The Complete Book: https://www.db-book.com
	25	 P. Wu, J. Sun, X. Chang, W. Zhang, R. Arcucci, Y. Guo, and C. C. Pain: Comput. Methods Appl. Mech. Eng. 

360 (2020) 112766. https://doi.org/10.1016/j.cma.2019.112766
	26	 W. Sheng, K. Liu, D. Jia, S. Chen, and R. Lin: Energies 15 (2022) 5584. https://doi.org/10.3390/en15155584
	27	 M. Huang, X. Xie, W. Sun, and Y. Li: Lubricants 12 (2024) 36. https://doi.org/10.3390/lubricants12020036
	28	 T. Ho, H. M. Bui, and T. K. Phung: Int. J. Advances in Intelligent Informatics 9 (2023) 273. https://doi.

org/10.26555/ijain.v9i2.976

About the Authors

	 Tung-Hsien Hsieh received his M.S. degree from the Department of 
Mechanical and Electro-Mechanical Engineering, National Formosa 
University, Yunlin, Taiwan, in 2006, and his Ph.D. degree from the Institute of 
Manufacturing Information Systems, National Cheng Kung University, 
Tainan, Taiwan in 2011. He is currently an assistant professor in the 
Department of Automation Engineering and a research fellow in the Smart 
Machinery and Intelligent Manufacturing Research Center at National 
Formosa University, Taiwan. He won the Young Researcher Award during the 
7th International Conference of the Asian Society for Precision Engineering 
and Nanotechnology in 2017 and the Research Award from National Formosa 
University for three consecutive years. His major research interests include 
optical precision measurement, the compensation of machine tools, and 
automation engineering.

	 Hsin-Yu Lai received his B.S. degree in automation engineering from 
National Formosa University, in Taiwan, in 2023. He is currently pursuing his 
M.S. degree in the Department of Automation Engineering, and he is also a 
research assistant in Smart Machinery and Intelligent Manufacturing at 
National Formosa University, Taiwan. His research interests include precision 
measurement. (40827203@gm.nfu.edu.tw)

	 Yi-Hao Chou received his B.S. degree from the Department of Automation 
Engineering of National Formosa University, Taiwan, in 2023. He is currently 
pursuing his M.S. degree in mechanical engineering at National Taiwan 
University. His research interests include Internet of Things, precision 
measurement, and sensors. (40827210@gm.nfu.edu.tw)

https://doi.org/10.1007/s00170-021-07066-7
https://doi.org/10.1007/s00170-021-07066-7
https://doi.org/10.1007/s10033-017-0098-0
https://doi.org/10.1007/s10033-017-0098-0
https://doi.org/10.1016/j.jmsy.2021.01.013
https://doi.org/10.1016/j.precisioneng.2021.08.021
https://doi.org/10.1016/j.precisioneng.2021.08.021
https://doi.org/10.1007/s00170-023-12778-z
https://www.db-book.com/
https://doi.org/10.1016/j.cma.2019.112766
https://doi.org/10.3390/en15155584
https://doi.org/10.3390/lubricants12020036
https://doi.org/10.26555/ijain.v9i2.976
https://doi.org/10.26555/ijain.v9i2.976
mailto:40827203@gm.nfu.edu.tw
mailto:40827210@gm.nfu.edu.tw


3594	 Sensors and Materials, Vol. 36, No. 8 (2024)

	 Tsai-Hsu Wu received her B.S. degree in mechanical engineering from 
National Taiwan University (NTU), Taipei, Taiwan, in 2023. Her research 
interests include mechanism design and robotics. (b08502101@ntu.edu.tw)

mailto:b08502101@ntu.edu.tw

